wahhh, i need more! now!
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
1 \chapter{Ergebnisse}
2 \label{chapter:ergebnisse}
3
4 Im Folgenden sollen die Ergebnisse der Simulation diskutiert werden.
5 Dabei werden Simulationsergebnisse mit experimentell erfassten Ergebnissen aus \cite{maik_da} verglichen.
6
7 Weiterhin soll der in Kapitel \ref{chapter:modell} vorgestellte Bildungsmechanismus der amorphen $SiC_x$-Phasen in $Si$ verifiziert werden.
8 Hierbei wird vorallem der Einfluss einzelner Simulationsparameter, wie Diffusion und St"arke der Druckspannungen, auf den Selbstorganisationsprozess untersucht.
9
10 Unter der Annahme der Richtigkeit des Modells und seiner Umsetzung k"onnen sehr leicht Aussagen "uber die Struktur und Zusammensetzung an jedem beliebigen Ort des Targets w"ahrend des Ordnungsprozesses gemacht werden.
11 Diese Information ist experimentell sehr schwer zug"anglich.
12
13 Zun"achst werden die Ergebnisse der Simulationen bis $300 nm$ Tiefe vorgestellt.
14 Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich diskutiert.
15
16   \section{Simulation bis $300 nm$ Tiefe}
17
18   Es besteht kein Zusammenhang zwischen Anzahl der Durchl"aufe und der implantierten Dosis.
19   In jedem Durchlauf wird nur ein Sto"sprozess, der zur Amorphisierung beziehungsweise Rekristallisation eines Targetvolumens f"uhren kann betrachtet.
20   Diffusion des Kohlenstoffs von kristallinen in amorphe Gebiete findet statt.
21   Sputtereffekte k"onnen wegen fehlender Information "uber Kohlenstoffgehalt und die amorph/kristalline Struktur in tieferen Ebenen nicht beachtet werden.
22
23     \subsection{Erste Simulationsdurchl"aufe}
24
25     In den ersten Simulationen wurde zun"achst das Abbruchkriterium f"ur den Einflussbereich der Druckspannungen der amorphen Gebiete auf die kristalline $Si$-Matrix untersucht.
26     Ein Abbruchkriterium ist zum einem wegen der Behandlung eines in $x-y$-Richtung unendlich ausgedehnten Festk"orpers, realisiert durch periodische Randbedingungen, und zum anderen wegen schnellerer Berechnung der Druckspannungen n"otig.
27     Eine Erh"ohung des Einflussbereichs von $4$ auf $6$ Volumen zeigt eine gr"ossere Menge an amorphen Gebieten, die lamellare Ordnung der Ausscheidungen steigt jedoch nicht an.
28     Aus den oben genannten Gr"unden wurde f"ur alle weiteren Simulationen ein Einflussbereich von $5$ Volumen gew"ahlt.
29
30     Zun"achst wurden Simulationen mit sehr geringen Schrittzahlen (zwischen $2$ und $4 \times 10^{5}$) durchgef"uhrt.
31     Vorasusetzung f"ur die Entstehung amorpher Gebiete bei dieser geringen Schrittzahl sind hohe Werte f"ur die zur Amorphisierung beitragenden Simulationsparameter $p_b$, $p_c$ und $p_s$ (Gr"ossenordnungsbereich $10^{-1}$).
32     Die Erh"ohung der Parameter f"ur die ballistische Amoprhisierung und selbst die der spannungsinduzierten Amorphisierung "ausserten sich wieder in einer gr"osseren Menge an amorphen Gebieten, die lamellare Ordnung stieg dabei jedoch nicht an.
33     Macht man die Parameter jedoch sehr viel kleiner und erh"oht im Gegenzug die Schrittzahl, so erwartet man, dass zuf"allig amorphisierte Zellen ohne amorphe Nachbarn mit aller Wahrscheinlichkeit im Falle eines Sto"ses rekristallisieren werden.
34     Ein amorphes Volumen das lateral selbst eine amorphe Nachbarschaft hat wird sich selbst und die amorphen Nachbarn stabilisieren.
35     Dies f"uhrt zu einer Stabilisierung und gef"orderten Ausbildung lamellarer amorpher $SiC_x$-Ausscheidungen.
36     F"ur den Selbstorganisationsprozess sind daher eine h"ohere Schrittzahl und kleinere Werte der erw"ahnten, zur Amorphisierung beitragenen Simulationsparameter gefordert.
37     
38     Die Notwendigkeit der niedrigen Amorphisierungsparameter, welche eine fr"uhe komplette Amorphisierung des Targets verhindern, steht im Einklang mit den Beobachtungen aus \cite{lindner_appl_phys}.
39     Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoffionen erwartet man bei den hohen Targettemperaturen keine Amorphisierung.
40     Die Ursache des stattfindenden Amorphisierungsprozesses liegt an der erh"ohten Kohlenstoffkonzentration mit steigender Dosis.
41     Es handelt sich um kohlenstoff-induzierte Amorphisierung.
42     
43     Im Folgenden wurde f"ur Simulationen mit $X,Y=50$ beziehungsweise $X,Y=64$ die Anzahl der Durchl"aufe auf $20$ beziehungsweise $30 \times 10^{6}$ gesetzt.
44     Sieht man "uber die Tatsache hinweg, dass bei einem Durchlauf nicht die f"ur ein Ion durchschnittliche Anzahl der St"osse ausgef"uhrt wird, kann eine "Aquivalenzdosis angegeben werden.
45     Betrachtet man einen Durchlauf als ein implantiertes Ion, so ergibt das nach \eqref{eq:dose_steps} eine Dosis von $0,89$ beziehungsweise $0,81 \times 10^{17} cm^{-2}$.
46
47     \subsection{Vergleich von Simulationsergebnis und TEM-Aufnahme}
48
49     \begin{figure}[h]
50     \includegraphics[width=12cm]{if_cmp3.eps}
51     \caption{Vergleich von Simulationsergebnis und experimentellen Ergebnis einer bei $150 \, ^{\circ} \mathrm{C}$ mit $180 keV \quad C^+$ implantierten $Si$-Probe mit einer Dosis von $4,3 \times 10^{17} cm^{-2}$. Simulationsparameter: $s = 3 \times 10^{7}$, $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_v=10$, $d_r=0,5$.}
52     \label{img:tem_sim_comp}
53     \end{figure}
54     Zun"achst wird nach einem Satz von Parametern gesucht, der die experimentellen Ergebnisse reproduziert.
55     Davon ausgehend k"onnen dann einzelne Parameter variiert und ihre Auswirkungen studiert werden.
56
57     Abbildung \ref{img:tem_sim_comp} zeigt den Vergleich zwischen Simulationsergebnis und dem experimentellen Befund aus Abbildung \ref{img:xtem_img}.
58     Wie man erkennt, ist die Simulation in der Lage lamellare Strukturen zu erzeugen.
59     Diese sind im Tiefenbereich von $200$ bis $300 nm$ zu erkennen.
60     Dies wird von der Simulation sehr gut wiedergegeben.
61     Durch einfaches Abz"ahlen der Lamellen in diesem Tiefenbereich am Rand der TEM-Aufnahme beziehungsweise des Simulationsergebnisses erkennt man, dass auch die Anzahl der Lamellen pro H"ohe recht gut reproduziert wird.
62     Desweiteren stimmen auch die durchschnittlichen L"angen der Lamellen in Experiment und Simulation "uberein.
63
64     Eine objektive Methode der Messung der \dq Lamellarigkeit\dq{} stellt die Fouriertransformation dar.
65     Durch einen Linescan f"ur die feste Ortsfrequenz $f_x=0$ erh"alt man Information "uber die Periodizit"at der Lamellen in $y$-Richtung.
66     Ein weiteres Programm der {\em NLSOP}-Suite schneidet dabei die untersten $50 \times 50$ beziehungsweise $64 \times 64$ Bildpunkte aus und fouriertransformiert diese.
67     Dabei wird die Intensit"at des fouriertransformierten Bildes skaliert um vorallem Bildpunkte ausserhalb des Maximas bei der Ortsfrequenz Null besser zu erkennen.
68     Ein weiterer Vorteil ist die bessere Vergleichsm"oglichkeit zweier Linescans, da deren Intensit"atsverlauf in der selben Gr"ossenordnung liegt.
69
70     F"ur den Vergleich mit der TEM-Aufnahme wurde der linke Teil der Aufnhame abgeschnitten und auf $100$ Bildpunkte in der H"ohe skaliert.
71     \begin{figure}[!h]
72     \includegraphics[width=12cm]{tem_cmp_ls.eps}
73     \caption{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und des Simulationsergebnisses}
74     \label{img:tem_cmp_ls}
75     \end{figure}
76     Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und des Simulationsergebisses.
77     Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe Helligkeit, was ein grosses Maxima bei der Ortsfrequenz Null zur Folge hat.
78     Daher sind Maxima anderer Frequenzen schlecht zu erkennen.
79     Bei genauerem Hinsehen erkennt man, zum Beispiel f"ur die Ortsfrequenz $f_y = -0,125 nm^{-1}$, ein lokales Maximum in der Intensit"at.
80     Im Linescan der Simulation erkennt man auch ein Maximum nahe dieser Frequenz.
81
82     Aus den oben genannten Gr"unden ist die Fouriertransformation nicht sehr gut f"ur den Vergleich von Experiment und Simulation geeignet.
83     Im Folgenden wird diese Methode nur noch zum Vergleich zwischen Simulationen verwendet.
84
85     \subsection{Notwendigkeit der Diffusion}
86
87     Im Folgenden sollen die Diffusionsparameter variiert und deren Auswirkungen besprochen werden.
88     Da die kohlenstoff-induzierte Amorphisierung den wahrscheinlich wichtigsten Beitrag zur Amorphisierung liefert, liegt es auf der Hand, dass die Kohlenstoffdiffusion erheblichen Einfluss auf den Selbstorganisationsvorgang hat.
89
90     \begin{figure}[h]
91     \begin{center}
92     \includegraphics[width=9cm]{diff_einfluss.eps}
93     \end{center}
94     \caption{Vergleich von Simulationen mit unterschiedlicher Diffusionsrate $d_r$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,004$, $d_v=10$. Links: $d_r=0,5$ ohne Diffusion in $z$-Richtung, Mitte: $d_r=0,2$, Rechts: $d_r=0,5$. Die Abbildung zeigt die Cross-Section und deren Fouriertransformierte.}
95     \label{img:diff_influence}
96     \end{figure}
97     \begin{figure}[h]
98     \begin{center}
99     \includegraphics[width=9cm]{sim2-a004-Z_and_noZ-TEMVIEW-ls2.eps}
100     \end{center}
101     \caption{Linescan f"ur $f_x=0$ der Fouriertransformierten aus \ref{img:diff_influence} mit $d_r=0,5$ ohne Diffusion in $z$-Richtung (gr"un) und $d_r=0,5$ mit Diffuison in $z$-Richtung (rot).}
102     \label{img:diff_influence_ls}
103     \end{figure}
104     Abbildung \ref{img:diff_influence} zeigt den Vergleicht von Ergebnissen mit unterschiedlicher Diffusionsrate $d_r$ und ausgeschalteter DIffusion in $z$-Richtung.
105     Unter der Cross-Section Ansicht ist die jeweilige Fouriertransformierte abgebildet.
106     Die beiden "ausseren Cross-Sections sind identische Simulationsdurchl"aufe, ohne (links, gr"un) und mit (rechts, rot) Diffusion in $z$-Richtung.
107     Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung.
108     Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen.
109     Die Amorphisierungswahrscheinlichkeit in den amorphen Volumina steigt durch den Gewinn von Kohelnstoff an.
110     Gleichzeitigt werden sie stabiler gegen"uber Rekristallisation.
111     Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt auf Grund der wachsenden Druckspannungen an.
112     Damit verbunden ist eine immer kleiner werdende Amorphisierung in den kohlenstoffarmen anliegenden Gebieten der Nachbarebenen.
113     Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen.
114     Das Ergebnis zeigt die Notwendigkeit der Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung.
115
116     Weiterhin erkennt man einen Zusammenhang zwischen der Diffusionsrate $d_r$ und dem Tiefenintervall in dem sich lamellare Strukturen gebildet haben.
117     Die Erh"ohung der Diffusionsrate von $d_r=0,2$ auf $d_r=0,5$ hat eine Vergr"osserung des Tiefenintervalls von ungef"ahr $60$ auf $150 nm$ zur Folge.
118     EDIT: Erkl"arung
119
120     EDIT: Linescans, \ldots 
121
122     \subsection{Einfluss der Druckspannungen}
123
124     Im Folgenden soll der Einfluss der Druckspannungen auf den Selbstorganisationsprozess diskutiert werden.
125     \ldots
126
127     \subsection{Verteilung des Kohlenstoffs im Target}
128
129     \begin{figure}[h]
130     \includegraphics[width=5cm]{really_all_z-z_plus1.eps}
131     \includegraphics[width=7cm]{ac_cconc_d.eps}
132     \caption{Amorph/Kristalline Struktur, Kohlenstoffverteilung und Druckspannungen in zwei aufeinander folgenden Ebenen $z$ und $z=1$ (links). Tiefenprofil des Kohlenstoffs in einem Target mit lamellaren Strukturen (rechts).}
133     \label{img:c_distrib}
134     \end{figure}
135     In Abbildung \ref{img:c_distrib} \ldots
136
137   \section{Simulation "uber den gesamten Implantationsbereich}
138
139     \subsection{Reproduzierbarkeit der Dosisentwicklung}
140
141     \subsection{Variation der Simulationsparameter}
142
143     \subsection{Kohlenstoffverteilung}
144
145     \subsection{Variation der Ion-Target-Kombination}
146