more fixes
[lectures/latex.git] / nlsop / nlsop.tex
1 \documentclass{seminar}
2
3 \usepackage{verbatim}
4 \usepackage[german]{babel}
5 \usepackage[latin1]{inputenc}
6 \usepackage[T1]{fontenc}
7 \usepackage{amsmath}
8 \usepackage{ae}
9
10 \usepackage{calc}               % Simple computations with LaTeX variables
11 \usepackage[hang]{caption2}     % Improved captions
12 \usepackage{fancybox}           % To have several backgrounds
13
14 \usepackage{fancyhdr}           % Headers and footers definitions
15 \usepackage{fancyvrb}           % Fancy verbatim environments
16 \usepackage{pstcol}             % PSTricks with the standard color package
17
18 \usepackage{graphicx}
19 \graphicspath{{./img/}}
20
21 \usepackage{semcolor}
22 \usepackage{semlayer}           % Seminar overlays
23 \usepackage{slidesec}           % Seminar sections and list of slides
24
25 \input{seminar.bug}             % Official bugs corrections
26 \input{seminar.bg2}             % Unofficial bugs corrections
27
28 \author{Frank Zirkelbach}
29 \title{Simulation von nanolamellaren Selbstordnugsprozessen}
30
31 \begin{document}
32
33 \extraslideheight{5in}
34
35 \begin{slide}
36 \maketitle
37 \end{slide}
38
39 \begin{slide}
40 \tableofcontents
41 \end{slide}
42
43 \begin{slide}
44 \section{Einf"uhrung}
45 \end{slide}
46
47 \begin{slide}
48 \subsection{Abbremsung von Ionen}
49 Abbremsung der Ionen durch:
50 \begin{itemize}
51  \item inelastische Streuung an Targetelektronen
52  \item elastische Streuung an Atomkernen des Targets
53 \end{itemize}
54 Energieverlust der Ionen durch obere Bremsprozesse.\\
55 Diese sind unabh"angig voneinander.
56 \end{slide}
57
58 \begin{slide}
59 \subsubsection{Bremsquerschnitt}
60 Definition: Bremsquerschnitt $S_{e,n}$
61 \[
62  S_{e,n} = \frac{1}{N} \Big( \frac{\partial E}{\partial x} \Big)_{e,n}
63 \]
64 mit:
65 \[
66 \begin{array}{ll}
67  N & \equiv \textrm{atomare Dichte} \\
68  E & \equiv \textrm{Energie des Ions} \\
69  x & \equiv \textrm{zur"uckgelegter Weg}
70 \end{array}
71 \]
72 Wegen der Unabh"angigkeit gilt:
73 \[
74  - \frac{\partial E}{\partial x} = N \Big( S_e(E) + S_n(E) \Big)
75 \]
76 Mittlere Reichweite $R$:
77 \[
78  R = \frac{1}{N} \int_0^{E_0} \frac{\partial E}{S_e(E) +S_n(E)} \qquad \textrm{, mit} \, E_0 \equiv \textrm{Anfangsenergie}
79 \]
80 \end{slide}
81
82 \begin{slide}
83 \subsubsection{elektronischer Energieverlust}
84 Elektronischer Energieverlust haupts"achlich durch inelastische St"o"se.
85 \begin{itemize}
86  \item Anregung / Ionisation des Targets
87  \item Anregung / Ionisation / Elektroneneinfang des eingeschossenen Ions
88 \end{itemize}
89 \end{slide}
90
91 \begin{slide}
92 Energieverlust abh"angig von Energie $E$ der Ionen. (LSS, Firsov)
93 \begin{itemize}
94  \item niedrige Teilchenenergie: $S_e(E) = \sqrt{E}$
95  \item hohe, nicht relativistische Teilchenenergie: $S_e(E) = N \frac{4 \pi Z_1^2 Z_2^2 e^2}{m_e v_0^2} \textrm{ln} \, \Big( \frac{2 m_e v_0^2}{I} \Big)$
96 \end{itemize}
97 wobei
98 \[
99 \begin{array}{ll}
100  S_e & \equiv \textrm{elektronische Bremskraft} \\
101  v_0 & \equiv \textrm{Geschwindigkeit des Elektrons} \\
102  m_e & \equiv \textrm{Elektronenmasse} \\
103  I = I_0 Z^2 & \equiv \textrm{mittlere Ionisierungsenergie} \, I_0 \simeq 11eV
104 \end{array}
105 \]
106 \end{slide}
107
108 \begin{slide}
109 \subsubsection{nuklearer Energieverlust}
110 Beschreibung durch elastischen Sto"s:
111 \[
112  T_n(E,p) = E \frac{2 M_1 M_2}{(M_1 + M_2)^2} (1 - \sin \theta)
113 \]
114 wobei:
115 \[
116 \begin{array}{ll}
117  T_n & \equiv \textrm{Energie"ubertrag beim Sto"s} \\
118  p & \equiv \textrm{Sto"sparameter} \\
119  \theta & \equiv \textrm{Streuwinkel im Schwerpunktsystem} \\
120  M_1, Z_1, E & \equiv \textrm{Masse, Ladung, Energie des Ions}
121 \end{array}
122 \]
123 Integration "uber alle alle m"oglichen Energien $T_n$, gewichtet mit deren Wahrscheinlichkeit liefert Bremsquerschnitt $S_n$:
124 \[
125  S_n(E) = \int_0^\infty T_n(E,p) 2 \pi \partial p = \int_0^{T_{max}} T \partial \sigma(E,T_n)
126 \]
127 \end{slide}
128
129 \begin{slide}
130 Festlegung von $\theta$ abh"angig von Potential $V(r)$. Wahl:
131 \[
132  V(r) = \frac{Z_1 Z_2 e^2}{4 \pi \epsilon_0 r} \phi \Big( \frac{r}{a} \Big)
133 \]
134 wobei $\phi$ Abschirmfunktion darstellt.
135 \end{slide}
136
137 \begin{slide}
138 \subsubsection{Implanationsprofil}
139 Wegen Richtungs"anderungen der Ionen:
140 \[
141  R \neq \textrm{mittlere Implanationstiefe}
142 \]
143 N"aherung des Konzentartionsprofils durch Gau"sverteilung:
144 \[
145  N(x) = \frac{D}{\sqrt{2 \pi} \Delta R_p} e^{ \Big( - \frac{(x-R_p)^2}{2 \Delta R_p^2} \Big)}
146 \]
147 mit:
148 \[
149 \begin{array}{ll}
150  D & \equiv \textrm{Dosis} \\
151  \Delta R_p & \equiv \textrm{Standardabweichung der projezierten Reichweite} \, R_p
152 \end{array}
153 \]
154 (Lindhard, Scharff, Schiott)\\
155 \end{slide}
156
157 \begin{slide}
158 Ionisationsprofil aus Monte-Carlo-Simulation (TRIM):
159 \\
160 bild von maik requesten...
161 \end{slide}
162
163 \begin{slide}
164 \subsection{Amorphisierung}
165 Bestrahlung $\rightarrow$ Sch"aden im Kristallgitter durch:
166 \begin{itemize}
167  \item Sto"s mit Ion
168  \item angesto"sene Atome $\rightarrow$ Verlagerungskaskaden
169 \end{itemize}
170 Defektausheilung, Rekristallisation:\\
171 verlagerte Gitteratome kehren an Gitterplatz zur"uck, durch:
172 \begin{itemize}
173  \item thermische Ausheilung (Mobilit"at $\sim T$) 
174  \item ionenstrahlinduzierte Ausheilung
175 \end{itemize}
176 Beobachtung aus Experiment:\\
177 Intensit"at der Strahlensch"adigung verh"alt sich wie nukleare Bremskraft (lediglich leichter Shift).
178 \end{slide}
179
180 \begin{slide}
181 \section{Nannolamelare Selbstordnungsprozesse}
182 \end{slide}
183
184 \begin{slide}
185 \subsection{Beobachtungen}
186 Parameter:
187 \begin{itemize}
188  \item niedrige Targettemperaturen, $T < 400$ Grad Celsius
189  \item Implanation in $(100)$-orientiertes Silizium
190 \end{itemize}
191 Beobachtungen an oberer Grenzfl"ache zur amorphen Schicht:\\
192 $\rightarrow$ Bildung amorpher lamellarer Strukturen
193 \end{slide}
194
195 \begin{slide}
196 bild von maik requesten...
197 \end{slide}
198
199 \begin{slide}
200 \subsection{Das Modell}
201 Entstehung der geordneten amorphen Ausscheidungen:
202 \begin{itemize}
203  \item geringe L"oslichkeit von Kohlenstoff in Silizium $\rightarrow$ Nukleation sph"arischer $SiC_x$-Ausscheidungen
204  \item hohe Grenzfl"achenenergie zwischen $c-Si$ und $3C-SiC$ $\rightarrow$ Ausscheidungen sind amorph
205  \item $SiC$-Dichte im amorphen um $20-30\%$ geringer als im kristallinen Zustand $\rightarrow$ Ausdehnung, Druckspannung auf Umgebung $\rightarrow$ Erschweren des \dq Wiedereinbaus\dq{} verlagerter Atome
206  \item Relaxation der Druckspannung in $z$-Richtung
207  \item Verringerung der Kohlenstoff"ubers"attigung durch Diffusion von Kohlenstoff aus Kristallinem ins Amorphe
208 \end{itemize}
209 \end{slide}
210
211 \begin{slide}
212 Folgen:\\
213 \begin{itemize}
214  \item F"orderung der Amorphisierung zwischen 2 Ausscheidungen
215  \item Bildung amorpher lamellarer Strukturen
216 \end{itemize}
217 \end{slide}
218
219 \begin{slide}
220 \subsection{Die Simulation}
221 Vereinfachungen:
222 \begin{itemize}
223  \item Betrachte nur Gebiet vor amorpher Grenzfl"ache
224  \item lineare N"aherung der nuklearen Bremskraft in diesem Bereich
225  \item lineare N"aherung der Kohlenstoffkonzentartion in diesem Bereich
226  \item Wahrscheinlichkeit fuer Amorphisierung $\sim$ nuklearer Bremskraft
227  \item Vernachl"assige Druckspannungen in $z$-Richtung
228  \item Druckspannung $\sim \frac{1}{r^2}$
229 \end{itemize}
230 \end{slide}
231
232 \begin{slide}
233 grober Programmablauf:
234 \begin{itemize}
235  \item zuf"allige Wahl eines Punktes $(x,y,z)$, wobei $x,y$ gleichm"assig verteilt, $p(z)=az+c$
236  \item Wahrscheinlichkeit $p$, da"s Gebiet amorph wird $\sim$ Druckspannung und Kohlenstoffkonzentartion
237  \item Wahrscheinlichkeit, da"s Gebiet kristallin wird, ist $1 - p$
238  \item lineare Verteilung der Kohlenstoffatome aus kristallinen Gebieten
239 \end{itemize}
240 \end{slide}
241
242 \begin{slide}
243 Wichtigste variable Parameter:
244 \begin{itemize}
245  \item $-a$: Steigung nuklearen Energieverlusts
246  \item $-b$: Nuklearer Energieverlust f"ur $z=0$
247  \item $-s$: Anzahl der Durchg"ange $\equiv$ Anzahl der implanierten Ionen
248  \item $-r$: Abbruchkriterium f"ur Einfluss der Druckspannungen
249  \item $-f$: Einflu"s der Druckspannungen (Steigung)
250  \item $-p$: Einflu"s der Druckspannungen (y-Abschnitt)
251  \item $-A$: Steigung der linearen Kohlenstoffverteilung
252  \item $-B$: prozentualer Anteil des Kohlenstoffs f"ur $z=0$
253 \end{itemize}
254 \end{slide}
255
256 \begin{slide}
257 \subsection{Ergebnisse}
258 Erfolg:
259 \begin{itemize}
260  \item Grad der Amorphisierung geht linear mit $z$
261  \item Bildung einzelner Lamellen
262 \end{itemize}
263 Nicht beobachtet:
264 \begin{itemize}
265  \item Regelm"assigkeit der lamellaren amorphen Ausscheidungen
266  \item Anwachsen der Gr"o"se der Ausscheidungen sowie deren Abst"ande in $z$-Richtung
267 \end{itemize}
268 \end{slide}
269
270 \begin{slide}
271 Beobachtungen in Abh"angigkeit der Parameter:
272 \begin{itemize}
273  \item Variation der Range
274  \begin{itemize}
275   \item Anteil lamellarer Gebiete nimmt mit Range zu
276   \item foobar
277  \end{itemize}
278 \end{itemize}
279 \end{slide}
280
281 \begin{slide}
282 \begin{itemize}
283  \item Variation des Einflusses der Druckspannungen
284  \begin{itemize}
285   \item Zunahme lamellarer Gebiete mit Einflu"s der Druckspannung
286   \item gleichzeitige Erh"ohung der amorphen Gebiete im allgemeinen
287  \end{itemize}
288  \item Variation des y-Abschnitts der Druckspannungen
289  \begin{itemize}
290   \item Zunahme amorpher Gebiete
291   \item eher Abnahme der lamellaren Struktur
292  \end{itemize}
293 \end{itemize}
294 \end{slide}
295
296 \begin{slide}
297 parameter und bilder einfuegen...
298 \end{slide}
299
300 \end{document}