324c6b595a41bc035e42e1512a3b6aec424276bd
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
1 \documentclass[10pt]{scrartcl}
2
3 % howto ...
4 %
5 % resize to A0 (900 x 1100 mm) full poster size
6 %        or A4 or Letter size
7
8 % resize factor:
9 %        2*sqrt(2) = 2.828    (for A0)
10 %        2         = 2.00     (for A1) 
11 %
12 %
13 % format definition:
14 %
15 % special format, scaled by 2.82 -> A0
16 %
17 \def\breite{390mm}
18 \def\hoehe{319.2mm}
19 \def\anzspalten{4}
20 %
21 % A3 landscape
22 %
23 %\def\breite{420mm}
24 %\def\hoehe{297mm}
25 %\def\anzspalten{4}
26 %
27 % A3 portrait
28 %
29 %\def\breite{297mm}
30 %\def\hoehe{420mm}
31 %\def\anzspalten{3}
32 %
33 % A4 portrait
34 %
35 %\def\breite{210mm}
36 %\def\hoehe{297mm}
37 %\def\anzspalten{2}
38 %
39 %
40 %
41 % scaling procedure:
42 %   ./poster_resize poster.ps S
43
44 % european sizes:
45 %   A3: 29.73 x 42.04 cm
46 %   A1: 59.5 x 84.1 cm
47 %   A0: 84.1 x 118.9 cm
48 %
49
50 % packages:
51
52 \usepackage{palatino}
53 \usepackage[latin1]{inputenc}
54 \usepackage{epsf}
55 \usepackage{graphicx,psfrag,color,pstricks,pst-grad}
56 \graphicspath{{../img/}}
57 \usepackage{amsmath,amssymb}
58 \usepackage{latexsym}
59 \usepackage{calc}
60 \usepackage{multicol}
61 \usepackage[german]{babel}
62
63 % numbers, lengths and boxes:
64 %
65 \newsavebox{\dummybox}
66 \newsavebox{\spalten}
67 %
68 \newlength{\bgwidth}\newlength{\bgheight}
69 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
70 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
71 %
72 \newlength{\kastenwidth}
73 %
74 \setlength\paperheight{\hoehe}                                             
75 \setlength\paperwidth{\breite}
76 \special{papersize=\breite,\hoehe}
77 %
78 \topmargin -1in
79 \marginparsep0mm
80 \marginparwidth0mm
81 \headheight0mm
82 \headsep0mm
83 %
84 \setlength{\oddsidemargin}{-2.44cm}
85 \addtolength{\topmargin}{-3mm}
86 \textwidth\paperwidth
87 \textheight\paperheight
88 %
89 \parindent0cm
90 \parskip1.5ex plus0.5ex minus 0.5ex
91 \pagestyle{empty}
92 %
93 \definecolor{recoilcolor}{rgb}{1,0,0}
94 \definecolor{occolor}{rgb}{0,1,0}
95 \definecolor{pink}{rgb}{0,1,1}
96 %
97 \def\UberStil{\normalfont\sffamily\bfseries\large}
98 \def\UnterStil{\normalfont\sffamily\small}
99 \def\LabelStil{\normalfont\sffamily\tiny}
100 \def\LegStil{\normalfont\sffamily\tiny}
101
102 % commands:
103 %
104 \definecolor{JG}{rgb}{0.1,0.9,0.3}
105 %
106 \newenvironment{kasten}{%
107         \begin{lrbox}{\dummybox}%
108         \begin{minipage}{0.96\linewidth}}%
109         {\end{minipage}%
110         \end{lrbox}%
111 \raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
112 %
113 \newenvironment{spalte}{%
114         \setlength\kastenwidth{1.2\textwidth}
115         \divide\kastenwidth by \anzspalten
116         \begin{minipage}[t]{\kastenwidth}}
117         {\end{minipage}\hfill}
118 %
119 \renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
120 %
121 \def\op#1{\hat{#1}}
122
123 %
124 % the document begins ...
125 %
126 \begin{document}
127
128 % background
129 {\newrgbcolor{gradbegin}{0.1 0.1 0.1}%
130  \newrgbcolor{gradend}{1 1 1}%
131  \psframe[fillstyle=gradient,gradend=gradend,%
132  gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)%
133 }
134
135 % header
136 \vfill
137 \hfill
138 \psshadowbox{\makebox[0.95\textwidth]{%
139         \hfill
140         \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
141         \parbox[c]{0.7\linewidth}{%
142                 \begin{center}
143                         \textbf{\Huge{Monte Carlo simulation study of a
144                                       selforganization process\\
145                                       leading to ordered precipitate structures}
146                         }\\[0.7em]
147                         \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
148                                        J. K. N. Lindner, B. Stritzker
149                         }\\[0.7em]
150                         {\large Institut f"ur Physik, Universit"at Augsburg,
151                          D-86135 Augsburg, Germany
152                         }
153                 \end{center}
154         }
155         \parbox[c]{0.1\linewidth}{%
156                 \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
157         }
158         \hfill
159 }}
160 \hfill\mbox{}\\[1.cm]
161
162 %\vspace*{1.3cm}
163
164 % content, let's rock the columns
165 \begin{lrbox}{\spalten}
166         \parbox[t][\textheight]{1.3\textwidth}{%
167                 \vspace*{0.2cm}
168                 \hfill
169 % first column
170 \begin{spalte}
171         \begin{kasten}
172                 \begin{center}
173                         {\large{\color{blue}\underline{ABSTRACT}}}
174                 \end{center}
175 High-dose ion implantation into solids usually leads to a disordered distribution of defects or precipitates with variable sizes.
176 However materials exist for which high-dose ion irradiation at certain conditions results in periodically arranged, self-organized, nanometric amorphous inclusions.
177 This has been observed for a number of ion/target combinations \cite{ommen,specht,ishimaru} which all have in common a largely reduced density of host atoms of the amorphous phase compared to the crystalline host lattice.
178 A simple model explaining the phenomenon is introduced and realized in a Monte Carlo simulation code, which focuses on high dose carbon implantation into silicon.
179 The simulation is able to reproduce the depth distribution observed by TEM and RBS.
180 While first versions of the simulation \cite{me1,me2} just covered a limited depth region of the target in which the selforganization is observed, the new version of this simulation code presented here is able to model the whole depth region affected by the irradiation process, as can be seen in chapter 4.
181 Based on simulation results a recipe is proposed for producing broad distributions of lamellar, ordered structures which, according to recent studies \cite{wong}, are the starting point for materials with high photoluminescence.
182         \end{kasten}
183      
184         \begin{kasten}
185
186         \section*{1\hspace{0.1cm}{\color{blue}Experimental observations}}
187
188                 \subsection*{1.1{\color{blue} Amorphous inclusions}}
189                         \begin{center}              
190                                 \includegraphics[width=11cm]{k393abild1_e.eps} 
191                         \end{center}
192                         Cross section TEM image:\\
193                         $180 \, keV$ $C^+ \rightarrow Si$,
194                         $T=150 \, ^{\circ} \mathrm{C}$,
195                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
196                         black/white: crystalline/amorphous material\\
197                         L: amorphous lamellae, S: spherical amorphous inclusions
198
199                 \subsection*{1.2{\color{blue} Carbon distribution}}
200                         \begin{center}
201                                 \includegraphics[width=11cm]{eftem.eps}
202                         \end{center}
203                         Brightfield TEM and respective EFTEM image:\\
204                         $180 \, keV$ $C^+ \rightarrow Si$,
205                         $T=200 \, ^{\circ} \mathrm{C}$,
206                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
207                         yellow/blue: high/low concentrations of carbon
208
209         \end{kasten}
210 \end{spalte}
211 % second column
212 \begin{spalte}
213         \begin{kasten}
214                 \section*{2\hspace{0.1cm}{\color{blue}Model}}
215
216                         \begin{center}
217                                 \includegraphics[width=11cm]{modell_ng_e.eps}
218                         \end{center}
219                         \begin{itemize}
220 \item supersaturation of $C$ in $c-Si$\\
221       $\rightarrow$ {\bf carbon induced} nucleation of spherical
222       $SiC_x$-precipitates
223 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
224       $\rightarrow$ {\bf amourphous} precipitates
225 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
226       $\rightarrow$ {\bf lateral strain} (black arrows)
227 \item reduction of the carbon supersaturation in $c-Si$\\
228       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
229       (white arrows)
230 \item lateral strain (vertical component relaxating)\\
231       $\rightarrow$ {\bf strain induced} lateral amorphization
232                         \end{itemize}
233         \end{kasten}
234
235         \begin{kasten}
236                 \section*{3\hspace{0.1cm}{\color{blue}Simulation}}
237
238                 \subsection*{3.1{\color{blue} Discretization of the target}}
239                         \begin{center}
240                                 \includegraphics[width=10cm]{gitter_e.eps}
241                         \end{center}
242
243                 \subsection*{3.2 {\color{blue} Simulation algorithm}}
244
245                 \subsubsection*{3.2.1 Amorphization/Recrystallization}
246                         \begin{itemize}
247                                 \item random numbers according to the nuclear
248                                       energy loss to determine the volume hit
249                                       by an impinging ion
250                                 \item compute local probability for
251                                       amorphization:\\
252 \[
253  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
254 \]
255                                       and recrystallization:
256 \[
257  p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
258 \]
259 \[
260 \delta (\vec r) = \left\{
261 \begin{array}{ll}
262         1 & \textrm{volume at position $\vec r$ amorphous} \\
263         0 & \textrm{otherwise} \\
264 \end{array}
265 \right.
266 \]
267                                 \item loop for the mean amount of hits by the
268                                       ion
269                         \end{itemize}
270 Three contributions to the amorphization process controlled by:
271 \begin{itemize}
272         \item {\color{green} $p_b$} normal 'ballistic' amorphization
273         \item {\color{blue} $p_c$} carbon induced amorphization
274         \item {\color{red} $p_s$} stress enhanced amorphization
275 \end{itemize}
276         \end{kasten}
277 \end{spalte}
278 % third column
279 \begin{spalte}
280         \begin{kasten}
281                 \subsubsection*{3.2.2 Carbon incorporation}
282                         \begin{itemize}
283                                 \item random numbers according to the
284                                       implantation profile to determine the
285                                       incorporation volume
286                                 \item increase the amount of carbon atoms in
287                                       that volume
288                         \end{itemize}
289                 \subsubsection*{3.2.3 Diffusion/Sputtering}
290         \end{kasten}
291
292         \begin{kasten}
293                 \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
294                         \begin{center}              
295                                 foo
296                         \end{center}
297         \end{kasten}
298         bar
299         \vspace{0.5cm}
300         foobar
301 \end{spalte}
302 % fourth column
303 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
304     \begin{spalte}
305       \begin{kasten}
306         \section*{5 \hspace{0.1cm} {\color{red}Fifth Section}}
307              \begin{center}              
308              \includegraphics[width=10cm]{blank.ps} 
309              \end{center}
310      \end{kasten}
311
312 \vspace{0.5cm}
313       \begin{kasten}
314          \section*{6 \hspace{0.1cm} {\color{red} \underline{Conclusions}}}
315              \begin{itemize}
316              \item
317              
318              \item
319              
320              \item
321              
322              \item
323              
324              \end{itemize}
325       \end{kasten}
326
327 \vspace{0.5cm}
328       \begin{kasten}
329
330            {\small
331            \begin{thebibliography}{9}
332            \bibitem{ommen} A. H. van Ommen,
333                            Nucl. Instr. and Meth. B 39 (1989) 194.
334            \bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle,
335                            Nucl. Instr. and Meth. B 84 (2000) 390.
336            \bibitem{ishimaru} M. Ishimaru,  R. M. Dickerson, K. E. Sickafus,
337                               Nucl. Instr. and Meth. B 166-167 (2000) 390.
338         \bibitem{me1} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
339                       B. Stritzker,
340                       Comp. Mater. Sci. 33 (2005) 310.
341         \bibitem{me2} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
342                       B. Stritzker,
343                       Nucl. Instr. and Meth. B 242 (2006) 679.
344            \bibitem{wong} Dihu Chen, Z. M. Liao, L. Wang, H. Z. Wang, Fuli Zhao,
345                           W. Y. Cheung, S. P. Wong,
346                           Opt. Mater. 23 (2003) 65. Opt. Mater. 23 (2003) 65.
347            \end{thebibliography}
348            }
349    \end{kasten}
350     \end{spalte}
351     }
352     \end{lrbox}
353 \resizebox*{0.98\textwidth}{!}{%
354   \usebox{\spalten}}\hfill\mbox{}\vfill
355 \end{document}
356
357