more updates
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
1 \documentclass[10pt]{scrartcl}
2
3 % howto ...
4 %
5 % resize to A0 (900 x 1100 mm) full poster size
6 %        or A4 or Letter size
7
8 % resize factor:
9 %        2*sqrt(2) = 2.828    (for A0)
10 %        2         = 2.00     (for A1) 
11 %
12 %
13 % format definition:
14 %
15 % special format, scaled by 2.82 -> A0
16 %
17 \def\breite{390mm}
18 \def\hoehe{319.2mm}
19 \def\anzspalten{4}
20 %
21 % A3 landscape
22 %
23 %\def\breite{420mm}
24 %\def\hoehe{297mm}
25 %\def\anzspalten{4}
26 %
27 % A3 portrait
28 %
29 %\def\breite{297mm}
30 %\def\hoehe{420mm}
31 %\def\anzspalten{3}
32 %
33 % A4 portrait
34 %
35 %\def\breite{210mm}
36 %\def\hoehe{297mm}
37 %\def\anzspalten{2}
38 %
39 %
40 %
41 % scaling procedure:
42 %   ./poster_resize poster.ps S
43
44 % european sizes:
45 %   A3: 29.73 x 42.04 cm
46 %   A1: 59.5 x 84.1 cm
47 %   A0: 84.1 x 118.9 cm
48 %
49
50 % packages:
51
52 \usepackage{palatino}
53 \usepackage[latin1]{inputenc}
54 \usepackage{epsf}
55 \usepackage{graphicx,psfrag,color,pstricks,pst-grad}
56 \graphicspath{{../img/}}
57 \usepackage{amsmath,amssymb}
58 \usepackage{latexsym}
59 \usepackage{calc}
60 \usepackage{multicol}
61 \usepackage[german]{babel}
62
63 % numbers, lengths and boxes:
64 %
65 \newsavebox{\dummybox}
66 \newsavebox{\spalten}
67 %
68 \newlength{\bgwidth}\newlength{\bgheight}
69 \setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm}
70 \setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm}
71 %
72 \newlength{\kastenwidth}
73 %
74 \setlength\paperheight{\hoehe}                                             
75 \setlength\paperwidth{\breite}
76 \special{papersize=\breite,\hoehe}
77 %
78 \topmargin -1in
79 \marginparsep0mm
80 \marginparwidth0mm
81 \headheight0mm
82 \headsep0mm
83 %
84 \setlength{\oddsidemargin}{-2.44cm}
85 \addtolength{\topmargin}{-3mm}
86 \textwidth\paperwidth
87 \textheight\paperheight
88 %
89 \parindent0cm
90 \parskip1.5ex plus0.5ex minus 0.5ex
91 \pagestyle{empty}
92 %
93 \definecolor{recoilcolor}{rgb}{1,0,0}
94 \definecolor{occolor}{rgb}{0,1,0}
95 \definecolor{pink}{rgb}{0,1,1}
96 %
97 \def\UberStil{\normalfont\sffamily\bfseries\large}
98 \def\UnterStil{\normalfont\sffamily\small}
99 \def\LabelStil{\normalfont\sffamily\tiny}
100 \def\LegStil{\normalfont\sffamily\tiny}
101
102 % commands:
103 %
104 \definecolor{JG}{rgb}{0.1,0.9,0.3}
105 %
106 \newenvironment{kasten}{%
107         \begin{lrbox}{\dummybox}%
108         \begin{minipage}{0.96\linewidth}}%
109         {\end{minipage}%
110         \end{lrbox}%
111 \raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]}
112 %
113 \newenvironment{spalte}{%
114         \setlength\kastenwidth{1.2\textwidth}
115         \divide\kastenwidth by \anzspalten
116         \begin{minipage}[t]{\kastenwidth}}
117         {\end{minipage}\hfill}
118 %
119 \renewcommand{\emph}[1]{{\color{red}\textbf{#1}}}
120 %
121 \def\op#1{\hat{#1}}
122
123 %
124 % the document begins ...
125 %
126 \begin{document}
127
128 % background
129 {\newrgbcolor{gradbegin}{0.1 0.1 0.1}%
130  \newrgbcolor{gradend}{1 1 1}%
131  \psframe[fillstyle=gradient,gradend=gradend,%
132  gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)%
133 }
134
135 % header
136 \vfill
137 \hfill
138 \psshadowbox{\makebox[0.95\textwidth]{%
139         \hfill
140         \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
141         \parbox[c]{0.7\linewidth}{%
142                 \begin{center}
143                         \textbf{\Huge{Monte Carlo simulation study of a
144                                       selforganization process\\
145                                       leading to ordered precipitate structures}
146                         }\\[0.7em]
147                         \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
148                                        J. K. N. Lindner, B. Stritzker
149                         }\\[0.7em]
150                         {\large Institut f"ur Physik, Universit"at Augsburg,
151                          D-86135 Augsburg, Germany
152                         }
153                 \end{center}
154         }
155         \parbox[c]{0.1\linewidth}{%
156                 \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
157         }
158         \hfill
159 }}
160 \hfill\mbox{}\\[0.5cm]
161
162 %\vspace*{1.3cm}
163
164 % content, let's rock the columns
165 \begin{lrbox}{\spalten}
166         \parbox[t][\textheight]{1.3\textwidth}{%
167                 %\vspace*{0.2cm}
168                 \hfill
169 % first column
170 \begin{spalte}
171         \begin{kasten}
172
173         \section*{1 \hspace{0.1cm} {\color{blue}Experimental observations}}
174
175                 \subsection*{1.1 {\color{blue} Amorphous inclusions}}
176                         \begin{center}              
177                                 \includegraphics[width=11cm]{k393abild1_e.eps} 
178                         \end{center}
179                         Cross section TEM image:\\
180                         $180 \, keV$ $C^+ \rightarrow Si$,
181                         $T=150 \, ^{\circ} \mathrm{C}$,
182                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
183                         black/white: crystalline/amorphous material\\
184                         L: amorphous lamellae, S: spherical amorphous inclusions
185
186                 \subsection*{1.2 {\color{blue} Carbon distribution}}
187                         \begin{center}
188                                 \includegraphics[width=11cm]{eftem.eps}
189                         \end{center}
190                         Brightfield TEM and respective EFTEM image:\\
191                         $180 \, keV$ $C^+ \rightarrow Si$,
192                         $T=200 \, ^{\circ} \mathrm{C}$,
193                         Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
194                         yellow/blue: high/low concentrations of carbon
195
196         \end{kasten}
197
198         \begin{kasten}
199                 \section*{2 \hspace{0.1cm} {\color{blue}Model}}
200
201                         \begin{center}
202                                 \includegraphics[width=11cm]{modell_ng_e.eps}
203                         \end{center}
204                         \begin{itemize}
205 \item supersaturation of $C$ in $c-Si$\\
206       $\rightarrow$ {\bf carbon induced} nucleation of spherical
207       $SiC_x$-precipitates
208 \item high interfacial energy between $3C-SiC$ and $c-Si$\\
209       $\rightarrow$ {\bf amourphous} precipitates
210 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
211       $\rightarrow$ {\bf lateral strain} (black arrows)
212 \item reduction of the carbon supersaturation in $c-Si$\\
213       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
214       (white arrows)
215 \item lateral strain (vertical component relaxating)\\
216       $\rightarrow$ {\bf strain induced} lateral amorphization
217                         \end{itemize}
218         \end{kasten}
219 \end{spalte}
220 \begin{spalte}
221         \begin{kasten}
222                 \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
223
224                 \subsection*{3.1 {\color{blue} Discretization of the target}}
225                         \begin{center}
226                                 \includegraphics[width=6cm]{gitter_e.eps}
227                         \end{center}
228
229                 \subsection*{3.2 {\color{blue} Simulation algorithm}}
230
231                 \subsubsection*{3.2.1 Amorphization/Recrystallization}
232                         \begin{itemize}
233                                 \item random numbers according to the nuclear
234                                       energy loss to determine the volume hit
235                                       by an impinging ion
236                                 \item compute local probability for
237                                       amorphization:\\
238 \[
239  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
240 \]
241                                       and recrystallization:
242 \[
243  p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
244 \]
245 \[
246 \delta (\vec r) = \left\{
247 \begin{array}{ll}
248         1 & \textrm{volume at position $\vec r$ amorphous} \\
249         0 & \textrm{otherwise} \\
250 \end{array}
251 \right.
252 \]
253                                 \item loop for the mean amount of hits by the
254                                       ion
255                         \end{itemize}
256 Three contributions to the amorphization process controlled by:
257 \begin{itemize}
258         \item {\color{green} $p_b$} normal 'ballistic' amorphization
259         \item {\color{blue} $p_c$} carbon induced amorphization
260         \item {\color{red} $p_s$} stress enhanced amorphization
261 \end{itemize}
262
263                 \subsubsection*{3.2.2 Carbon incorporation}
264                         \begin{itemize}
265                                 \item random numbers according to the
266                                       implantation profile to determine the
267                                       incorporation volume
268                                 \item increase the amount of carbon atoms in
269                                       that volume
270                         \end{itemize}
271                 \subsubsection*{3.2.3 Diffusion/Sputtering}
272                         \begin{itemize}
273                                 \item every $d_v$ steps transfer $d_r$ of the
274                                       carbon atoms of crystalline volumina to
275                                       an amorphous neighbour volume
276                                 \item do the sputter routine after $n$ steps
277                                       corresponding to $3 \, nm$ of substrat
278                                       removal
279                         \end{itemize}
280         \end{kasten}
281 \end{spalte}
282 \begin{spalte}
283         \begin{kasten}
284                 \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
285
286                 \subsection*{4.1 {\color{blue} Comparison with experiments}}
287                         \begin{center}              
288                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_1-2.eps}
289                         \end{center}
290                         \begin{center}              
291                         \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
292                         \end{center}
293         \end{kasten}
294         \begin{kasten}
295                 \subsection*{4.2 {\color{blue} Carbon distribution}}
296                         \begin{center}              
297                         \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
298                         \end{center}
299                         
300         \end{kasten}
301 \end{spalte}
302 % fourth column
303 \begin{spalte}
304         \begin{kasten}
305                 \subsection*{4.3 {\color{blue} More structural/compositional
306                                                information}}
307                 \begin{center}
308                         \includegraphics[width=8cm]{97_98_ng_e.eps} \\
309                         Plane view of consecutive target layers $z$ and $z+1$
310                 \end{center}
311         \end{kasten}
312         \begin{kasten}
313                 \subsection*{4.4 \hspace{0.1cm} {\color{blue} Broad distribution
314                              of lamellar structure - the recipe}}
315                 \subsubsection*{4.4.1 Constant carbon concentration}
316                         \makebox[11cm]{%
317                                 \parbox[c]{6cm}{%
318                         \includegraphics[width=6cm]{multiple_impl_cp_e.eps}
319                                 }
320                                 \parbox[c]{5cm}{%
321                         \begin{itemize}
322                                 \item multiple implantation \\ steps
323                                 \item energies: $180$ - $10 \, keV$
324                         \end{itemize}
325                         $\Rightarrow$ nearly constant carbon distribution
326                         ($10 \, at.\%$)
327                                 }
328                         }
329                 \subsubsection*{4.4.2 2 MeV C$^+$ implantation
330                                                step}
331                         \begin{center}              
332                         \includegraphics[width=10cm]{multiple_impl_e.eps}
333                         \end{center}
334
335         \end{kasten}
336         \begin{kasten}
337                 \section*{5 \hspace{0.1cm} {\color{red} Conclusions}}
338                         \begin{itemize}
339                 \item selforganized nanometric precipitates by ion irradiation
340                 \item model describing the seoforganization process
341                 \item precipitate structures traceable by simulation
342                 \item detailed structural/compositional information
343                 \item recipe for broad distributions of lamellar structure
344                         \end{itemize}
345         \end{kasten}
346 \end{spalte}
347 }
348 \end{lrbox}
349 \resizebox*{0.98\textwidth}{!}{%
350 \usebox{\spalten}}\hfill\mbox{}\vfill
351
352 \end{document}