b26dd0123756dafebb9549f600f447b86db4c7a2
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \begin{slide}
126 \center
127 {\Huge
128 E\\
129 F\\
130 G\\
131 A B C D E F G H G F E D C B A
132 G\\
133 F\\
134 E\\
135 }
136 \end{slide}
137
138 % topic
139
140 \begin{slide}
141 \begin{center}
142
143  \vspace{16pt}
144
145  {\Large\bf
146   \hrule
147   \vspace{5pt}
148   Atomistic simulation study on silicon carbide\\[0.2cm]
149   precipitation in silicon\\
150   \vspace{10pt}
151   \hrule
152  }
153
154  \vspace{60pt}
155
156  \textsc{Frank Zirkelbach}
157
158  \vspace{60pt}
159
160  Defense of doctor's thesis
161
162  \vspace{08pt}
163
164  Augsburg, 10.01.2012
165
166 \end{center}
167 \end{slide}
168
169 % no vertical centering
170 \centerslidesfalse
171
172 % skip for preparation
173 %\ifnum1=0
174
175 % intro
176
177 % motivation / properties / applications of silicon carbide
178
179 \begin{slide}
180
181 \vspace*{1.8cm}
182
183 \small
184
185 \begin{pspicture}(0,0)(13.5,5)
186
187  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
188
189  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
190  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
191
192  \rput[lt](0,4.6){\color{gray}PROPERTIES}
193
194  \rput[lt](0.3,4){wide band gap}
195  \rput[lt](0.3,3.5){high electric breakdown field}
196  \rput[lt](0.3,3){good electron mobility}
197  \rput[lt](0.3,2.5){high electron saturation drift velocity}
198  \rput[lt](0.3,2){high thermal conductivity}
199
200  \rput[lt](0.3,1.5){hard and mechanically stable}
201  \rput[lt](0.3,1){chemically inert}
202
203  \rput[lt](0.3,0.5){radiation hardness}
204
205  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
206
207  \rput[rt](12.5,3.85){high-temperature, high power}
208  \rput[rt](12.5,3.5){and high-frequency}
209  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
210
211  \rput[rt](12.5,2.35){material suitable for extreme conditions}
212  \rput[rt](12.5,2){microelectromechanical systems}
213  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
214
215  \rput[rt](12.5,0.85){first wall reactor material, detectors}
216  \rput[rt](12.5,0.5){and electronic devices for space}
217
218 \end{pspicture}
219
220 \begin{picture}(0,0)(5,-162)
221 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
222 \end{picture}
223 \begin{picture}(0,0)(-120,-162)
224 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-270,-162)
227 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
228 \end{picture}
229 %%%%
230 \begin{picture}(0,0)(10,65)
231 \includegraphics[height=2.8cm]{sic_switch.eps}
232 \end{picture}
233 %\begin{picture}(0,0)(-243,65)
234 \begin{picture}(0,0)(-110,65)
235 \includegraphics[height=2.8cm]{ise_99.eps}
236 \end{picture}
237 %\begin{picture}(0,0)(-135,65)
238 \begin{picture}(0,0)(-100,65)
239 \includegraphics[height=1.2cm]{infineon_schottky.eps}
240 \end{picture}
241 \begin{picture}(0,0)(-233,65)
242 \includegraphics[height=2.8cm]{solar_car.eps}
243 \end{picture}
244
245 \end{slide}
246
247 % motivation
248
249 \begin{slide}
250
251  {\large\bf
252   Polytypes of SiC\\[0.6cm]
253  }
254
255 \vspace{0.6cm}
256
257 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
258 \begin{minipage}{1.9cm}
259 {\tiny cubic (twist)}
260 \end{minipage}
261 \begin{minipage}{2.9cm}
262 {\tiny hexagonal (no twist)}
263 \end{minipage}
264
265 \begin{picture}(0,0)(-150,0)
266  \includegraphics[width=7cm]{polytypes.eps}
267 \end{picture}
268
269 \vspace{0.6cm}
270
271 \footnotesize
272
273 \begin{tabular}{l c c c c c c}
274 \hline
275  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
276 \hline
277 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
278 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
279 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
280 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
281 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
282 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
283 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
284 \hline
285 \end{tabular}
286
287 \begin{pspicture}(0,0)(0,0)
288 \psellipse[linecolor=green](5.7,2.10)(0.4,0.53)
289 \end{pspicture}
290 \begin{pspicture}(0,0)(0,0)
291 \psellipse[linecolor=green](5.6,0.92)(0.4,0.23)
292 \end{pspicture}
293 \begin{pspicture}(0,0)(0,0)
294 \psellipse[linecolor=red](10.45,0.45)(0.4,0.23)
295 \end{pspicture}
296
297 \end{slide}
298
299 %\fi
300
301 % fabrication
302
303 \begin{slide}
304
305 \headphd
306  {\large\bf
307   Fabrication of silicon carbide
308  }
309
310  \small
311  
312  \vspace{2pt}
313
314 \begin{center}
315  {\color{gray}
316  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
317  }
318 \end{center}
319
320 \vspace{2pt}
321
322 SiC thin films by MBE \& CVD
323 \begin{itemize}
324  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
325  \item \underline{Commercially available} semiconductor power devices based on
326        \underline{\foreignlanguage{greek}{a}-SiC}
327  \item Production of favored \underline{3C-SiC} material
328        \underline{less advanced}
329  \item Quality and size not yet sufficient
330 \end{itemize}
331 \begin{picture}(0,0)(-310,-20)
332   \includegraphics[width=2.0cm]{cree.eps}
333 \end{picture}
334
335 \vspace{-0.5cm}
336
337 \begin{center}
338 \color{red}
339 \framebox{
340 {\footnotesize\color{black}
341  Mismatch in \underline{thermal expansion coeefficient}
342  and \underline{lattice parameter} w.r.t. substrate
343 }
344 }
345 \end{center}
346
347 \vspace{0.1cm}
348
349 {\bf Alternative approach}\\
350 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
351
352 \vspace{0.1cm}
353
354 \scriptsize
355
356 \framebox{
357 \begin{minipage}{3.15cm}
358  \begin{center}
359 \includegraphics[width=3cm]{imp.eps}\\
360  {\tiny
361   Carbon implantation
362  }
363  \end{center}
364 \end{minipage}
365 \begin{minipage}{3.15cm}
366  \begin{center}
367 \includegraphics[width=3cm]{annealing.eps}\\
368  {\tiny
369  Postannealing at $>$ \degc{1200}
370  }
371  \end{center}
372 \end{minipage}
373 }
374 \begin{minipage}{5.5cm}
375 \begin{center}
376 {\footnotesize
377 No surface bending effects\\
378 High areal homogenity\\[0.1cm]
379 $\Downarrow$\\[0.1cm]
380 Synthesis of large area SiC films possible
381 }
382 \end{center}
383 \end{minipage}
384
385 \end{slide}
386
387 \begin{slide}
388
389 \headphd
390 {\large\bf
391  IBS of epitaxial single crystalline 3C-SiC
392 }
393
394 \footnotesize
395
396 \vspace{0.2cm}
397
398 \begin{center}
399 \begin{itemize}
400  \item \underline{Implantation step 1}\\[0.1cm]
401         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
402         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
403         {\color{blue}precipitates}
404  \item \underline{Implantation step 2}\\[0.1cm]
405         Little remaining dose | \unit[180]{keV} | \degc{250}\\
406         $\Rightarrow$
407         Destruction/Amorphization of precipitates at layer interface
408  \item \underline{Annealing}\\[0.1cm]
409        \unit[10]{h} at \degc{1250}\\
410        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
411 \end{itemize}
412 \end{center}
413
414 \begin{minipage}{6.9cm}
415 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
416 \begin{center}
417 {\tiny
418  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
419 }
420 \end{center}
421 \end{minipage}
422 \begin{minipage}{5cm}
423 \begin{pspicture}(0,0)(0,0)
424 \rnode{box}{
425 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
426 \begin{minipage}{5.3cm}
427  \begin{center}
428  {\color{blue}
429   3C-SiC precipitation\\
430   not yet fully understood
431  }
432  \end{center}
433  \vspace*{0.1cm}
434  \renewcommand\labelitemi{$\Rightarrow$}
435  Details of the SiC precipitation
436  \begin{itemize}
437   \item significant technological progress\\
438         in SiC thin film formation
439   \item perspectives for processes relying\\
440         upon prevention of SiC precipitation
441  \end{itemize}
442 \end{minipage}
443 }}
444 \rput(-6.8,5.5){\pnode{h0}}
445 \rput(-3.0,5.5){\pnode{h1}}
446 \ncline[linecolor=blue]{-}{h0}{h1}
447 \ncline[linecolor=blue]{->}{h1}{box}
448 \end{pspicture}
449 \end{minipage}
450
451 \end{slide}
452
453 %\end{document}
454 % temp
455 %\ifnum1=0
456
457 % contents
458
459 \begin{slide}
460
461 \headphd
462 {\large\bf
463  Outline
464 }
465
466  \begin{itemize}
467   \item Supposed precipitation mechanism of SiC in Si
468   \item Utilized simulation techniques
469         \begin{itemize}
470          \item Molecular dynamics (MD) simulations
471          \item Density functional theory (DFT) calculations
472         \end{itemize}
473   \item C and Si self-interstitial point defects in silicon
474   \item Silicon carbide precipitation simulations
475   \item Summary / Conclusion
476  \end{itemize}
477
478 \end{slide}
479
480 \begin{slide}
481
482 \headphd
483 {\large\bf
484   Supposed precipitation mechanism of SiC in Si
485 }
486
487  \scriptsize
488
489  \vspace{0.1cm}
490
491  \framebox{
492  \begin{minipage}{3.6cm}
493  \begin{center}
494  Si \& SiC lattice structure\\[0.1cm]
495  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
496  \end{center}
497 {\tiny
498  \begin{minipage}{1.7cm}
499 \underline{Silicon}\\
500 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
501 $a=\unit[5.429]{\\A}$\\
502 $\rho^*_{\text{Si}}=\unit[100]{\%}$
503  \end{minipage}
504  \begin{minipage}{1.7cm}
505 \underline{Silicon carbide}\\
506 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
507 $a=\unit[4.359]{\\A}$\\
508 $\rho^*_{\text{Si}}=\unit[97]{\%}$
509  \end{minipage}
510 }
511  \end{minipage}
512  }
513  \hspace{0.1cm}
514  \begin{minipage}{4.1cm}
515  \begin{center}
516  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
517  \end{center}
518  \end{minipage}
519  \hspace{0.1cm}
520  \begin{minipage}{4.0cm}
521  \begin{center}
522  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
523  \end{center}
524  \end{minipage}
525
526  \vspace{0.1cm}
527
528  \begin{minipage}{4.0cm}
529  \begin{center}
530  C-Si dimers (dumbbells)\\[-0.1cm]
531  on Si interstitial sites
532  \end{center}
533  \end{minipage}
534  \hspace{0.1cm}
535  \begin{minipage}{4.1cm}
536  \begin{center}
537  Agglomeration of C-Si dumbbells\\[-0.1cm]
538  $\Rightarrow$ dark contrasts
539  \end{center}
540  \end{minipage}
541  \hspace{0.1cm}
542  \begin{minipage}{4.0cm}
543  \begin{center}
544  Precipitation of 3C-SiC in Si\\[-0.1cm]
545  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
546  \& release of Si self-interstitials
547  \end{center}
548  \end{minipage}
549
550  \vspace{0.1cm}
551
552  \begin{minipage}{4.0cm}
553  \begin{center}
554  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
555  \end{center}
556  \end{minipage}
557  \hspace{0.1cm}
558  \begin{minipage}{4.1cm}
559  \begin{center}
560  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
561  \end{center}
562  \end{minipage}
563  \hspace{0.1cm}
564  \begin{minipage}{4.0cm}
565  \begin{center}
566  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
567  \end{center}
568  \end{minipage}
569
570 \begin{pspicture}(0,0)(0,0)
571 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
572 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
573 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
574 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
575 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
576  $4a_{\text{Si}}=5a_{\text{SiC}}$
577  }}}
578 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
579 \hkl(h k l) planes match
580  }}}
581 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
582 r = \unit[2--4]{nm}
583  }}}
584 \end{pspicture}
585
586 \end{slide}
587
588 \begin{slide}
589
590 \headphd
591 {\large\bf
592  Supposed precipitation mechanism of SiC in Si
593 }
594
595  \scriptsize
596
597  \vspace{0.1cm}
598
599  \framebox{
600  \begin{minipage}{3.6cm}
601  \begin{center}
602  Si \& SiC lattice structure\\[0.1cm]
603  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
604  \end{center}
605 {\tiny
606  \begin{minipage}{1.7cm}
607 \underline{Silicon}\\
608 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
609 $a=\unit[5.429]{\\A}$\\
610 $\rho^*_{\text{Si}}=\unit[100]{\%}$
611  \end{minipage}
612  \begin{minipage}{1.7cm}
613 \underline{Silicon carbide}\\
614 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
615 $a=\unit[4.359]{\\A}$\\
616 $\rho^*_{\text{Si}}=\unit[97]{\%}$
617  \end{minipage}
618 }
619  \end{minipage}
620  }
621  \hspace{0.1cm}
622  \begin{minipage}{4.1cm}
623  \begin{center}
624  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
625  \end{center}
626  \end{minipage}
627  \hspace{0.1cm}
628  \begin{minipage}{4.0cm}
629  \begin{center}
630  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
631  \end{center}
632  \end{minipage}
633
634  \vspace{0.1cm}
635
636  \begin{minipage}{4.0cm}
637  \begin{center}
638  C-Si dimers (dumbbells)\\[-0.1cm]
639  on Si interstitial sites
640  \end{center}
641  \end{minipage}
642  \hspace{0.1cm}
643  \begin{minipage}{4.1cm}
644  \begin{center}
645  Agglomeration of C-Si dumbbells\\[-0.1cm]
646  $\Rightarrow$ dark contrasts
647  \end{center}
648  \end{minipage}
649  \hspace{0.1cm}
650  \begin{minipage}{4.0cm}
651  \begin{center}
652  Precipitation of 3C-SiC in Si\\[-0.1cm]
653  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
654  \& release of Si self-interstitials
655  \end{center}
656  \end{minipage}
657
658  \vspace{0.1cm}
659
660  \begin{minipage}{4.0cm}
661  \begin{center}
662  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
663  \end{center}
664  \end{minipage}
665  \hspace{0.1cm}
666  \begin{minipage}{4.1cm}
667  \begin{center}
668  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
669  \end{center}
670  \end{minipage}
671  \hspace{0.1cm}
672  \begin{minipage}{4.0cm}
673  \begin{center}
674  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
675  \end{center}
676  \end{minipage}
677
678 \begin{pspicture}(0,0)(0,0)
679 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
680 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
681 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
682 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
683 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
684  $4a_{\text{Si}}=5a_{\text{SiC}}$
685  }}}
686 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
687 \hkl(h k l) planes match
688  }}}
689 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
690 r = \unit[2--4]{nm}
691  }}}
692 % controversial view!
693 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
694 \begin{minipage}{14cm}
695 \hfill
696 \vspace{12cm}
697 \end{minipage}
698 }}
699 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
700 \begin{minipage}{10cm}
701 \small
702 \vspace*{0.2cm}
703 \begin{center}
704 {\color{gray}\bf Controversial findings}
705 \end{center}
706 \begin{itemize}
707 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
708  \begin{itemize}
709   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
710   \item \si{} reacting with further C in cleared volume
711  \end{itemize}
712 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
713  \begin{itemize}
714   \item Room temperature implantation $\rightarrow$ high C diffusion
715   \item Elevated temperature implantation $\rightarrow$ no C redistribution
716  \end{itemize}
717  $\Rightarrow$ mobile {\color{red}\ci} opposed to
718  stable {\color{blue}\cs{}} configurations
719 \item Strained silicon \& Si/SiC heterostructures
720       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
721  \begin{itemize}
722   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
723   \item Incoherent SiC (strain relaxation)
724  \end{itemize}
725 \end{itemize}
726 \vspace{0.1cm}
727 \begin{center}
728 {\Huge${\lightning}$} \hspace{0.3cm}
729 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
730 {\Huge${\lightning}$}
731 \end{center}
732 \vspace{0.2cm}
733 \end{minipage}
734  }}}
735 \end{pspicture}
736
737 \end{slide}
738
739 \begin{slide}
740
741 \headphd
742 {\large\bf
743  Utilized computational methods
744 }
745
746 \vspace{0.3cm}
747
748 \small
749
750 {\bf Molecular dynamics (MD)}\\[0.1cm]
751 \scriptsize
752 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
753 \hline
754 System of $N$ particles &
755 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
756 Phase space propagation &
757 Velocity Verlet | timestep: \unit[1]{fs} \\
758 Analytical interaction potential &
759 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
760 (Erhart/Albe)
761 $\displaystyle
762 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
763     \pot_{ij} = {\color{red}f_C(r_{ij})}
764     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
765 $\\
766 Observables: time/ensemble averages &
767 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
768 \hline
769 \end{tabular}
770
771 \small
772
773 \vspace{0.3cm}
774
775 {\bf Density functional theory (DFT)}
776
777 \scriptsize
778
779 \begin{minipage}[t]{6cm}
780 \begin{itemize}
781  \item Hohenberg-Kohn theorem:\\
782        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
783  \item Kohn-Sham approach:\\
784        Single-particle effective theory
785 \end{itemize}
786 \hrule
787 \begin{itemize}
788 \item Code: \textsc{vasp}
789 \item Plane wave basis set
790 %$\displaystyle
791 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
792 %$\\
793 %$\displaystyle
794 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
795 %$
796 \item Ultrasoft pseudopotential
797 \item Exchange \& correlation: GGA
798 \item Brillouin zone sampling: $\Gamma$-point
799 \item Supercell: $N=216\pm2$
800 \end{itemize}
801 \end{minipage}
802 \begin{minipage}{6cm}
803 \begin{pspicture}(0,0)(0,0)
804 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
805 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
806 $\displaystyle
807 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
808 $
809 }}
810 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
811 $\displaystyle
812 n(r)=\sum_i^N|\Phi_i(r)|^2
813 $
814 }}
815 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
816 $\displaystyle
817 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
818                  +V_{\text{XC}}[n(r)]
819 $
820 }}
821 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
822 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
823 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
824
825 \end{pspicture}
826 \end{minipage}
827
828 \end{slide}
829
830 \begin{slide}
831
832 \headphd
833  {\large\bf
834   Point defects \& defect migration
835  }
836
837  \small
838
839  \vspace{0.2cm}
840
841 \begin{minipage}[b]{7.5cm}
842 {\bf Defect structure}\\
843   \begin{pspicture}(0,0)(7,4.4)
844   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
845    \parbox{7cm}{
846    \begin{itemize}
847     \item Creation of c-Si simulation volume
848     \item Periodic boundary conditions
849     \item $T=0\text{ K}$, $p=0\text{ bar}$
850    \end{itemize}
851   }}}}
852 \rput(3.5,1.3){\rnode{insert}{\psframebox{
853  \parbox{7cm}{
854   \begin{center}
855   Insertion of interstitial C/Si atoms
856   \end{center}
857   }}}}
858   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
859    \parbox{7cm}{
860    \begin{center}
861    Relaxation / structural energy minimization
862    \end{center}
863   }}}}
864   \ncline[]{->}{init}{insert}
865   \ncline[]{->}{insert}{cool}
866  \end{pspicture}
867 \end{minipage}
868 \begin{minipage}[b]{4.5cm}
869 \begin{center}
870 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
871 \end{center}
872 \begin{minipage}{2.21cm}
873 {\scriptsize
874 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
875 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
876 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
877 }
878 \end{minipage}
879 \begin{minipage}{2.21cm}
880 {\scriptsize
881 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
882 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
883 {\color{black}$\bullet$} Vac. / Sub.
884 }
885 \end{minipage}
886 \end{minipage}
887
888 \vspace{0.2cm}
889
890 \begin{minipage}[b]{6cm}
891 {\bf Defect formation energy}\\
892 \framebox{
893 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
894 Particle reservoir: Si \& SiC\\[0.2cm]
895 {\bf Binding energy}\\
896 \framebox{
897 $
898 E_{\text{b}}=
899 E_{\text{f}}^{\text{comb}}-
900 E_{\text{f}}^{1^{\text{st}}}-
901 E_{\text{f}}^{2^{\text{nd}}}
902 $
903 }\\[0.1cm]
904 \footnotesize
905 $E_{\text{b}}<0$: energetically favorable configuration\\
906 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
907 \end{minipage}
908 \begin{minipage}[b]{6cm}
909 {\bf Migration barrier}
910 \footnotesize
911 \begin{itemize}
912  \item Displace diffusing atom
913  \item Constrain relaxation of (diffusing) atoms
914  \item Record configurational energy
915 \end{itemize}
916 \begin{picture}(0,0)(-60,-33)
917 \includegraphics[width=4.5cm]{crt_mod.eps}
918 \end{picture}
919 \end{minipage}
920
921 \end{slide}
922
923 \begin{slide}
924
925 \footnotesize
926
927 \headphd
928 {\large\bf
929  Si self-interstitial point defects in silicon\\[0.1cm]
930 }
931
932 \begin{center}
933 \begin{tabular}{l c c c c c}
934 \hline
935  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
936 \hline
937  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
938  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
939 \hline
940 \end{tabular}\\[0.4cm]
941 \end{center}
942
943 \begin{minipage}{3cm}
944 \begin{center}
945 \underline{Vacancy}\\
946 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
947 \end{center}
948 \end{minipage}
949 \begin{minipage}{3cm}
950 \begin{center}
951 \underline{\hkl<1 1 0> DB}\\
952 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
953 \end{center}
954 \end{minipage}
955 \begin{minipage}{3cm}
956 \begin{center}
957 \underline{\hkl<1 0 0> DB}\\
958 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
959 \end{center}
960 \end{minipage}
961 \begin{minipage}{3cm}
962 \begin{center}
963 \underline{Tetrahedral}\\
964 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
965 \end{center}
966 \end{minipage}\\
967
968 \underline{Hexagonal} \hspace{2pt}
969 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
970 \framebox{
971 \begin{minipage}{2.7cm}
972 $E_{\text{f}}^*=4.48\text{ eV}$\\
973 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
974 \end{minipage}
975 \begin{minipage}{0.4cm}
976 \begin{center}
977 $\Rightarrow$
978 \end{center}
979 \end{minipage}
980 \begin{minipage}{2.7cm}
981 $E_{\text{f}}=3.96\text{ eV}$\\
982 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
983 \end{minipage}
984 }
985 \begin{minipage}{5.5cm}
986 \begin{center}
987 {\tiny nearly T $\rightarrow$ T}\\
988 \end{center}
989 \includegraphics[width=6.0cm]{nhex_tet.ps}
990 \end{minipage}
991
992 \end{slide}
993
994 \begin{slide}
995
996 \footnotesize
997
998 \headphd
999 {\large\bf
1000  C interstitial point defects in silicon\\
1001 }
1002
1003 \begin{tabular}{l c c c c c c r}
1004 \hline
1005  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
1006  {\color{black} \cs{} \& \si}\\
1007 \hline
1008  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1009  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1010 \hline
1011 \end{tabular}\\[0.1cm]
1012
1013 \framebox{
1014 \begin{minipage}{2.8cm}
1015 \underline{Hexagonal} \hspace{2pt}
1016 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1017 $E_{\text{f}}^*=9.05\text{ eV}$\\
1018 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
1019 \end{minipage}
1020 \begin{minipage}{0.4cm}
1021 \begin{center}
1022 $\Rightarrow$
1023 \end{center}
1024 \end{minipage}
1025 \begin{minipage}{2.8cm}
1026 \underline{\hkl<1 0 0>}\\
1027 $E_{\text{f}}=3.88\text{ eV}$\\
1028 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
1029 \end{minipage}
1030 }
1031 \begin{minipage}{1.4cm}
1032 \hfill
1033 \end{minipage}
1034 \begin{minipage}{3.0cm}
1035 \begin{flushright}
1036 \underline{Tetrahedral}\\
1037 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
1038 \end{flushright}
1039 \end{minipage}
1040
1041 \framebox{
1042 \begin{minipage}{2.8cm}
1043 \underline{Bond-centered}\\
1044 $E_{\text{f}}^*=5.59\text{ eV}$\\
1045 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1046 \end{minipage}
1047 \begin{minipage}{0.4cm}
1048 \begin{center}
1049 $\Rightarrow$
1050 \end{center}
1051 \end{minipage}
1052 \begin{minipage}{2.8cm}
1053 \underline{\hkl<1 1 0> dumbbell}\\
1054 $E_{\text{f}}=5.18\text{ eV}$\\
1055 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1056 \end{minipage}
1057 }
1058 \begin{minipage}{1.4cm}
1059 \hfill
1060 \end{minipage}
1061 \begin{minipage}{3.0cm}
1062 \begin{flushright}
1063 \underline{Substitutional}\\
1064 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1065 \end{flushright}
1066 \end{minipage}
1067
1068 \end{slide}
1069
1070 \begin{slide}
1071
1072 \headphd
1073 {\large\bf\boldmath
1074  C-Si dimer \& bond-centered interstitial configuration
1075 }
1076
1077 \footnotesize
1078
1079 \vspace{0.1cm}
1080
1081 \begin{minipage}[t]{4.1cm}
1082 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1083 \begin{minipage}{2.0cm}
1084 \begin{center}
1085 \underline{Erhart/Albe}
1086 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1087 \end{center}
1088 \end{minipage}
1089 \begin{minipage}{2.0cm}
1090 \begin{center}
1091 \underline{\textsc{vasp}}
1092 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1093 \end{center}
1094 \end{minipage}\\[0.2cm]
1095 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1096 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1097 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1098 $\Rightarrow$ $sp^2$ hybridization
1099 \begin{center}
1100 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1101 {\tiny Charge density isosurface}
1102 \end{center}
1103 \end{minipage}
1104 \begin{minipage}{0.2cm}
1105 \hfill
1106 \end{minipage}
1107 \begin{minipage}[t]{8.1cm}
1108 \begin{flushright}
1109 {\bf Bond-centered interstitial}\\[0.1cm]
1110 \begin{minipage}{4.4cm}
1111 %\scriptsize
1112 \begin{itemize}
1113  \item Linear Si-C-Si bond
1114  \item Si: one C \& 3 Si neighbours
1115  \item Spin polarized calculations
1116  \item No saddle point!\\
1117        Real local minimum!
1118 \end{itemize}
1119 \end{minipage}
1120 \begin{minipage}{2.7cm}
1121 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1122 \vspace{0.2cm}
1123 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1124 \end{minipage}
1125
1126 \framebox{
1127  \tiny
1128  \begin{minipage}[t]{6.5cm}
1129   \begin{minipage}[t]{1.2cm}
1130   {\color{red}Si}\\
1131   {\tiny sp$^3$}\\[0.8cm]
1132   \underline{${\color{black}\uparrow}$}
1133   \underline{${\color{black}\uparrow}$}
1134   \underline{${\color{black}\uparrow}$}
1135   \underline{${\color{red}\uparrow}$}\\
1136   sp$^3$
1137   \end{minipage}
1138   \begin{minipage}[t]{1.4cm}
1139   \begin{center}
1140   {\color{red}M}{\color{blue}O}\\[0.8cm]
1141   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1142   $\sigma_{\text{ab}}$\\[0.5cm]
1143   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1144   $\sigma_{\text{b}}$
1145   \end{center}
1146   \end{minipage}
1147   \begin{minipage}[t]{1.0cm}
1148   \begin{center}
1149   {\color{blue}C}\\
1150   {\tiny sp}\\[0.2cm]
1151   \underline{${\color{white}\uparrow\uparrow}$}
1152   \underline{${\color{white}\uparrow\uparrow}$}\\
1153   2p\\[0.4cm]
1154   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1155   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1156   sp
1157   \end{center}
1158   \end{minipage}
1159   \begin{minipage}[t]{1.4cm}
1160   \begin{center}
1161   {\color{blue}M}{\color{green}O}\\[0.8cm]
1162   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1163   $\sigma_{\text{ab}}$\\[0.5cm]
1164   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1165   $\sigma_{\text{b}}$
1166   \end{center}
1167   \end{minipage}
1168   \begin{minipage}[t]{1.2cm}
1169   \begin{flushright}
1170   {\color{green}Si}\\
1171   {\tiny sp$^3$}\\[0.8cm]
1172   \underline{${\color{green}\uparrow}$}
1173   \underline{${\color{black}\uparrow}$}
1174   \underline{${\color{black}\uparrow}$}
1175   \underline{${\color{black}\uparrow}$}\\
1176   sp$^3$
1177   \end{flushright}
1178   \end{minipage}
1179  \end{minipage}
1180 }\\[0.4cm]
1181
1182 %\framebox{
1183 \begin{minipage}{3.0cm}
1184 %\scriptsize
1185 \underline{Charge density}\\
1186 {\color{gray}$\bullet$} Spin up\\
1187 {\color{green}$\bullet$} Spin down\\
1188 {\color{blue}$\bullet$} Resulting spin up\\
1189 {\color{yellow}$\bullet$} Si atoms\\
1190 {\color{red}$\bullet$} C atom
1191 \end{minipage}
1192 \begin{minipage}{3.6cm}
1193 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1194 \end{minipage}
1195 %}
1196
1197 \end{flushright}
1198
1199 \end{minipage}
1200 \begin{pspicture}(0,0)(0,0)
1201 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1202 \end{pspicture}
1203
1204 \end{slide}
1205
1206 \begin{slide}
1207
1208 \headphd
1209 {\large\bf\boldmath
1210  C interstitial migration --- ab initio
1211 }
1212
1213 \scriptsize
1214
1215 \vspace{0.1cm}
1216
1217 \begin{minipage}{6.8cm}
1218 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1219 \begin{minipage}{2.0cm}
1220 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1221 \end{minipage}
1222 \begin{minipage}{0.2cm}
1223 $\rightarrow$
1224 \end{minipage}
1225 \begin{minipage}{2.0cm}
1226 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1227 \end{minipage}
1228 \begin{minipage}{0.2cm}
1229 $\rightarrow$
1230 \end{minipage}
1231 \begin{minipage}{2.0cm}
1232 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1233 \end{minipage}\\[0.1cm]
1234 Spin polarization\\
1235 $\Rightarrow$ BC configuration constitutes local minimum\\
1236 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1237 \end{minipage}
1238 \begin{minipage}{5.4cm}
1239 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1240 \end{minipage}\\[0.2cm]
1241 %\hrule
1242 %
1243 \begin{minipage}{6.8cm}
1244 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1245 \begin{minipage}{2.0cm}
1246 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1247 \end{minipage}
1248 \begin{minipage}{0.2cm}
1249 $\rightarrow$
1250 \end{minipage}
1251 \begin{minipage}{2.0cm}
1252 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1253 \end{minipage}
1254 \begin{minipage}{0.2cm}
1255 $\rightarrow$
1256 \end{minipage}
1257 \begin{minipage}{2.0cm}
1258 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1259 \end{minipage}\\[0.1cm]
1260 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1261 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1262 Note: Change in orientation
1263 \end{minipage}
1264 \begin{minipage}{5.4cm}
1265 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1266 \end{minipage}\\[0.1cm]
1267 %
1268 \begin{center}
1269 Reorientation pathway composed of two consecutive processes of the above type
1270 \end{center}
1271
1272 \end{slide}
1273
1274 \begin{slide}
1275
1276 \headphd
1277 {\large\bf\boldmath
1278  C interstitial migration --- analytical potential
1279 }
1280
1281 \scriptsize
1282
1283 \vspace{0.3cm}
1284
1285 \begin{minipage}[t]{6.0cm}
1286 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1287 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1288 \begin{itemize}
1289  \item Lowermost migration barrier
1290  \item $\Delta E \approx \unit[2.2]{eV}$
1291  \item 2.4 times higher than ab initio result
1292  \item Different pathway
1293 \end{itemize}
1294 \end{minipage}
1295 \begin{minipage}[t]{0.2cm}
1296 \hfill
1297 \end{minipage}
1298 \begin{minipage}[t]{6.0cm}
1299 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1300 \vspace{0.1cm}
1301 \begin{itemize}
1302  \item Bond-centered configuration unstable\\
1303        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1304  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1305        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1306 \end{itemize}
1307 \vspace{0.1cm}
1308 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1309 \begin{itemize}
1310  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1311  \item 2.4 -- 3.4 times higher than ab initio result
1312  \item After all: Change of the DB orientation
1313 \end{itemize}
1314 \end{minipage}
1315
1316 \vspace{0.5cm}
1317 \begin{center}
1318 {\color{red}\bf Drastically overestimated diffusion barrier}
1319 \end{center}
1320
1321 \begin{pspicture}(0,0)(0,0)
1322 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1323 \end{pspicture}
1324
1325 \end{slide}
1326
1327 \begin{slide}
1328
1329 \headphd
1330 {\large\bf\boldmath
1331  Defect combinations
1332 }
1333
1334 \footnotesize
1335
1336 \vspace{0.3cm}
1337
1338 \begin{minipage}{9cm}
1339 {\bf
1340  Summary of combinations}\\[0.1cm]
1341 {\scriptsize
1342 \begin{tabular}{l c c c c c c}
1343 \hline
1344  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1345  \hline
1346  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1347  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1348  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1349  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1350  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1351  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1352  \hline
1353  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1354  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1355 \hline
1356 \end{tabular}
1357 }
1358 \vspace{0.2cm}
1359 \begin{center}
1360 {\color{blue}
1361  $E_{\text{b}}$ explainable by stress compensation / increase
1362 }
1363 \end{center}
1364 \end{minipage}
1365 \begin{minipage}{3cm}
1366 \includegraphics[width=3.5cm]{comb_pos.eps}
1367 \end{minipage}
1368
1369 \vspace{0.2cm}
1370
1371 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1372 \begin{minipage}[t]{3.2cm}
1373 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1374 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1375 \end{minipage}
1376 \begin{minipage}[t]{3.0cm}
1377 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1378 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1379 \end{minipage}
1380 \begin{minipage}[t]{6.1cm}
1381 \vspace{0.7cm}
1382 \begin{itemize}
1383  \item \ci{} agglomeration energetically favorable
1384  \item Most favorable: C clustering\\
1385        {\color{red}However \ldots}\\
1386         \ldots high migration barrier ($>4\,\text{eV}$)\\
1387         \ldots entropy:
1388         $4\times{\color{cyan}[-2.25]}$ versus
1389         $2\times{\color{orange}[-2.39]}$
1390 \end{itemize}
1391 \begin{center}
1392 {\color{blue}\ci{} agglomeration / no C clustering}
1393 \end{center}
1394 \end{minipage}
1395
1396 \end{slide}
1397
1398 \begin{slide}
1399
1400 \headphd
1401 {\large\bf\boldmath
1402  Defect combinations
1403 }
1404
1405 \footnotesize
1406
1407 \vspace{0.3cm}
1408
1409 \begin{minipage}{9cm}
1410 {\bf
1411  Summary of combinations}\\[0.1cm]
1412 {\scriptsize
1413 \begin{tabular}{l c c c c c c}
1414 \hline
1415  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1416  \hline
1417  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1418  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1419  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1420  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1421  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1422  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1423  \hline
1424  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1425  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1426 \hline
1427 \end{tabular}
1428 }
1429 \vspace{0.2cm}
1430 \begin{center}
1431 {\color{blue}
1432  $E_{\text{b}}$ explainable by stress compensation / increase
1433 }
1434 \end{center}
1435 \end{minipage}
1436 \begin{minipage}{3cm}
1437 \includegraphics[width=3.5cm]{comb_pos.eps}
1438 \end{minipage}
1439
1440 \vspace{0.2cm}
1441
1442 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1443 \begin{minipage}[t]{3.2cm}
1444 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1445 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1446 \end{minipage}
1447 \begin{minipage}[t]{3.0cm}
1448 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1449 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1450 \end{minipage}
1451 \begin{minipage}[t]{6.1cm}
1452 \vspace{0.7cm}
1453 \begin{itemize}
1454  \item \ci{} agglomeration energetically favorable
1455  \item Most favorable: C clustering\\
1456        {\color{red}However \ldots}\\
1457         \ldots high migration barrier ($>4\,\text{eV}$)\\
1458         \ldots entropy:
1459         $4\times{\color{cyan}[-2.25]}$ versus
1460         $2\times{\color{orange}[-2.39]}$
1461 \end{itemize}
1462 \begin{center}
1463 {\color{blue}\ci{} agglomeration / no C clustering}
1464 \end{center}
1465 \end{minipage}
1466
1467 % insert graph ...
1468 \begin{pspicture}(0,0)(0,0)
1469 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1470 \begin{minipage}{14cm}
1471 \hfill
1472 \vspace{12cm}
1473 \end{minipage}
1474 }}
1475 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1476 \begin{minipage}{8cm}
1477 \begin{center}
1478 \vspace{0.2cm}
1479 \scriptsize
1480 Interaction along \hkl[1 1 0]
1481 \includegraphics[width=7cm]{db_along_110_cc.ps}
1482 \end{center}
1483 \end{minipage}
1484 }}}
1485 \end{pspicture}
1486
1487 \end{slide}
1488
1489 \begin{slide}
1490
1491 \headphd
1492 {\large\bf
1493  Defect combinations of C-Si dimers and vacancies
1494 }
1495 \footnotesize
1496
1497 \vspace{0.2cm}
1498
1499 \begin{minipage}[b]{2.6cm}
1500 \begin{flushleft}
1501 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1502 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1503 \end{flushleft}
1504 \end{minipage}
1505 \begin{minipage}[b]{7cm}
1506 \hfill
1507 \end{minipage}
1508 \begin{minipage}[b]{2.6cm}
1509 \begin{flushright}
1510 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1511 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1512 \end{flushright}
1513 \end{minipage}\\[0.2cm]
1514
1515 \begin{minipage}{6.5cm}
1516 \includegraphics[width=6.0cm]{059-539.ps}
1517 \end{minipage}
1518 \begin{minipage}{5.7cm}
1519 \includegraphics[width=6.0cm]{314-539.ps}
1520 \end{minipage}
1521
1522 \begin{pspicture}(0,0)(0,0)
1523 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1524
1525 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1526 \begin{minipage}{6.5cm}
1527 \begin{center}
1528 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1529 Low migration barrier towards C$_{\text{sub}}$\\
1530 \&\\
1531 High barrier for reverse process\\[0.3cm]
1532 {\color{blue}
1533 High probability of stable C$_{\text{sub}}$ configuration
1534 }
1535 \end{center}
1536 \end{minipage}
1537 }}}
1538 \end{pspicture}
1539
1540 \end{slide}
1541
1542 \begin{slide}
1543
1544 \headphd
1545 {\large\bf
1546  Combinations of substitutional C and Si self-interstitials
1547 }
1548
1549 \scriptsize
1550
1551 \vspace{0.3cm}
1552
1553 \begin{minipage}{6.2cm}
1554 \begin{center}
1555 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1556 \begin{itemize}
1557  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1558  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1559  \item Interaction drops quickly to zero\\
1560        $\rightarrow$ low capture radius
1561 \end{itemize}
1562 \end{center}
1563 \end{minipage}
1564 \begin{minipage}{0.2cm}
1565 \hfill
1566 \end{minipage}
1567 \begin{minipage}{6.0cm}
1568 \begin{center}
1569 {\bf Transition from the ground state}
1570 \begin{itemize}
1571  \item Low transition barrier
1572  \item Barrier smaller than \ci{} migration barrier
1573  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1574        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1575 \end{itemize}
1576 \end{center}
1577 \end{minipage}\\[0.3cm]
1578
1579 \begin{minipage}{6.0cm}
1580 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1581 \end{minipage}
1582 \begin{minipage}{0.4cm}
1583 \hfill
1584 \end{minipage}
1585 \begin{minipage}{6.0cm}
1586 \begin{flushright}
1587 \includegraphics[width=6.0cm]{162-097.ps}
1588 \end{flushright}
1589 \end{minipage}
1590
1591 \begin{pspicture}(0,0)(0,0)
1592 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1593 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1594 \begin{minipage}{8cm}
1595 \begin{center}
1596 \vspace{0.1cm}
1597 {\color{black}
1598 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1599 IBS --- process far from equilibrium\\
1600 }
1601 \end{center}
1602 \end{minipage}
1603 }}}
1604 \end{pspicture}
1605
1606 \end{slide}
1607
1608 \begin{slide}
1609
1610 \headphd
1611 {\large\bf
1612  Combinations of substitutional C and Si self-interstitials
1613 }
1614
1615 \scriptsize
1616
1617 \vspace{0.3cm}
1618
1619 \begin{minipage}{6.2cm}
1620 \begin{center}
1621 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1622 \begin{itemize}
1623  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1624  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1625  \item Interaction drops quickly to zero\\
1626        $\rightarrow$ low capture radius
1627 \end{itemize}
1628 \end{center}
1629 \end{minipage}
1630 \begin{minipage}{0.2cm}
1631 \hfill
1632 \end{minipage}
1633 \begin{minipage}{6.0cm}
1634 \begin{center}
1635 {\bf Transition from the ground state}
1636 \begin{itemize}
1637  \item Low transition barrier
1638  \item Barrier smaller than \ci{} migration barrier
1639  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1640        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1641 \end{itemize}
1642 \end{center}
1643 \end{minipage}\\[0.3cm]
1644
1645 \begin{minipage}{6.0cm}
1646 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1647 \end{minipage}
1648 \begin{minipage}{0.4cm}
1649 \hfill
1650 \end{minipage}
1651 \begin{minipage}{6.0cm}
1652 \begin{flushright}
1653 \includegraphics[width=6.0cm]{162-097.ps}
1654 \end{flushright}
1655 \end{minipage}
1656
1657 \begin{pspicture}(0,0)(0,0)
1658 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1659 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1660 \begin{minipage}{8cm}
1661 \begin{center}
1662 \vspace{0.1cm}
1663 {\color{black}
1664 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1665 IBS --- process far from equilibrium\\
1666 }
1667 \end{center}
1668 \end{minipage}
1669 }}}
1670 \end{pspicture}
1671
1672 % md support
1673 \begin{pspicture}(0,0)(0,0)
1674 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1675 \begin{minipage}{14cm}
1676 \hfill
1677 \vspace{14cm}
1678 \end{minipage}
1679 }}
1680 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1681 \begin{minipage}{11cm}
1682 \begin{center}
1683 \vspace{0.2cm}
1684 \scriptsize
1685 Ab initio MD at \degc{900}\\[0.4cm]
1686 \begin{minipage}{5.4cm}
1687 \centering
1688 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1689 $t=\unit[2230]{fs}$
1690 \end{minipage}
1691 \begin{minipage}{5.4cm}
1692 \centering
1693 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1694 $t=\unit[2900]{fs}$
1695 \end{minipage}\\[0.5cm]
1696 {\color{blue}
1697 Contribution of entropy to structural formation\\[0.1cm]
1698 }
1699 \end{center}
1700 \end{minipage}
1701 }}}
1702 \end{pspicture}
1703
1704 \end{slide}
1705
1706 \begin{slide}
1707
1708 \headphd
1709 {\large\bf
1710  Silicon carbide precipitation simulations
1711 }
1712
1713 \small
1714
1715 \vspace{0.2cm}
1716
1717 {\bf Procedure}
1718
1719 {\scriptsize
1720  \begin{pspicture}(0,0)(12,6.5)
1721   % nodes
1722   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1723    \parbox{7cm}{
1724    \begin{itemize}
1725     \item Create c-Si volume
1726     \item Periodc boundary conditions
1727     \item Set requested $T$ and $p=0\text{ bar}$
1728     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1729    \end{itemize}
1730   }}}}
1731   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1732    \parbox{7cm}{
1733    Insertion of C atoms at constant T
1734    \begin{itemize}
1735     \item total simulation volume {\pnode{in1}}
1736     \item volume of minimal SiC precipitate size {\pnode{in2}}
1737     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1738           precipitate
1739    \end{itemize} 
1740   }}}}
1741   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1742    \parbox{7.0cm}{
1743    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1744   }}}}
1745   \ncline[]{->}{init}{insert}
1746   \ncline[]{->}{insert}{cool}
1747   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1748   \rput(7.6,6){\footnotesize $V_1$}
1749   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1750   \rput(8.9,4.85){\tiny $V_2$}
1751   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1752   \rput(9.25,4.45){\footnotesize $V_3$}
1753   \rput(7.9,3.2){\pnode{ins1}}
1754   \rput(8.92,2.8){\pnode{ins2}}
1755   \rput(10.8,2.4){\pnode{ins3}}
1756   \ncline[]{->}{in1}{ins1}
1757   \ncline[]{->}{in2}{ins2}
1758   \ncline[]{->}{in3}{ins3}
1759  \end{pspicture}
1760 }
1761
1762 \vspace{-0.5cm}
1763
1764 {\bf Note}
1765
1766 \footnotesize
1767
1768 \begin{minipage}{5.7cm}
1769 \begin{itemize}
1770  \item Amount of C atoms: 6000\\
1771        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1772  \item Simulation volume: $31^3$ Si unit cells\\
1773        (238328 Si atoms)
1774 \end{itemize}
1775 \end{minipage}
1776 \begin{minipage}{0.3cm}
1777 \hfill
1778 \end{minipage}
1779 \framebox{
1780 \begin{minipage}{6.0cm}
1781 Restricted to classical potential caclulations\\
1782 $\rightarrow$ Low C diffusion / overestimated barrier\\
1783 $\rightarrow$ Consider $V_2$ and $V_3$
1784 %\begin{itemize}
1785 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1786 %\end{itemize}
1787 \end{minipage}
1788 }
1789
1790 \end{slide}
1791
1792 \begin{slide}
1793
1794 \headphd
1795 {\large\bf\boldmath
1796  Silicon carbide precipitation simulations at \degc{450} as in IBS
1797 }
1798
1799 \small
1800
1801 \begin{minipage}{6.3cm}
1802 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1803 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1804 \hfill
1805 \end{minipage} 
1806 \begin{minipage}{6.1cm}
1807 \scriptsize
1808 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1809 \hkl<1 0 0> C-Si dumbbell dominated structure
1810 \begin{itemize}
1811  \item Si-C bumbs around \unit[0.19]{nm}
1812  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1813        concatenated differently oriented \ci{} DBs
1814  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1815 \end{itemize}
1816 \begin{pspicture}(0,0)(6.0,1.0)
1817 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1818 \begin{minipage}{6cm}
1819 \centering
1820 Formation of \ci{} dumbbells\\
1821 C atoms in proper 3C-SiC distance first
1822 \end{minipage}
1823 }}
1824 \end{pspicture}\\[0.1cm]
1825 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1826 \begin{itemize}
1827 \item High amount of strongly bound C-C bonds
1828 \item Increased defect \& damage density\\
1829       $\rightarrow$ Arrangements hard to categorize and trace
1830 \item Only short range order observable
1831 \end{itemize}
1832 \begin{pspicture}(0,0)(6.0,0.8)
1833 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1834 \begin{minipage}{6cm}
1835 \centering
1836 Amorphous SiC-like phase
1837 \end{minipage}
1838 }}
1839 \end{pspicture}\\[0.3cm]
1840 \begin{pspicture}(0,0)(6.0,2.0)
1841 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1842 \begin{minipage}{6cm}
1843 \hfill
1844 \vspace{2.5cm}
1845 \end{minipage}
1846 }}
1847 \end{pspicture}
1848 \end{minipage} 
1849
1850 \end{slide}
1851
1852 \begin{slide}
1853
1854 \headphd
1855 {\large\bf\boldmath
1856  Silicon carbide precipitation simulations at \degc{450} as in IBS
1857 }
1858
1859 \small
1860
1861 \begin{minipage}{6.3cm}
1862 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1863 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1864 \hfill
1865 \end{minipage} 
1866 \begin{minipage}{6.1cm}
1867 \scriptsize
1868 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1869 \hkl<1 0 0> C-Si dumbbell dominated structure
1870 \begin{itemize}
1871  \item Si-C bumbs around \unit[0.19]{nm}
1872  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1873        concatenated differently oriented \ci{} DBs
1874  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1875 \end{itemize}
1876 \begin{pspicture}(0,0)(6.0,1.0)
1877 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1878 \begin{minipage}{6cm}
1879 \centering
1880 Formation of \ci{} dumbbells\\
1881 C atoms in proper 3C-SiC distance first
1882 \end{minipage}
1883 }}
1884 \end{pspicture}\\[0.1cm]
1885 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1886 \begin{itemize}
1887 \item High amount of strongly bound C-C bonds
1888 \item Increased defect \& damage density\\
1889       $\rightarrow$ Arrangements hard to categorize and trace
1890 \item Only short range order observable
1891 \end{itemize}
1892 \begin{pspicture}(0,0)(6.0,0.8)
1893 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1894 \begin{minipage}{6cm}
1895 \centering
1896 Amorphous SiC-like phase
1897 \end{minipage}
1898 }}
1899 \end{pspicture}\\[0.3cm]
1900 \begin{pspicture}(0,0)(6.0,2.0)
1901 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1902 \begin{minipage}{6cm}
1903 \vspace{0.1cm}
1904 \centering
1905 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1906 \begin{minipage}{0.8cm}
1907 {\bf\boldmath $V_1$:}
1908 \end{minipage}
1909 \begin{minipage}{5.1cm}
1910 Formation of \ci{} indeed occurs\\
1911 Agllomeration not observed
1912 \end{minipage}\\[0.3cm]
1913 \begin{minipage}{0.8cm}
1914 {\bf\boldmath $V_{2,3}$:}
1915 \end{minipage}
1916 \begin{minipage}{5.1cm}
1917 Amorphous SiC-like structure\\
1918 (not expected at \degc{450})\\[0.05cm]
1919 No rearrangement/transition into 3C-SiC
1920 \end{minipage}\\[0.1cm]
1921 \end{minipage}
1922 }}
1923 \end{pspicture}
1924 \end{minipage} 
1925
1926 \end{slide}
1927
1928 \begin{slide}
1929
1930 \headphd
1931 {\large\bf
1932  Limitations of MD and short range potentials
1933 }
1934
1935 \small
1936
1937 \vspace{0.2cm}
1938
1939 {\bf Time scale problem of MD}\\[0.2cm]
1940 Precise integration \& thermodynamic sampling\\
1941 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1942               $\omega$: vibrational mode\\
1943 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1944 Several local minima separated by large energy barriers\\
1945 $\Rightarrow$ Transition event corresponds to a multiple
1946               of vibrational periods\\
1947 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1948               infrequent transition events\\[0.2cm]
1949 {\color{blue}Accelerated methods:}
1950 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1951
1952 \vspace{0.2cm}
1953
1954 {\bf Limitations related to the short range potential}\\[0.2cm]
1955 Cut-off function limits interaction to next neighbours\\
1956 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1957               (factor: 2.4--3.4)
1958
1959 \vspace{1.4cm}
1960
1961 {\bf Approach to the (twofold) problem}\\[0.2cm]
1962 Increased temperature simulations without TAD corrections\\
1963 Accelerated methods or higher time scales exclusively not sufficient!
1964
1965 \begin{pspicture}(0,0)(0,0)
1966 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1967 \begin{minipage}{7.5cm}
1968 \centering
1969 \vspace{0.05cm}
1970 Potential enhanced slow phase space propagation
1971 \end{minipage}
1972 }}
1973 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1974 \begin{minipage}{2.7cm}
1975 \tiny
1976 \centering
1977 retain proper\\
1978 thermodynamic sampling
1979 \end{minipage}
1980 }}
1981 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1982 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1983 \begin{minipage}{3.6cm}
1984 \tiny
1985 \centering
1986 \underline{IBS}\\[0.1cm]
1987 3C-SiC also observed for higher T\\[0.1cm]
1988 Higher T inside sample\\[0.1cm]
1989 Structural evolution vs.\\
1990 equilibrium properties
1991 \end{minipage}
1992 }}
1993 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1994 \end{pspicture}
1995
1996 \end{slide}
1997
1998 \begin{slide}
1999
2000 \headphd
2001 {\large\bf\boldmath
2002  Increased temperature simulations --- $V_1$
2003 }
2004
2005 \small
2006
2007 \begin{minipage}{6.2cm}
2008 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2009 \hfill
2010 \end{minipage}
2011 \begin{minipage}{6.2cm}
2012 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2013 \end{minipage}
2014
2015 \begin{minipage}{6.2cm}
2016 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2017 \hfill
2018 \end{minipage}
2019 \begin{minipage}{6.3cm}
2020 \scriptsize
2021  \underline{Si-C bonds:}
2022  \begin{itemize}
2023   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2024   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2025  \end{itemize}
2026  \underline{Si-Si bonds:}
2027  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2028  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2029  \underline{C-C bonds:}
2030  \begin{itemize}
2031   \item C-C next neighbour pairs reduced (mandatory)
2032   \item Peak at 0.3 nm slightly shifted
2033         \begin{itemize}
2034          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2035                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2036                combinations (|)\\
2037                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2038                ($\downarrow$)
2039          \item Range [|-$\downarrow$]:
2040                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2041                with nearby Si$_{\text{I}}$}
2042         \end{itemize}
2043  \end{itemize}
2044 \end{minipage}
2045
2046 \end{slide}
2047
2048 \begin{slide}
2049
2050 \headphd
2051 {\large\bf\boldmath
2052  Increased temperature simulations --- $V_1$
2053 }
2054
2055 \small
2056
2057 \begin{minipage}{6.2cm}
2058 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2059 \hfill
2060 \end{minipage}
2061 \begin{minipage}{6.2cm}
2062 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2063 \end{minipage}
2064
2065 \begin{minipage}{6.2cm}
2066 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2067 \hfill
2068 \end{minipage}
2069 \begin{minipage}{6.3cm}
2070 \scriptsize
2071  \underline{Si-C bonds:}
2072  \begin{itemize}
2073   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2074   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2075  \end{itemize}
2076  \underline{Si-Si bonds:}
2077  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2078  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2079  \underline{C-C bonds:}
2080  \begin{itemize}
2081   \item C-C next neighbour pairs reduced (mandatory)
2082   \item Peak at 0.3 nm slightly shifted
2083         \begin{itemize}
2084          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2085                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2086                combinations (|)\\
2087                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2088                ($\downarrow$)
2089          \item Range [|-$\downarrow$]:
2090                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2091                with nearby Si$_{\text{I}}$}
2092         \end{itemize}
2093  \end{itemize}
2094 \end{minipage}
2095
2096 % conclusions
2097 \begin{pspicture}(0,0)(0,0)
2098 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2099 \begin{minipage}{14cm}
2100 \hfill
2101 \vspace{14cm}
2102 \end{minipage}
2103 }}
2104 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2105 \begin{minipage}{9cm}
2106 \vspace{0.2cm}
2107 \small
2108 \begin{center}
2109 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2110 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2111 \end{center}
2112 \begin{itemize}
2113 \item Stretched coherent SiC structures\\
2114 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2115 \item Explains annealing behavior of high/low T C implantations
2116       \begin{itemize}
2117        \item Low T: highly mobile {\color{red}\ci}
2118        \item High T: stable configurations of {\color{blue}\cs}
2119       \end{itemize}
2120 \item Role of \si{}
2121       \begin{itemize}
2122        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2123        \item Building block for surrounding Si host \& further SiC
2124        \item Strain compensation \ldots\\
2125              \ldots Si/SiC interface\\
2126              \ldots within stretched coherent SiC structure
2127       \end{itemize}
2128 \end{itemize}
2129 \vspace{0.2cm}
2130 \centering
2131 \psframebox[linecolor=blue,linewidth=0.05cm]{
2132 \begin{minipage}{7cm}
2133 \centering
2134 Precipitation mechanism involving \cs\\
2135 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2136 \end{minipage}
2137 }
2138 \end{minipage}
2139 \vspace{0.2cm}
2140 }}
2141 \end{pspicture}
2142
2143 \end{slide}
2144
2145 % skip high T / C conc ... only here!
2146 \ifnum1=0
2147
2148 \begin{slide}
2149
2150  {\large\bf
2151   Increased temperature simulations at high C concentration
2152  }
2153
2154 \footnotesize
2155
2156 \begin{minipage}{6.5cm}
2157 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2158 \end{minipage}
2159 \begin{minipage}{6.5cm}
2160 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2161 \end{minipage}
2162
2163 \vspace{0.1cm}
2164
2165 \scriptsize
2166
2167 \framebox{
2168 \begin{minipage}[t]{6.0cm}
2169 0.186 nm: Si-C pairs $\uparrow$\\
2170 (as expected in 3C-SiC)\\[0.2cm]
2171 0.282 nm: Si-C-C\\[0.2cm]
2172 $\approx$0.35 nm: C-Si-Si
2173 \end{minipage}
2174 }
2175 \begin{minipage}{0.2cm}
2176 \hfill
2177 \end{minipage}
2178 \framebox{
2179 \begin{minipage}[t]{6.0cm}
2180 0.15 nm: C-C pairs $\uparrow$\\
2181 (as expected in graphite/diamond)\\[0.2cm]
2182 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2183 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2184 \end{minipage}
2185 }
2186
2187 \begin{itemize}
2188 \item Decreasing cut-off artifact
2189 \item {\color{red}Amorphous} SiC-like phase remains
2190 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2191 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2192 \end{itemize}
2193
2194 \vspace{-0.1cm}
2195
2196 \begin{center}
2197 {\color{blue}
2198 \framebox{
2199 {\color{black}
2200 High C \& small $V$ \& short $t$
2201 $\Rightarrow$
2202 }
2203 Slow restructuring due to strong C-C bonds
2204 {\color{black}
2205 $\Leftarrow$
2206 High C \& low T implants
2207 }
2208 }
2209 }
2210 \end{center}
2211
2212 \end{slide}
2213
2214 % skipped high T / C conc
2215 \fi
2216
2217 \begin{slide}
2218
2219 {\large\bf
2220  Summary / Outlook
2221 }
2222
2223 \small
2224
2225 \begin{pspicture}(0,0)(12,1.0)
2226 \psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
2227 \begin{minipage}{11cm}
2228 {\color{black}Diploma thesis}\\
2229  \underline{Monte Carlo} simulation modeling the selforganization process\\
2230  leading to periodic arrays of nanometric amorphous SiC precipitates
2231 \end{minipage}
2232 }
2233 \end{pspicture}\\[0.4cm]
2234 \begin{pspicture}(0,0)(12,2)
2235 \psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
2236 \begin{minipage}{11cm}
2237 {\color{black}Doctoral studies}\\
2238  Classical potential \underline{molecular dynamics} simulations \ldots\\
2239  \underline{Density functional theory} calculations \ldots\\[0.2cm]
2240  \ldots on defect formation and SiC precipitation in Si
2241 \end{minipage}
2242 }
2243 \end{pspicture}\\[0.5cm]
2244 \begin{pspicture}(0,0)(12,3)
2245 \psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
2246 \begin{minipage}{11cm}
2247 \vspace{0.2cm}
2248 {\color{black}\bf How to proceed \ldots}\\[0.1cm]
2249 MC $\rightarrow$ empirical potential MD $\rightarrow$ Ground-state DFT \ldots
2250 \begin{itemize}
2251  \renewcommand\labelitemi{$\ldots$}
2252  \item beyond LDA/GGA methods \& ground-state DFT
2253 \end{itemize}
2254 Investigation of structure \& structural evolution \ldots
2255 \begin{itemize}
2256  \renewcommand\labelitemi{$\ldots$}
2257  \item electronic/optical properties
2258  \item electronic correlations
2259  \item non-equilibrium systems
2260 \end{itemize}
2261 \end{minipage}
2262 }
2263 \end{pspicture}\\[0.5cm]
2264
2265 \end{slide}
2266
2267 \begin{slide}
2268
2269  {\large\bf
2270   Acknowledgements
2271  }
2272
2273  \vspace{0.1cm}
2274
2275  \small
2276
2277  Thanks to \ldots
2278
2279  \underline{Augsburg}
2280  \begin{itemize}
2281   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2282   \item Ralf Utermann (EDV)
2283  \end{itemize}
2284  
2285  \underline{Helsinki}
2286  \begin{itemize}
2287   \item Prof. K. Nordlund (MD)
2288  \end{itemize}
2289  
2290  \underline{Munich}
2291  \begin{itemize}
2292   \item Bayerische Forschungsstiftung (financial support)
2293  \end{itemize}
2294  
2295  \underline{Paderborn}
2296  \begin{itemize}
2297   \item Prof. J. Lindner (SiC)
2298   \item Prof. G. Schmidt (DFT + financial support)
2299   \item Dr. E. Rauls (DFT + SiC)
2300  \end{itemize}
2301
2302  \underline{Stuttgart}
2303 \begin{center}
2304 \framebox{
2305 \bf Thank you for your attention / invitation!
2306 }
2307 \end{center}
2308
2309 \end{slide}
2310
2311 \end{document}
2312
2313 %\fi