only summary and outlook missing
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143 \begin{center}
144
145  \vspace{16pt}
146
147  {\Large\bf
148   \hrule
149   \vspace{5pt}
150   Atomistic simulation study on silicon carbide\\[0.2cm]
151   precipitation in silicon\\
152   \vspace{10pt}
153   \hrule
154  }
155
156  \vspace{60pt}
157
158  \textsc{Frank Zirkelbach}
159
160  \vspace{60pt}
161
162  Defense of doctor's thesis
163
164  \vspace{08pt}
165
166  Augsburg, 10.01.2012
167
168 \end{center}
169 \end{slide}
170
171 % no vertical centering
172 \centerslidesfalse
173
174 % skip for preparation
175 %\ifnum1=0
176
177 % intro
178
179 % motivation / properties / applications of silicon carbide
180
181 \begin{slide}
182
183 \vspace*{1.8cm}
184
185 \small
186
187 \begin{pspicture}(0,0)(13.5,5)
188
189  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
190
191  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
193
194  \rput[lt](0,4.6){\color{gray}PROPERTIES}
195
196  \rput[lt](0.3,4){wide band gap}
197  \rput[lt](0.3,3.5){high electric breakdown field}
198  \rput[lt](0.3,3){good electron mobility}
199  \rput[lt](0.3,2.5){high electron saturation drift velocity}
200  \rput[lt](0.3,2){high thermal conductivity}
201
202  \rput[lt](0.3,1.5){hard and mechanically stable}
203  \rput[lt](0.3,1){chemically inert}
204
205  \rput[lt](0.3,0.5){radiation hardness}
206
207  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
208
209  \rput[rt](12.5,3.85){high-temperature, high power}
210  \rput[rt](12.5,3.5){and high-frequency}
211  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
212
213  \rput[rt](12.5,2.35){material suitable for extreme conditions}
214  \rput[rt](12.5,2){microelectromechanical systems}
215  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
216
217  \rput[rt](12.5,0.85){first wall reactor material, detectors}
218  \rput[rt](12.5,0.5){and electronic devices for space}
219
220 \end{pspicture}
221
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
230 \end{picture}
231 %%%%
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
234 \end{picture}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
238 \end{picture}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
242 \end{picture}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
245 \end{picture}
246
247 \end{slide}
248
249 % motivation
250
251 \begin{slide}
252
253 \headphd
254  {\large\bf
255   Polytypes of SiC\\[0.6cm]
256  }
257
258 \vspace{0.6cm}
259
260 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
261 \begin{minipage}{1.9cm}
262 {\tiny cubic (twist)}
263 \end{minipage}
264 \begin{minipage}{2.9cm}
265 {\tiny hexagonal (no twist)}
266 \end{minipage}
267
268 \begin{picture}(0,0)(-150,0)
269  \includegraphics[width=7cm]{polytypes.eps}
270 \end{picture}
271
272 \vspace{0.6cm}
273
274 \footnotesize
275
276 \begin{tabular}{l c c c c c c}
277 \hline
278  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
279 \hline
280 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
281 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
282 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
283 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
284 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
285 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
286 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
287 \hline
288 \end{tabular}
289
290 \begin{pspicture}(0,0)(0,0)
291 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
292 \end{pspicture}
293 \begin{pspicture}(0,0)(0,0)
294 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
295 \end{pspicture}
296 \begin{pspicture}(0,0)(0,0)
297 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
298 \end{pspicture}
299
300 \end{slide}
301
302 % fabrication
303
304 \begin{slide}
305
306 \headphd
307  {\large\bf
308   Fabrication of silicon carbide
309  }
310
311  \small
312  
313  \vspace{2pt}
314
315 \begin{center}
316  {\color{gray}
317  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
318  }
319 \end{center}
320
321 \vspace{2pt}
322
323 SiC thin films by MBE \& CVD
324 \begin{itemize}
325  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
326  \item \underline{Commercially available} semiconductor power devices based on
327        \underline{\foreignlanguage{greek}{a}-SiC}
328  \item Production of favored \underline{3C-SiC} material
329        \underline{less advanced}
330  \item Quality and size not yet sufficient
331 \end{itemize}
332 \begin{picture}(0,0)(-310,-20)
333   \includegraphics[width=2.0cm]{cree.eps}
334 \end{picture}
335
336 \vspace{-0.5cm}
337
338 \begin{center}
339 \color{red}
340 \framebox{
341 {\footnotesize\color{black}
342  Mismatch in \underline{thermal expansion coeefficient}
343  and \underline{lattice parameter} w.r.t. substrate
344 }
345 }
346 \end{center}
347
348 \vspace{0.1cm}
349
350 {\bf Alternative approach}\\
351 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
352
353 \vspace{0.1cm}
354
355 \scriptsize
356
357 \framebox{
358 \begin{minipage}{3.15cm}
359  \begin{center}
360 \includegraphics[width=3cm]{imp.eps}\\
361  {\tiny
362   Carbon implantation
363  }
364  \end{center}
365 \end{minipage}
366 \begin{minipage}{3.15cm}
367  \begin{center}
368 \includegraphics[width=3cm]{annealing.eps}\\
369  {\tiny
370  Postannealing at $>$ \degc{1200}
371  }
372  \end{center}
373 \end{minipage}
374 }
375 \begin{minipage}{5.5cm}
376 \begin{center}
377 {\footnotesize
378 No surface bending effects\\
379 High areal homogenity\\[0.1cm]
380 $\Downarrow$\\[0.1cm]
381 Synthesis of large area SiC films possible
382 }
383 \end{center}
384 \end{minipage}
385
386 \end{slide}
387
388 \begin{slide}
389
390 \headphd
391 {\large\bf
392  IBS of epitaxial single crystalline 3C-SiC
393 }
394
395 \footnotesize
396
397 \vspace{0.2cm}
398
399 \begin{center}
400 \begin{itemize}
401  \item \underline{Implantation step 1}\\[0.1cm]
402         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
403         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
404         {\color{blue}precipitates}
405  \item \underline{Implantation step 2}\\[0.1cm]
406         Little remaining dose | \unit[180]{keV} | \degc{250}\\
407         $\Rightarrow$
408         Destruction/Amorphization of precipitates at layer interface
409  \item \underline{Annealing}\\[0.1cm]
410        \unit[10]{h} at \degc{1250}\\
411        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
412 \end{itemize}
413 \end{center}
414
415 \begin{minipage}{6.9cm}
416 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
417 \begin{center}
418 {\tiny
419  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
420 }
421 \end{center}
422 \end{minipage}
423 \begin{minipage}{5cm}
424 \begin{pspicture}(0,0)(0,0)
425 \rnode{box}{
426 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
427 \begin{minipage}{5.3cm}
428  \begin{center}
429  {\color{blue}
430   3C-SiC precipitation\\
431   not yet fully understood
432  }
433  \end{center}
434  \vspace*{0.1cm}
435  \renewcommand\labelitemi{$\Rightarrow$}
436  Details of the SiC precipitation
437  \begin{itemize}
438   \item significant technological progress\\
439         in SiC thin film formation
440   \item perspectives for processes relying\\
441         upon prevention of SiC precipitation
442  \end{itemize}
443 \end{minipage}
444 }}
445 \rput(-6.8,5.5){\pnode{h0}}
446 \rput(-3.0,5.5){\pnode{h1}}
447 \ncline[linecolor=blue]{-}{h0}{h1}
448 \ncline[linecolor=blue]{->}{h1}{box}
449 \end{pspicture}
450 \end{minipage}
451
452 \end{slide}
453
454 % contents
455
456 \begin{slide}
457
458 \headphd
459 {\large\bf
460   Supposed precipitation mechanism of SiC in Si
461 }
462
463  \scriptsize
464
465  \vspace{0.1cm}
466
467  \framebox{
468  \begin{minipage}{3.6cm}
469  \begin{center}
470  Si \& SiC lattice structure\\[0.1cm]
471  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
472  \end{center}
473 {\tiny
474  \begin{minipage}{1.7cm}
475 \underline{Silicon}\\
476 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
477 $a=\unit[5.429]{\\A}$\\
478 $\rho^*_{\text{Si}}=\unit[100]{\%}$
479  \end{minipage}
480  \begin{minipage}{1.7cm}
481 \underline{Silicon carbide}\\
482 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
483 $a=\unit[4.359]{\\A}$\\
484 $\rho^*_{\text{Si}}=\unit[97]{\%}$
485  \end{minipage}
486 }
487  \end{minipage}
488  }
489  \hspace{0.1cm}
490  \begin{minipage}{4.1cm}
491  \begin{center}
492  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
493  \end{center}
494  \end{minipage}
495  \hspace{0.1cm}
496  \begin{minipage}{4.0cm}
497  \begin{center}
498  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
499  \end{center}
500  \end{minipage}
501
502  \vspace{0.1cm}
503
504  \begin{minipage}{4.0cm}
505  \begin{center}
506  C-Si dimers (dumbbells)\\[-0.1cm]
507  on Si lattice sites
508  \end{center}
509  \end{minipage}
510  \hspace{0.1cm}
511  \begin{minipage}{4.1cm}
512  \begin{center}
513  Agglomeration of C-Si dumbbells\\[-0.1cm]
514  $\Rightarrow$ dark contrasts
515  \end{center}
516  \end{minipage}
517  \hspace{0.1cm}
518  \begin{minipage}{4.0cm}
519  \begin{center}
520  Precipitation of 3C-SiC in Si\\[-0.1cm]
521  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
522  \& release of Si self-interstitials
523  \end{center}
524  \end{minipage}
525
526  \vspace{0.1cm}
527
528  \begin{minipage}{4.0cm}
529  \begin{center}
530  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
531  \end{center}
532  \end{minipage}
533  \hspace{0.1cm}
534  \begin{minipage}{4.1cm}
535  \begin{center}
536  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
537  \end{center}
538  \end{minipage}
539  \hspace{0.1cm}
540  \begin{minipage}{4.0cm}
541  \begin{center}
542  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
543  \end{center}
544  \end{minipage}
545
546 \begin{pspicture}(0,0)(0,0)
547 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
548 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
549 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
550 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
551 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
552  $4a_{\text{Si}}=5a_{\text{SiC}}$
553  }}}
554 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
555 \hkl(h k l) planes match
556  }}}
557 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
558 r = \unit[2--4]{nm}
559  }}}
560 \end{pspicture}
561
562 \end{slide}
563
564 \begin{slide}
565
566 \headphd
567 {\large\bf
568  Supposed precipitation mechanism of SiC in Si
569 }
570
571  \scriptsize
572
573  \vspace{0.1cm}
574
575  \framebox{
576  \begin{minipage}{3.6cm}
577  \begin{center}
578  Si \& SiC lattice structure\\[0.1cm]
579  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
580  \end{center}
581 {\tiny
582  \begin{minipage}{1.7cm}
583 \underline{Silicon}\\
584 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
585 $a=\unit[5.429]{\\A}$\\
586 $\rho^*_{\text{Si}}=\unit[100]{\%}$
587  \end{minipage}
588  \begin{minipage}{1.7cm}
589 \underline{Silicon carbide}\\
590 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
591 $a=\unit[4.359]{\\A}$\\
592 $\rho^*_{\text{Si}}=\unit[97]{\%}$
593  \end{minipage}
594 }
595  \end{minipage}
596  }
597  \hspace{0.1cm}
598  \begin{minipage}{4.1cm}
599  \begin{center}
600  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
601  \end{center}
602  \end{minipage}
603  \hspace{0.1cm}
604  \begin{minipage}{4.0cm}
605  \begin{center}
606  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
607  \end{center}
608  \end{minipage}
609
610  \vspace{0.1cm}
611
612  \begin{minipage}{4.0cm}
613  \begin{center}
614  C-Si dimers (dumbbells)\\[-0.1cm]
615  on Si interstitial sites
616  \end{center}
617  \end{minipage}
618  \hspace{0.1cm}
619  \begin{minipage}{4.1cm}
620  \begin{center}
621  Agglomeration of C-Si dumbbells\\[-0.1cm]
622  $\Rightarrow$ dark contrasts
623  \end{center}
624  \end{minipage}
625  \hspace{0.1cm}
626  \begin{minipage}{4.0cm}
627  \begin{center}
628  Precipitation of 3C-SiC in Si\\[-0.1cm]
629  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
630  \& release of Si self-interstitials
631  \end{center}
632  \end{minipage}
633
634  \vspace{0.1cm}
635
636  \begin{minipage}{4.0cm}
637  \begin{center}
638  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
639  \end{center}
640  \end{minipage}
641  \hspace{0.1cm}
642  \begin{minipage}{4.1cm}
643  \begin{center}
644  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
645  \end{center}
646  \end{minipage}
647  \hspace{0.1cm}
648  \begin{minipage}{4.0cm}
649  \begin{center}
650  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
651  \end{center}
652  \end{minipage}
653
654 \begin{pspicture}(0,0)(0,0)
655 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
656 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
657 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
658 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
659 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
660  $4a_{\text{Si}}=5a_{\text{SiC}}$
661  }}}
662 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
663 \hkl(h k l) planes match
664  }}}
665 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
666 r = \unit[2--4]{nm}
667  }}}
668 % controversial view!
669 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
670 \begin{minipage}{14cm}
671 \hfill
672 \vspace{12cm}
673 \end{minipage}
674 }}
675 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
676 \begin{minipage}{10cm}
677 \small
678 \vspace*{0.2cm}
679 \begin{center}
680 {\color{gray}\bf Controversial findings}
681 \end{center}
682 \begin{itemize}
683 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
684  \begin{itemize}
685   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
686   \item \si{} reacting with further C in cleared volume
687  \end{itemize}
688 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
689  \begin{itemize}
690   \item Room temperature implantation $\rightarrow$ high C diffusion
691   \item Elevated temperature implantation $\rightarrow$ no C redistribution
692  \end{itemize}
693  $\Rightarrow$ mobile {\color{red}\ci} opposed to
694  stable {\color{blue}\cs{}} configurations
695 \item Strained silicon \& Si/SiC heterostructures
696       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
697  \begin{itemize}
698   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
699   \item Incoherent SiC (strain relaxation)
700  \end{itemize}
701 \end{itemize}
702 \vspace{0.1cm}
703 \begin{center}
704 {\Huge${\lightning}$} \hspace{0.3cm}
705 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
706 {\Huge${\lightning}$}
707 \end{center}
708 \vspace{0.2cm}
709 \end{minipage}
710  }}}
711 \end{pspicture}
712
713 \end{slide}
714
715 \begin{slide}
716
717 \headphd
718 {\large\bf
719  Outline
720 }
721
722  \begin{itemize}
723   {\color{gray}
724   \item Introduction / Motivation
725   \item Assumed SiC precipitation mechanisms / Controversy
726   }
727   \item Utilized simulation techniques
728         \begin{itemize}
729          \item Molecular dynamics (MD) simulations
730          \item Density functional theory (DFT) calculations
731         \end{itemize}
732   \item Simulation results
733         \begin{itemize}
734          \item C and Si self-interstitial point defects in silicon
735          \item Silicon carbide precipitation simulations
736         \end{itemize}
737   \item Summary / Conclusion
738  \end{itemize}
739
740 \end{slide}
741
742 \begin{slide}
743
744 \headphd
745 {\large\bf
746  Utilized computational methods
747 }
748
749 \vspace{0.3cm}
750
751 \small
752
753 {\bf Molecular dynamics (MD)}\\[0.1cm]
754 \scriptsize
755 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
756 \hline
757 System of $N$ particles &
758 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
759 Phase space propagation &
760 Velocity Verlet | timestep: \unit[1]{fs} \\
761 Analytical interaction potential &
762 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
763 (Erhart/Albe)
764 $\displaystyle
765 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
766     \pot_{ij} = {\color{red}f_C(r_{ij})}
767     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
768 $\\
769 Observables: time/ensemble averages &
770 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
771 \hline
772 \end{tabular}
773
774 \small
775
776 \vspace{0.3cm}
777
778 {\bf Density functional theory (DFT)}
779
780 \scriptsize
781
782 \begin{minipage}[t]{6cm}
783 \begin{itemize}
784  \item Hohenberg-Kohn theorem:\\
785        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
786  \item Kohn-Sham approach:\\
787        Single-particle effective theory
788 \end{itemize}
789 \hrule
790 \begin{itemize}
791 \item Code: \textsc{vasp}
792 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
793 %$\displaystyle
794 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
795 %$\\
796 %$\displaystyle
797 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
798 %$
799 \item Ultrasoft pseudopotential
800 \item Exchange \& correlation: GGA
801 \item Brillouin zone sampling: $\Gamma$-point
802 \item Supercell: $N=216\pm2$
803 \end{itemize}
804 \end{minipage}
805 \begin{minipage}{6cm}
806 \begin{pspicture}(0,0)(0,0)
807 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
808 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
809 $\displaystyle
810 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
811 $
812 }}
813 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
814 $\displaystyle
815 n(r)=\sum_i^N|\Phi_i(r)|^2
816 $
817 }}
818 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
819 $\displaystyle
820 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
821                  +V_{\text{XC}}[n(r)]
822 $
823 }}
824 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
825 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
826 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
827
828 \end{pspicture}
829 \end{minipage}
830
831 \end{slide}
832
833 \begin{slide}
834
835 \headphd
836  {\large\bf
837   Point defects \& defect migration
838  }
839
840  \small
841
842  \vspace{0.2cm}
843
844 \begin{minipage}[b]{7.5cm}
845 {\bf Defect structure}\\
846   \begin{pspicture}(0,0)(7,4.4)
847   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
848    \parbox{7cm}{
849    \begin{itemize}
850     \item Creation of c-Si simulation volume
851     \item Periodic boundary conditions
852     \item $T=0\text{ K}$, $p=0\text{ bar}$
853    \end{itemize}
854   }}}}
855 \rput(3.5,1.3){\rnode{insert}{\psframebox{
856  \parbox{7cm}{
857   \begin{center}
858   Insertion of interstitial C/Si atoms
859   \end{center}
860   }}}}
861   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
862    \parbox{7cm}{
863    \begin{center}
864    Relaxation / structural energy minimization
865    \end{center}
866   }}}}
867   \ncline[]{->}{init}{insert}
868   \ncline[]{->}{insert}{cool}
869  \end{pspicture}
870 \end{minipage}
871 \begin{minipage}[b]{4.5cm}
872 \begin{center}
873 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
874 \end{center}
875 \begin{minipage}{2.21cm}
876 {\scriptsize
877 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
878 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
879 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
880 }
881 \end{minipage}
882 \begin{minipage}{2.21cm}
883 {\scriptsize
884 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
885 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
886 {\color{black}$\bullet$} Vac. / Sub.
887 }
888 \end{minipage}
889 \end{minipage}
890
891 \vspace{0.2cm}
892
893 \begin{minipage}[b]{6cm}
894 {\bf Defect formation energy}\\
895 \framebox{
896 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
897 Particle reservoir: Si \& SiC\\[0.2cm]
898 {\bf Binding energy}\\
899 \framebox{
900 $
901 E_{\text{b}}=
902 E_{\text{f}}^{\text{comb}}-
903 E_{\text{f}}^{1^{\text{st}}}-
904 E_{\text{f}}^{2^{\text{nd}}}
905 $
906 }\\[0.1cm]
907 \footnotesize
908 $E_{\text{b}}<0$: energetically favorable configuration\\
909 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
910 \end{minipage}
911 \begin{minipage}[b]{6cm}
912 {\bf Migration barrier}
913 \footnotesize
914 \begin{itemize}
915  \item Displace diffusing atom
916  \item Constrain relaxation of (diffusing) atoms
917  \item Record configurational energy
918 \end{itemize}
919 \begin{picture}(0,0)(-60,-33)
920 \includegraphics[width=4.5cm]{crt_mod.eps}
921 \end{picture}
922 \end{minipage}
923
924 \end{slide}
925
926 \begin{slide}
927
928 \footnotesize
929
930 \headphd
931 {\large\bf
932  Si self-interstitial point defects in silicon\\[0.1cm]
933 }
934
935 \begin{center}
936 \begin{tabular}{l c c c c c}
937 \hline
938  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
939 \hline
940  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
941  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
942 \hline
943 \end{tabular}\\[0.4cm]
944 \end{center}
945
946 \begin{minipage}{3cm}
947 \begin{center}
948 \underline{Vacancy}\\
949 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
950 \end{center}
951 \end{minipage}
952 \begin{minipage}{3cm}
953 \begin{center}
954 \underline{\hkl<1 1 0> DB}\\
955 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
956 \end{center}
957 \end{minipage}
958 \begin{minipage}{3cm}
959 \begin{center}
960 \underline{\hkl<1 0 0> DB}\\
961 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
962 \end{center}
963 \end{minipage}
964 \begin{minipage}{3cm}
965 \begin{center}
966 \underline{Tetrahedral}\\
967 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
968 \end{center}
969 \end{minipage}\\
970
971 \underline{Hexagonal} \hspace{2pt}
972 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
973 \framebox{
974 \begin{minipage}{2.7cm}
975 $E_{\text{f}}^*=4.48\text{ eV}$\\
976 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
977 \end{minipage}
978 \begin{minipage}{0.4cm}
979 \begin{center}
980 $\Rightarrow$
981 \end{center}
982 \end{minipage}
983 \begin{minipage}{2.7cm}
984 $E_{\text{f}}=3.96\text{ eV}$\\
985 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
986 \end{minipage}
987 }
988 \begin{minipage}{5.5cm}
989 \begin{center}
990 {\tiny nearly T $\rightarrow$ T}\\
991 \end{center}
992 \includegraphics[width=6.0cm]{nhex_tet.ps}
993 \end{minipage}
994
995 \end{slide}
996
997 \begin{slide}
998
999 \footnotesize
1000
1001 \headphd
1002 {\large\bf
1003  C interstitial point defects in silicon\\
1004 }
1005
1006 \begin{tabular}{l c c c c c c r}
1007 \hline
1008  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
1009  {\color{black} \cs{} \& \si}\\
1010 \hline
1011  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1012  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1013 \hline
1014 \end{tabular}\\[0.1cm]
1015
1016 \framebox{
1017 \begin{minipage}{2.8cm}
1018 \underline{Hexagonal} \hspace{2pt}
1019 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1020 $E_{\text{f}}^*=9.05\text{ eV}$\\
1021 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
1022 \end{minipage}
1023 \begin{minipage}{0.4cm}
1024 \begin{center}
1025 $\Rightarrow$
1026 \end{center}
1027 \end{minipage}
1028 \begin{minipage}{2.8cm}
1029 \underline{\hkl<1 0 0>}\\
1030 $E_{\text{f}}=3.88\text{ eV}$\\
1031 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
1032 \end{minipage}
1033 }
1034 \begin{minipage}{1.4cm}
1035 \hfill
1036 \end{minipage}
1037 \begin{minipage}{3.0cm}
1038 \begin{flushright}
1039 \underline{Tetrahedral}\\
1040 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
1041 \end{flushright}
1042 \end{minipage}
1043
1044 \framebox{
1045 \begin{minipage}{2.8cm}
1046 \underline{Bond-centered}\\
1047 $E_{\text{f}}^*=5.59\text{ eV}$\\
1048 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1049 \end{minipage}
1050 \begin{minipage}{0.4cm}
1051 \begin{center}
1052 $\Rightarrow$
1053 \end{center}
1054 \end{minipage}
1055 \begin{minipage}{2.8cm}
1056 \underline{\hkl<1 1 0> dumbbell}\\
1057 $E_{\text{f}}=5.18\text{ eV}$\\
1058 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1059 \end{minipage}
1060 }
1061 \begin{minipage}{1.4cm}
1062 \hfill
1063 \end{minipage}
1064 \begin{minipage}{3.0cm}
1065 \begin{flushright}
1066 \underline{Substitutional}\\
1067 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1068 \end{flushright}
1069 \end{minipage}
1070
1071 \end{slide}
1072
1073 \begin{slide}
1074
1075 \headphd
1076 {\large\bf\boldmath
1077  C-Si dimer \& bond-centered interstitial configuration
1078 }
1079
1080 \footnotesize
1081
1082 \vspace{0.1cm}
1083
1084 \begin{minipage}[t]{4.1cm}
1085 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1086 \begin{minipage}{2.0cm}
1087 \begin{center}
1088 \underline{Erhart/Albe}
1089 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1090 \end{center}
1091 \end{minipage}
1092 \begin{minipage}{2.0cm}
1093 \begin{center}
1094 \underline{\textsc{vasp}}
1095 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1096 \end{center}
1097 \end{minipage}\\[0.2cm]
1098 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1099 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1100 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1101 $\Rightarrow$ $sp^2$ hybridization
1102 \begin{center}
1103 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1104 {\tiny Charge density isosurface}
1105 \end{center}
1106 \end{minipage}
1107 \begin{minipage}{0.2cm}
1108 \hfill
1109 \end{minipage}
1110 \begin{minipage}[t]{8.1cm}
1111 \begin{flushright}
1112 {\bf Bond-centered interstitial}\\[0.1cm]
1113 \begin{minipage}{4.4cm}
1114 %\scriptsize
1115 \begin{itemize}
1116  \item Linear Si-C-Si bond
1117  \item Si: one C \& 3 Si neighbours
1118  \item Spin polarized calculations
1119  \item No saddle point!\\
1120        Real local minimum!
1121 \end{itemize}
1122 \end{minipage}
1123 \begin{minipage}{2.7cm}
1124 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1125 \vspace{0.2cm}
1126 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1127 \end{minipage}
1128
1129 \framebox{
1130  \tiny
1131  \begin{minipage}[t]{6.5cm}
1132   \begin{minipage}[t]{1.2cm}
1133   {\color{red}Si}\\
1134   {\tiny sp$^3$}\\[0.8cm]
1135   \underline{${\color{black}\uparrow}$}
1136   \underline{${\color{black}\uparrow}$}
1137   \underline{${\color{black}\uparrow}$}
1138   \underline{${\color{red}\uparrow}$}\\
1139   sp$^3$
1140   \end{minipage}
1141   \begin{minipage}[t]{1.4cm}
1142   \begin{center}
1143   {\color{red}M}{\color{blue}O}\\[0.8cm]
1144   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1145   $\sigma_{\text{ab}}$\\[0.5cm]
1146   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1147   $\sigma_{\text{b}}$
1148   \end{center}
1149   \end{minipage}
1150   \begin{minipage}[t]{1.0cm}
1151   \begin{center}
1152   {\color{blue}C}\\
1153   {\tiny sp}\\[0.2cm]
1154   \underline{${\color{white}\uparrow\uparrow}$}
1155   \underline{${\color{white}\uparrow\uparrow}$}\\
1156   2p\\[0.4cm]
1157   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1158   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1159   sp
1160   \end{center}
1161   \end{minipage}
1162   \begin{minipage}[t]{1.4cm}
1163   \begin{center}
1164   {\color{blue}M}{\color{green}O}\\[0.8cm]
1165   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1166   $\sigma_{\text{ab}}$\\[0.5cm]
1167   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1168   $\sigma_{\text{b}}$
1169   \end{center}
1170   \end{minipage}
1171   \begin{minipage}[t]{1.2cm}
1172   \begin{flushright}
1173   {\color{green}Si}\\
1174   {\tiny sp$^3$}\\[0.8cm]
1175   \underline{${\color{green}\uparrow}$}
1176   \underline{${\color{black}\uparrow}$}
1177   \underline{${\color{black}\uparrow}$}
1178   \underline{${\color{black}\uparrow}$}\\
1179   sp$^3$
1180   \end{flushright}
1181   \end{minipage}
1182  \end{minipage}
1183 }\\[0.4cm]
1184
1185 %\framebox{
1186 \begin{minipage}{3.0cm}
1187 %\scriptsize
1188 \underline{Charge density}\\
1189 {\color{gray}$\bullet$} Spin up\\
1190 {\color{green}$\bullet$} Spin down\\
1191 {\color{blue}$\bullet$} Resulting spin up\\
1192 {\color{yellow}$\bullet$} Si atoms\\
1193 {\color{red}$\bullet$} C atom
1194 \end{minipage}
1195 \begin{minipage}{3.6cm}
1196 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1197 \end{minipage}
1198 %}
1199
1200 \end{flushright}
1201
1202 \end{minipage}
1203 \begin{pspicture}(0,0)(0,0)
1204 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1205 \end{pspicture}
1206
1207 \end{slide}
1208
1209 \begin{slide}
1210
1211 \headphd
1212 {\large\bf\boldmath
1213  C interstitial migration --- ab initio
1214 }
1215
1216 \scriptsize
1217
1218 \vspace{0.1cm}
1219
1220 \begin{minipage}{6.8cm}
1221 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1222 \begin{minipage}{2.0cm}
1223 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1224 \end{minipage}
1225 \begin{minipage}{0.2cm}
1226 $\rightarrow$
1227 \end{minipage}
1228 \begin{minipage}{2.0cm}
1229 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1230 \end{minipage}
1231 \begin{minipage}{0.2cm}
1232 $\rightarrow$
1233 \end{minipage}
1234 \begin{minipage}{2.0cm}
1235 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1236 \end{minipage}\\[0.1cm]
1237 Spin polarization\\
1238 $\Rightarrow$ BC configuration constitutes local minimum\\
1239 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1240 \end{minipage}
1241 \begin{minipage}{5.4cm}
1242 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1243 \end{minipage}\\[0.2cm]
1244 %\hrule
1245 %
1246 \begin{minipage}{6.8cm}
1247 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1248 \begin{minipage}{2.0cm}
1249 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1250 \end{minipage}
1251 \begin{minipage}{0.2cm}
1252 $\rightarrow$
1253 \end{minipage}
1254 \begin{minipage}{2.0cm}
1255 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1256 \end{minipage}
1257 \begin{minipage}{0.2cm}
1258 $\rightarrow$
1259 \end{minipage}
1260 \begin{minipage}{2.0cm}
1261 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1262 \end{minipage}\\[0.1cm]
1263 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1264 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1265 Note: Change in orientation
1266 \end{minipage}
1267 \begin{minipage}{5.4cm}
1268 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1269 \end{minipage}\\[0.1cm]
1270 %
1271 \begin{center}
1272 Reorientation pathway composed of two consecutive processes of the above type
1273 \end{center}
1274
1275 \end{slide}
1276
1277 \begin{slide}
1278
1279 \headphd
1280 {\large\bf\boldmath
1281  C interstitial migration --- analytical potential
1282 }
1283
1284 \scriptsize
1285
1286 \vspace{0.3cm}
1287
1288 \begin{minipage}[t]{6.0cm}
1289 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1290 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1291 \begin{itemize}
1292  \item Lowermost migration barrier
1293  \item $\Delta E \approx \unit[2.2]{eV}$
1294  \item 2.4 times higher than ab initio result
1295  \item Different pathway
1296 \end{itemize}
1297 \end{minipage}
1298 \begin{minipage}[t]{0.2cm}
1299 \hfill
1300 \end{minipage}
1301 \begin{minipage}[t]{6.0cm}
1302 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1303 \vspace{0.1cm}
1304 \begin{itemize}
1305  \item Bond-centered configuration unstable\\
1306        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1307  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1308        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1309 \end{itemize}
1310 \vspace{0.1cm}
1311 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1312 \begin{itemize}
1313  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1314  \item 2.4 -- 3.4 times higher than ab initio result
1315  \item After all: Change of the DB orientation
1316 \end{itemize}
1317 \end{minipage}
1318
1319 \vspace{0.5cm}
1320 \begin{center}
1321 {\color{red}\bf Drastically overestimated diffusion barrier}
1322 \end{center}
1323
1324 \begin{pspicture}(0,0)(0,0)
1325 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1326 \end{pspicture}
1327
1328 \end{slide}
1329
1330 \begin{slide}
1331
1332 \headphd
1333 {\large\bf\boldmath
1334  Defect combinations
1335 }
1336
1337 \footnotesize
1338
1339 \vspace{0.3cm}
1340
1341 \begin{minipage}{9cm}
1342 {\bf
1343  Summary of combinations}\\[0.1cm]
1344 {\scriptsize
1345 \begin{tabular}{l c c c c c c}
1346 \hline
1347  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1348  \hline
1349  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1350  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1351  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1352  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1353  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1354  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1355  \hline
1356  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1357  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1358 \hline
1359 \end{tabular}
1360 }
1361 \vspace{0.2cm}
1362 \begin{center}
1363 {\color{blue}
1364  $E_{\text{b}}$ explainable by stress compensation / increase
1365 }
1366 \end{center}
1367 \end{minipage}
1368 \begin{minipage}{3cm}
1369 \includegraphics[width=3.5cm]{comb_pos.eps}
1370 \end{minipage}
1371
1372 \vspace{0.2cm}
1373
1374 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1375 \begin{minipage}[t]{3.2cm}
1376 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1377 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1378 \end{minipage}
1379 \begin{minipage}[t]{3.0cm}
1380 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1381 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1382 \end{minipage}
1383 \begin{minipage}[t]{6.1cm}
1384 \vspace{0.7cm}
1385 \begin{itemize}
1386  \item \ci{} agglomeration energetically favorable
1387  \item Most favorable: C clustering\\
1388        {\color{red}However \ldots}\\
1389         \ldots high migration barrier ($>4\,\text{eV}$)\\
1390         \ldots entropy:
1391         $4\times{\color{cyan}[-2.25]}$ versus
1392         $2\times{\color{orange}[-2.39]}$
1393 \end{itemize}
1394 \begin{center}
1395 {\color{blue}\ci{} agglomeration / no C clustering}
1396 \end{center}
1397 \end{minipage}
1398
1399 \end{slide}
1400
1401 \begin{slide}
1402
1403 \headphd
1404 {\large\bf\boldmath
1405  Defect combinations
1406 }
1407
1408 \footnotesize
1409
1410 \vspace{0.3cm}
1411
1412 \begin{minipage}{9cm}
1413 {\bf
1414  Summary of combinations}\\[0.1cm]
1415 {\scriptsize
1416 \begin{tabular}{l c c c c c c}
1417 \hline
1418  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1419  \hline
1420  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1421  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1422  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1423  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1424  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1425  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1426  \hline
1427  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1428  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1429 \hline
1430 \end{tabular}
1431 }
1432 \vspace{0.2cm}
1433 \begin{center}
1434 {\color{blue}
1435  $E_{\text{b}}$ explainable by stress compensation / increase
1436 }
1437 \end{center}
1438 \end{minipage}
1439 \begin{minipage}{3cm}
1440 \includegraphics[width=3.5cm]{comb_pos.eps}
1441 \end{minipage}
1442
1443 \vspace{0.2cm}
1444
1445 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1446 \begin{minipage}[t]{3.2cm}
1447 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1448 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1449 \end{minipage}
1450 \begin{minipage}[t]{3.0cm}
1451 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1452 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1453 \end{minipage}
1454 \begin{minipage}[t]{6.1cm}
1455 \vspace{0.7cm}
1456 \begin{itemize}
1457  \item \ci{} agglomeration energetically favorable
1458  \item Most favorable: C clustering\\
1459        {\color{red}However \ldots}\\
1460         \ldots high migration barrier ($>4\,\text{eV}$)\\
1461         \ldots entropy:
1462         $4\times{\color{cyan}[-2.25]}$ versus
1463         $2\times{\color{orange}[-2.39]}$
1464 \end{itemize}
1465 \begin{center}
1466 {\color{blue}\ci{} agglomeration / no C clustering}
1467 \end{center}
1468 \end{minipage}
1469
1470 % insert graph ...
1471 \begin{pspicture}(0,0)(0,0)
1472 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1473 \begin{minipage}{14cm}
1474 \hfill
1475 \vspace{12cm}
1476 \end{minipage}
1477 }}
1478 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1479 \begin{minipage}{8cm}
1480 \begin{center}
1481 \vspace{0.2cm}
1482 \scriptsize
1483 Interaction along \hkl[1 1 0]
1484 \includegraphics[width=7cm]{db_along_110_cc.ps}
1485 \end{center}
1486 \end{minipage}
1487 }}}
1488 \end{pspicture}
1489
1490 \end{slide}
1491
1492 \begin{slide}
1493
1494 \headphd
1495 {\large\bf
1496  Defect combinations of C-Si dimers and vacancies
1497 }
1498 \footnotesize
1499
1500 \vspace{0.2cm}
1501
1502 \begin{minipage}[b]{2.6cm}
1503 \begin{flushleft}
1504 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1505 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1506 \end{flushleft}
1507 \end{minipage}
1508 \begin{minipage}[b]{7cm}
1509 \hfill
1510 \end{minipage}
1511 \begin{minipage}[b]{2.6cm}
1512 \begin{flushright}
1513 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1514 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1515 \end{flushright}
1516 \end{minipage}\\[0.2cm]
1517
1518 \begin{minipage}{6.5cm}
1519 \includegraphics[width=6.0cm]{059-539.ps}
1520 \end{minipage}
1521 \begin{minipage}{5.7cm}
1522 \includegraphics[width=6.0cm]{314-539.ps}
1523 \end{minipage}
1524
1525 \begin{pspicture}(0,0)(0,0)
1526 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1527
1528 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1529 \begin{minipage}{6.5cm}
1530 \begin{center}
1531 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1532 Low migration barrier towards C$_{\text{sub}}$\\
1533 \&\\
1534 High barrier for reverse process\\[0.3cm]
1535 {\color{blue}
1536 High probability of stable C$_{\text{sub}}$ configuration
1537 }
1538 \end{center}
1539 \end{minipage}
1540 }}}
1541 \end{pspicture}
1542
1543 \end{slide}
1544
1545 \begin{slide}
1546
1547 \headphd
1548 {\large\bf
1549  Combinations of substitutional C and Si self-interstitials
1550 }
1551
1552 \scriptsize
1553
1554 \vspace{0.3cm}
1555
1556 \begin{minipage}{6.2cm}
1557 \begin{center}
1558 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1559 \begin{itemize}
1560  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1561  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1562  \item Interaction drops quickly to zero\\
1563        $\rightarrow$ low capture radius
1564 \end{itemize}
1565 \end{center}
1566 \end{minipage}
1567 \begin{minipage}{0.2cm}
1568 \hfill
1569 \end{minipage}
1570 \begin{minipage}{6.0cm}
1571 \begin{center}
1572 {\bf Transition from the ground state}
1573 \begin{itemize}
1574  \item Low transition barrier
1575  \item Barrier smaller than \ci{} migration barrier
1576  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1577        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1578 \end{itemize}
1579 \end{center}
1580 \end{minipage}\\[0.3cm]
1581
1582 \begin{minipage}{6.0cm}
1583 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1584 \end{minipage}
1585 \begin{minipage}{0.4cm}
1586 \hfill
1587 \end{minipage}
1588 \begin{minipage}{6.0cm}
1589 \begin{flushright}
1590 \includegraphics[width=6.0cm]{162-097.ps}
1591 \end{flushright}
1592 \end{minipage}
1593
1594 \begin{pspicture}(0,0)(0,0)
1595 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1596 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1597 \begin{minipage}{8cm}
1598 \begin{center}
1599 \vspace{0.1cm}
1600 {\color{black}
1601 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1602 IBS --- process far from equilibrium\\
1603 }
1604 \end{center}
1605 \end{minipage}
1606 }}}
1607 \end{pspicture}
1608
1609 \end{slide}
1610
1611 \begin{slide}
1612
1613 \headphd
1614 {\large\bf
1615  Combinations of substitutional C and Si self-interstitials
1616 }
1617
1618 \scriptsize
1619
1620 \vspace{0.3cm}
1621
1622 \begin{minipage}{6.2cm}
1623 \begin{center}
1624 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1625 \begin{itemize}
1626  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1627  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1628  \item Interaction drops quickly to zero\\
1629        $\rightarrow$ low capture radius
1630 \end{itemize}
1631 \end{center}
1632 \end{minipage}
1633 \begin{minipage}{0.2cm}
1634 \hfill
1635 \end{minipage}
1636 \begin{minipage}{6.0cm}
1637 \begin{center}
1638 {\bf Transition from the ground state}
1639 \begin{itemize}
1640  \item Low transition barrier
1641  \item Barrier smaller than \ci{} migration barrier
1642  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1643        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1644 \end{itemize}
1645 \end{center}
1646 \end{minipage}\\[0.3cm]
1647
1648 \begin{minipage}{6.0cm}
1649 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1650 \end{minipage}
1651 \begin{minipage}{0.4cm}
1652 \hfill
1653 \end{minipage}
1654 \begin{minipage}{6.0cm}
1655 \begin{flushright}
1656 \includegraphics[width=6.0cm]{162-097.ps}
1657 \end{flushright}
1658 \end{minipage}
1659
1660 \begin{pspicture}(0,0)(0,0)
1661 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1662 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1663 \begin{minipage}{8cm}
1664 \begin{center}
1665 \vspace{0.1cm}
1666 {\color{black}
1667 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1668 IBS --- process far from equilibrium\\
1669 }
1670 \end{center}
1671 \end{minipage}
1672 }}}
1673 \end{pspicture}
1674
1675 % md support
1676 \begin{pspicture}(0,0)(0,0)
1677 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1678 \begin{minipage}{14cm}
1679 \hfill
1680 \vspace{14cm}
1681 \end{minipage}
1682 }}
1683 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1684 \begin{minipage}{11cm}
1685 \begin{center}
1686 \vspace{0.2cm}
1687 \scriptsize
1688 Ab initio MD at \degc{900}\\[0.4cm]
1689 \begin{minipage}{5.4cm}
1690 \centering
1691 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1692 $t=\unit[2230]{fs}$
1693 \end{minipage}
1694 \begin{minipage}{5.4cm}
1695 \centering
1696 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1697 $t=\unit[2900]{fs}$
1698 \end{minipage}\\[0.5cm]
1699 {\color{blue}
1700 Contribution of entropy to structural formation\\[0.1cm]
1701 }
1702 \end{center}
1703 \end{minipage}
1704 }}}
1705 \end{pspicture}
1706
1707 \end{slide}
1708
1709 \begin{slide}
1710
1711 \headphd
1712 {\large\bf
1713  Silicon carbide precipitation simulations
1714 }
1715
1716 \small
1717
1718 \vspace{0.2cm}
1719
1720 {\bf Procedure}
1721
1722 {\scriptsize
1723  \begin{pspicture}(0,0)(12,6.5)
1724   % nodes
1725   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1726    \parbox{7cm}{
1727    \begin{itemize}
1728     \item Create c-Si volume
1729     \item Periodc boundary conditions
1730     \item Set requested $T$ and $p=0\text{ bar}$
1731     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1732    \end{itemize}
1733   }}}}
1734   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1735    \parbox{7cm}{
1736    Insertion of C atoms at constant T
1737    \begin{itemize}
1738     \item total simulation volume {\pnode{in1}}
1739     \item volume of minimal SiC precipitate size {\pnode{in2}}
1740     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1741           precipitate
1742    \end{itemize} 
1743   }}}}
1744   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1745    \parbox{7.0cm}{
1746    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1747   }}}}
1748   \ncline[]{->}{init}{insert}
1749   \ncline[]{->}{insert}{cool}
1750   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1751   \rput(7.6,6){\footnotesize $V_1$}
1752   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1753   \rput(8.9,4.85){\tiny $V_2$}
1754   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1755   \rput(9.25,4.45){\footnotesize $V_3$}
1756   \rput(7.9,3.2){\pnode{ins1}}
1757   \rput(8.92,2.8){\pnode{ins2}}
1758   \rput(10.8,2.4){\pnode{ins3}}
1759   \ncline[]{->}{in1}{ins1}
1760   \ncline[]{->}{in2}{ins2}
1761   \ncline[]{->}{in3}{ins3}
1762  \end{pspicture}
1763 }
1764
1765 \vspace{-0.5cm}
1766
1767 {\bf Note}
1768
1769 \footnotesize
1770
1771 \begin{minipage}{5.7cm}
1772 \begin{itemize}
1773  \item Amount of C atoms: 6000\\
1774        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1775  \item Simulation volume: $31^3$ Si unit cells\\
1776        (238328 Si atoms)
1777 \end{itemize}
1778 \end{minipage}
1779 \begin{minipage}{0.3cm}
1780 \hfill
1781 \end{minipage}
1782 \framebox{
1783 \begin{minipage}{6.0cm}
1784 Restricted to classical potential caclulations\\
1785 $\rightarrow$ Low C diffusion / overestimated barrier\\
1786 $\rightarrow$ Consider $V_2$ and $V_3$
1787 %\begin{itemize}
1788 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1789 %\end{itemize}
1790 \end{minipage}
1791 }
1792
1793 \end{slide}
1794
1795 \begin{slide}
1796
1797 \headphd
1798 {\large\bf\boldmath
1799  Silicon carbide precipitation simulations at \degc{450} as in IBS
1800 }
1801
1802 \small
1803
1804 \begin{minipage}{6.3cm}
1805 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1806 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1807 \hfill
1808 \end{minipage} 
1809 \begin{minipage}{6.1cm}
1810 \scriptsize
1811 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1812 \hkl<1 0 0> C-Si dumbbell dominated structure
1813 \begin{itemize}
1814  \item Si-C bumbs around \unit[0.19]{nm}
1815  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1816        concatenated differently oriented \ci{} DBs
1817  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1818 \end{itemize}
1819 \begin{pspicture}(0,0)(6.0,1.0)
1820 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1821 \begin{minipage}{6cm}
1822 \centering
1823 Formation of \ci{} dumbbells\\
1824 C atoms in proper 3C-SiC distance first
1825 \end{minipage}
1826 }}
1827 \end{pspicture}\\[0.1cm]
1828 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1829 \begin{itemize}
1830 \item High amount of strongly bound C-C bonds
1831 \item Increased defect \& damage density\\
1832       $\rightarrow$ Arrangements hard to categorize and trace
1833 \item Only short range order observable
1834 \end{itemize}
1835 \begin{pspicture}(0,0)(6.0,0.8)
1836 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1837 \begin{minipage}{6cm}
1838 \centering
1839 Amorphous SiC-like phase
1840 \end{minipage}
1841 }}
1842 \end{pspicture}\\[0.3cm]
1843 \begin{pspicture}(0,0)(6.0,2.0)
1844 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1845 \begin{minipage}{6cm}
1846 \hfill
1847 \vspace{2.5cm}
1848 \end{minipage}
1849 }}
1850 \end{pspicture}
1851 \end{minipage} 
1852
1853 \end{slide}
1854
1855 \begin{slide}
1856
1857 \headphd
1858 {\large\bf\boldmath
1859  Silicon carbide precipitation simulations at \degc{450} as in IBS
1860 }
1861
1862 \small
1863
1864 \begin{minipage}{6.3cm}
1865 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1866 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1867 \hfill
1868 \end{minipage} 
1869 \begin{minipage}{6.1cm}
1870 \scriptsize
1871 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1872 \hkl<1 0 0> C-Si dumbbell dominated structure
1873 \begin{itemize}
1874  \item Si-C bumbs around \unit[0.19]{nm}
1875  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1876        concatenated differently oriented \ci{} DBs
1877  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1878 \end{itemize}
1879 \begin{pspicture}(0,0)(6.0,1.0)
1880 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1881 \begin{minipage}{6cm}
1882 \centering
1883 Formation of \ci{} dumbbells\\
1884 C atoms in proper 3C-SiC distance first
1885 \end{minipage}
1886 }}
1887 \end{pspicture}\\[0.1cm]
1888 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1889 \begin{itemize}
1890 \item High amount of strongly bound C-C bonds
1891 \item Increased defect \& damage density\\
1892       $\rightarrow$ Arrangements hard to categorize and trace
1893 \item Only short range order observable
1894 \end{itemize}
1895 \begin{pspicture}(0,0)(6.0,0.8)
1896 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1897 \begin{minipage}{6cm}
1898 \centering
1899 Amorphous SiC-like phase
1900 \end{minipage}
1901 }}
1902 \end{pspicture}\\[0.3cm]
1903 \begin{pspicture}(0,0)(6.0,2.0)
1904 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1905 \begin{minipage}{6cm}
1906 \vspace{0.1cm}
1907 \centering
1908 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1909 \begin{minipage}{0.8cm}
1910 {\bf\boldmath $V_1$:}
1911 \end{minipage}
1912 \begin{minipage}{5.1cm}
1913 Formation of \ci{} indeed occurs\\
1914 Agllomeration not observed
1915 \end{minipage}\\[0.3cm]
1916 \begin{minipage}{0.8cm}
1917 {\bf\boldmath $V_{2,3}$:}
1918 \end{minipage}
1919 \begin{minipage}{5.1cm}
1920 Amorphous SiC-like structure\\
1921 (not expected at \degc{450})\\[0.05cm]
1922 No rearrangement/transition into 3C-SiC
1923 \end{minipage}\\[0.1cm]
1924 \end{minipage}
1925 }}
1926 \end{pspicture}
1927 \end{minipage} 
1928
1929 \end{slide}
1930
1931 \begin{slide}
1932
1933 \headphd
1934 {\large\bf
1935  Limitations of MD and short range potentials
1936 }
1937
1938 \small
1939
1940 \vspace{0.2cm}
1941
1942 {\bf Time scale problem of MD}\\[0.2cm]
1943 Precise integration \& thermodynamic sampling\\
1944 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1945               $\omega$: vibrational mode\\
1946 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1947 Several local minima separated by large energy barriers\\
1948 $\Rightarrow$ Transition event corresponds to a multiple
1949               of vibrational periods\\
1950 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1951               infrequent transition events\\[0.2cm]
1952 {\color{blue}Accelerated methods:}
1953 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1954
1955 \vspace{0.2cm}
1956
1957 {\bf Limitations related to the short range potential}\\[0.2cm]
1958 Cut-off function limits interaction to next neighbours\\
1959 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1960               (factor: 2.4--3.4)
1961
1962 \vspace{1.4cm}
1963
1964 {\bf Approach to the (twofold) problem}\\[0.2cm]
1965 Increased temperature simulations without TAD corrections\\
1966 Accelerated methods or higher time scales exclusively not sufficient!
1967
1968 \begin{pspicture}(0,0)(0,0)
1969 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1970 \begin{minipage}{7.5cm}
1971 \centering
1972 \vspace{0.05cm}
1973 Potential enhanced slow phase space propagation
1974 \end{minipage}
1975 }}
1976 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1977 \begin{minipage}{2.7cm}
1978 \tiny
1979 \centering
1980 retain proper\\
1981 thermodynamic sampling
1982 \end{minipage}
1983 }}
1984 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1985 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1986 \begin{minipage}{3.6cm}
1987 \tiny
1988 \centering
1989 \underline{IBS}\\[0.1cm]
1990 3C-SiC also observed for higher T\\[0.1cm]
1991 Higher T inside sample\\[0.1cm]
1992 Structural evolution vs.\\
1993 equilibrium properties
1994 \end{minipage}
1995 }}
1996 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1997 \end{pspicture}
1998
1999 \end{slide}
2000
2001 \begin{slide}
2002
2003 \headphd
2004 {\large\bf\boldmath
2005  Increased temperature simulations --- $V_1$
2006 }
2007
2008 \small
2009
2010 \begin{minipage}{6.2cm}
2011 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2012 \hfill
2013 \end{minipage}
2014 \begin{minipage}{6.2cm}
2015 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2016 \end{minipage}
2017
2018 \begin{minipage}{6.2cm}
2019 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2020 \hfill
2021 \end{minipage}
2022 \begin{minipage}{6.3cm}
2023 \scriptsize
2024  \underline{Si-C bonds:}
2025  \begin{itemize}
2026   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2027   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2028  \end{itemize}
2029  \underline{Si-Si bonds:}
2030  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2031  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2032  \underline{C-C bonds:}
2033  \begin{itemize}
2034   \item C-C next neighbour pairs reduced (mandatory)
2035   \item Peak at 0.3 nm slightly shifted
2036         \begin{itemize}
2037          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2038                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2039                combinations (|)\\
2040                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2041                ($\downarrow$)
2042          \item Range [|-$\downarrow$]:
2043                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2044                with nearby Si$_{\text{I}}$}
2045         \end{itemize}
2046  \end{itemize}
2047 \end{minipage}
2048
2049 \end{slide}
2050
2051 \begin{slide}
2052
2053 \headphd
2054 {\large\bf\boldmath
2055  Increased temperature simulations --- $V_1$
2056 }
2057
2058 \small
2059
2060 \begin{minipage}{6.2cm}
2061 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2062 \hfill
2063 \end{minipage}
2064 \begin{minipage}{6.2cm}
2065 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2066 \end{minipage}
2067
2068 \begin{minipage}{6.2cm}
2069 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2070 \hfill
2071 \end{minipage}
2072 \begin{minipage}{6.3cm}
2073 \scriptsize
2074  \underline{Si-C bonds:}
2075  \begin{itemize}
2076   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2077   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2078  \end{itemize}
2079  \underline{Si-Si bonds:}
2080  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2081  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2082  \underline{C-C bonds:}
2083  \begin{itemize}
2084   \item C-C next neighbour pairs reduced (mandatory)
2085   \item Peak at 0.3 nm slightly shifted
2086         \begin{itemize}
2087          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2088                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2089                combinations (|)\\
2090                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2091                ($\downarrow$)
2092          \item Range [|-$\downarrow$]:
2093                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2094                with nearby Si$_{\text{I}}$}
2095         \end{itemize}
2096  \end{itemize}
2097 \end{minipage}
2098
2099 % conclusions
2100 \begin{pspicture}(0,0)(0,0)
2101 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2102 \begin{minipage}{14cm}
2103 \hfill
2104 \vspace{14cm}
2105 \end{minipage}
2106 }}
2107 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2108 \begin{minipage}{9cm}
2109 \vspace{0.2cm}
2110 \small
2111 \begin{center}
2112 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2113 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2114 \end{center}
2115 \begin{itemize}
2116 \item Stretched coherent SiC structures\\
2117 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2118 \item Role of \si{}
2119       \begin{itemize}
2120        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2121        \item Building block for surrounding Si host \& further SiC
2122        \item Strain compensation \ldots\\
2123              \ldots Si/SiC interface\\
2124              \ldots within stretched coherent SiC structure
2125       \end{itemize}
2126 \item Explains annealing behavior of high/low T C implantations
2127       \begin{itemize}
2128        \item Low T: highly mobile {\color{red}\ci}
2129        \item High T: stable configurations of {\color{blue}\cs}
2130       \end{itemize}
2131 \end{itemize}
2132 \vspace{0.2cm}
2133 \centering
2134 \psframebox[linecolor=blue,linewidth=0.05cm]{
2135 \begin{minipage}{7cm}
2136 \centering
2137 Precipitation mechanism involving \cs\\
2138 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2139 \end{minipage}
2140 }
2141 \end{minipage}
2142 \vspace{0.2cm}
2143 }}
2144 \end{pspicture}
2145
2146 \end{slide}
2147
2148 % skip high c conc results
2149 \ifnum1=0
2150
2151 \begin{slide}
2152
2153  {\large\bf
2154   Increased temperature simulations at high C concentration
2155  }
2156
2157 \footnotesize
2158
2159 \begin{minipage}{6.0cm}
2160 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2161 \end{minipage}
2162 \begin{minipage}{6.0cm}
2163 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2164 \end{minipage}
2165
2166 \vspace{0.1cm}
2167
2168 \scriptsize
2169
2170 \framebox{
2171 \begin{minipage}[t]{6.0cm}
2172 0.186 nm: Si-C pairs $\uparrow$\\
2173 (as expected in 3C-SiC)\\[0.2cm]
2174 0.282 nm: Si-C-C\\[0.2cm]
2175 $\approx$0.35 nm: C-Si-Si
2176 \end{minipage}
2177 }
2178 \begin{minipage}{0.2cm}
2179 \hfill
2180 \end{minipage}
2181 \framebox{
2182 \begin{minipage}[t]{6.0cm}
2183 0.15 nm: C-C pairs $\uparrow$\\
2184 (as expected in graphite/diamond)\\[0.2cm]
2185 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2186 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2187 \end{minipage}
2188 }
2189
2190 \begin{itemize}
2191 \item Decreasing cut-off artifact
2192 \item {\color{red}Amorphous} SiC-like phase remains
2193 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2194 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2195 \end{itemize}
2196
2197 \vspace{-0.1cm}
2198
2199 \begin{center}
2200 {\color{blue}
2201 \framebox{
2202 {\color{black}
2203 High C \& small $V$ \& short $t$
2204 $\Rightarrow$
2205 }
2206 Slow restructuring due to strong C-C bonds
2207 {\color{black}
2208 $\Leftarrow$
2209 High C \& low T implants
2210 }
2211 }
2212 }
2213 \end{center}
2214
2215 \end{slide}
2216
2217 % skip high c conc
2218 \fi
2219
2220 % for preparation
2221 %\fi
2222
2223 \begin{slide}
2224
2225 \headphd
2226 {\large\bf
2227  Summary / Conclusions
2228 }
2229
2230 \scriptsize
2231
2232 \framebox{
2233 \begin{minipage}{12.3cm}
2234  \underline{Defects}
2235  \begin{itemize}
2236    \item DFT / EA
2237         \begin{itemize}
2238          \item Point defects excellently / fairly well described
2239                by DFT / EA
2240          \item C$_{\text{sub}}$ drastically underestimated by EA
2241          \item EA predicts correct ground state:
2242                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2243          \item Identified migration path explaining
2244                diffusion and reorientation experiments by DFT
2245          \item EA fails to describe \ci{} migration:
2246                Wrong path \& overestimated barrier
2247         \end{itemize}
2248    \item Combinations of defects
2249          \begin{itemize}
2250           \item Agglomeration of point defects energetically favorable
2251                 by compensation of stress
2252           \item Formation of C-C unlikely
2253           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2254           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2255                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2256         \end{itemize}
2257  \end{itemize}
2258 \end{minipage}
2259 }
2260
2261 \framebox{
2262 \begin{minipage}[t]{12.3cm}
2263  \underline{Pecipitation simulations}
2264  \begin{itemize}
2265   \item High C concentration $\rightarrow$ amorphous SiC like phase
2266   \item Problem of potential enhanced slow phase space propagation
2267   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2268   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2269   \item High T necessary to simulate IBS conditions (far from equilibrium)
2270   \item Precipitation by successive agglomeration of \cs (epitaxy)
2271   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2272         (stretched SiC, interface)
2273  \end{itemize}
2274 \end{minipage}
2275 }
2276
2277 \begin{center}
2278 {\color{blue}
2279 \framebox{Precipitation by successive agglomeration of \cs{}}
2280 }
2281 \end{center}
2282
2283 \end{slide}
2284
2285 \begin{slide}
2286
2287  {\large\bf
2288   Acknowledgements
2289  }
2290
2291  \vspace{0.1cm}
2292
2293  \small
2294
2295  Thanks to \ldots
2296
2297  \underline{Augsburg}
2298  \begin{itemize}
2299   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2300   \item Ralf Utermann (EDV)
2301  \end{itemize}
2302  
2303  \underline{Berlin/Brandenburg}
2304  \begin{itemize}
2305   \item PD Volker Eyert (Ref)
2306  \end{itemize}
2307  
2308  \underline{Helsinki}
2309  \begin{itemize}
2310   \item Prof. K. Nordlund (MD)
2311  \end{itemize}
2312  
2313  \underline{Munich}
2314  \begin{itemize}
2315   \item Bayerische Forschungsstiftung (financial support)
2316  \end{itemize}
2317  
2318  \underline{Paderborn}
2319  \begin{itemize}
2320   \item Prof. J. Lindner (SiC)
2321   \item Prof. G. Schmidt (DFT + financial support)
2322   \item Dr. E. Rauls (DFT + SiC)
2323  \end{itemize}
2324
2325 \begin{center}
2326 \framebox{
2327 \bf Thank you for your attention!
2328 }
2329 \end{center}
2330
2331 \end{slide}
2332
2333 \end{document}
2334