nearly finished
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143 \begin{center}
144
145  \vspace{16pt}
146
147  {\Large\bf
148   \hrule
149   \vspace{5pt}
150   Atomistic simulation study on silicon carbide\\[0.2cm]
151   precipitation in silicon\\
152   \vspace{10pt}
153   \hrule
154  }
155
156  \vspace{60pt}
157
158  \textsc{Frank Zirkelbach}
159
160  \vspace{60pt}
161
162  Defense of doctor's thesis
163
164  \vspace{08pt}
165
166  Augsburg, 10.01.2012
167
168 \end{center}
169 \end{slide}
170
171 % no vertical centering
172 \centerslidesfalse
173
174 % skip for preparation
175 %\ifnum1=0
176
177 % intro
178
179 % motivation / properties / applications of silicon carbide
180
181 \begin{slide}
182
183 \vspace*{1.8cm}
184
185 \small
186
187 \begin{pspicture}(0,0)(13.5,5)
188
189  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
190
191  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
193
194  \rput[lt](0,4.6){\color{gray}PROPERTIES}
195
196  \rput[lt](0.3,4){wide band gap}
197  \rput[lt](0.3,3.5){high electric breakdown field}
198  \rput[lt](0.3,3){good electron mobility}
199  \rput[lt](0.3,2.5){high electron saturation drift velocity}
200  \rput[lt](0.3,2){high thermal conductivity}
201
202  \rput[lt](0.3,1.5){hard and mechanically stable}
203  \rput[lt](0.3,1){chemically inert}
204
205  \rput[lt](0.3,0.5){radiation hardness}
206
207  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
208
209  \rput[rt](12.5,3.85){high-temperature, high power}
210  \rput[rt](12.5,3.5){and high-frequency}
211  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
212
213  \rput[rt](12.5,2.35){material suitable for extreme conditions}
214  \rput[rt](12.5,2){microelectromechanical systems}
215  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
216
217  \rput[rt](12.5,0.85){first wall reactor material, detectors}
218  \rput[rt](12.5,0.5){and electronic devices for space}
219
220 \end{pspicture}
221
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
230 \end{picture}
231 %%%%
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
234 \end{picture}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
238 \end{picture}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
242 \end{picture}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
245 \end{picture}
246
247 \end{slide}
248
249 % motivation
250
251 \begin{slide}
252
253 \headphd
254  {\large\bf
255   Polytypes of SiC\\[0.6cm]
256  }
257
258 \vspace{0.6cm}
259
260 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
261 \begin{minipage}{1.9cm}
262 {\tiny cubic (twist)}
263 \end{minipage}
264 \begin{minipage}{2.9cm}
265 {\tiny hexagonal (no twist)}
266 \end{minipage}
267
268 \begin{picture}(0,0)(-150,0)
269  \includegraphics[width=7cm]{polytypes.eps}
270 \end{picture}
271
272 \vspace{0.6cm}
273
274 \footnotesize
275
276 \begin{tabular}{l c c c c c c}
277 \hline
278  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
279 \hline
280 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
281 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
282 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
283 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
284 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
285 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
286 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
287 \hline
288 \end{tabular}
289
290 \begin{pspicture}(0,0)(0,0)
291 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
292 \end{pspicture}
293 \begin{pspicture}(0,0)(0,0)
294 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
295 \end{pspicture}
296 \begin{pspicture}(0,0)(0,0)
297 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
298 \end{pspicture}
299
300 \end{slide}
301
302 % fabrication
303
304 \begin{slide}
305
306 \headphd
307  {\large\bf
308   Fabrication of silicon carbide
309  }
310
311  \small
312  
313  \vspace{2pt}
314
315 \begin{center}
316  {\color{gray}
317  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
318  }
319 \end{center}
320
321 \vspace{2pt}
322
323 SiC thin films by MBE \& CVD
324 \begin{itemize}
325  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
326  \item \underline{Commercially available} semiconductor power devices based on
327        \underline{\foreignlanguage{greek}{a}-SiC}
328  \item Production of favored \underline{3C-SiC} material
329        \underline{less advanced}
330  \item Quality and size not yet sufficient
331 \end{itemize}
332 \begin{picture}(0,0)(-310,-20)
333   \includegraphics[width=2.0cm]{cree.eps}
334 \end{picture}
335
336 \vspace{-0.5cm}
337
338 %\begin{center}
339 %\color{red}
340 %\framebox{
341 %{\footnotesize\color{black}
342 % Mismatch in \underline{thermal expansion coeefficient}
343 % and \underline{lattice parameter} w.r.t. substrate
344 %}
345 %}
346 %\end{center}
347
348 \vspace{0.1cm}
349
350 {\bf Alternative approach}\\
351 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
352
353 \vspace{0.1cm}
354
355 \scriptsize
356
357 \framebox{
358 \begin{minipage}{3.15cm}
359  \begin{center}
360 \includegraphics[width=3cm]{imp.eps}\\
361  {\tiny
362   Carbon implantation
363  }
364  \end{center}
365 \end{minipage}
366 \begin{minipage}{3.15cm}
367  \begin{center}
368 \includegraphics[width=3cm]{annealing.eps}\\
369  {\tiny
370  Postannealing at $>$ \degc{1200}
371  }
372  \end{center}
373 \end{minipage}
374 }
375 \begin{minipage}{5.5cm}
376  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
377  \begin{center}
378  {\tiny
379   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
380  }
381  \end{center}
382 \end{minipage}
383
384 %\begin{minipage}{5.5cm}
385 %\begin{center}
386 %{\footnotesize
387 %No surface bending effects\\
388 %High areal homogenity\\[0.1cm]
389 %$\Downarrow$\\[0.1cm]
390 %Synthesis of large area SiC films possible
391 %}
392 %\end{center}
393 %\end{minipage}
394
395 \end{slide}
396
397 \begin{slide}
398
399 \headphd
400 {\large\bf
401  IBS of epitaxial single crystalline 3C-SiC
402 }
403
404 \footnotesize
405
406 \vspace{0.2cm}
407
408 \begin{center}
409 \begin{itemize}
410  \item \underline{Implantation step 1}\\[0.1cm]
411         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
412         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
413         {\color{blue}precipitates}
414  \item \underline{Implantation step 2}\\[0.1cm]
415         Little remaining dose | \unit[180]{keV} | \degc{250}\\
416         $\Rightarrow$
417         Destruction/Amorphization of precipitates at layer interface
418  \item \underline{Annealing}\\[0.1cm]
419        \unit[10]{h} at \degc{1250}\\
420        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
421 \end{itemize}
422 \end{center}
423
424 \begin{minipage}{6.9cm}
425 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
426 \begin{center}
427 {\tiny
428  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
429 }
430 \end{center}
431 \end{minipage}
432 \begin{minipage}{5cm}
433 \begin{pspicture}(0,0)(0,0)
434 \rnode{box}{
435 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
436 \begin{minipage}{5.3cm}
437  \begin{center}
438  {\color{blue}
439   3C-SiC precipitation\\
440   not yet fully understood
441  }
442  \end{center}
443  \vspace*{0.1cm}
444  \renewcommand\labelitemi{$\Rightarrow$}
445  Details of the SiC precipitation
446  \begin{itemize}
447   \item significant technological progress\\
448         in SiC thin film formation
449   \item perspectives for processes relying\\
450         upon prevention of SiC precipitation
451  \end{itemize}
452 \end{minipage}
453 }}
454 \rput(-6.8,5.5){\pnode{h0}}
455 \rput(-3.0,5.5){\pnode{h1}}
456 \ncline[linecolor=blue]{-}{h0}{h1}
457 \ncline[linecolor=blue]{->}{h1}{box}
458 \end{pspicture}
459 \end{minipage}
460
461 \end{slide}
462
463 \begin{slide}
464
465 \headphd
466 {\large\bf
467   Supposed precipitation mechanism of SiC in Si
468 }
469
470  \scriptsize
471
472  \vspace{0.1cm}
473
474  \framebox{
475  \begin{minipage}{3.6cm}
476  \begin{center}
477  Si \& SiC lattice structure\\[0.1cm]
478  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
479  \end{center}
480 {\tiny
481  \begin{minipage}{1.7cm}
482 \underline{Silicon}\\
483 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
484 $a=\unit[5.429]{\\A}$\\
485 $\rho^*_{\text{Si}}=\unit[100]{\%}$
486  \end{minipage}
487  \begin{minipage}{1.7cm}
488 \underline{Silicon carbide}\\
489 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
490 $a=\unit[4.359]{\\A}$\\
491 $\rho^*_{\text{Si}}=\unit[97]{\%}$
492  \end{minipage}
493 }
494  \end{minipage}
495  }
496  \hspace{0.1cm}
497  \begin{minipage}{4.1cm}
498  \begin{center}
499  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
500  \end{center}
501  \end{minipage}
502  \hspace{0.1cm}
503  \begin{minipage}{4.0cm}
504  \begin{center}
505  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
506  \end{center}
507  \end{minipage}
508
509  \vspace{0.1cm}
510
511  \begin{minipage}{4.0cm}
512  \begin{center}
513  C-Si dimers (dumbbells)\\[-0.1cm]
514  on Si lattice sites
515  \end{center}
516  \end{minipage}
517  \hspace{0.1cm}
518  \begin{minipage}{4.1cm}
519  \begin{center}
520  Agglomeration of C-Si dumbbells\\[-0.1cm]
521  $\Rightarrow$ dark contrasts
522  \end{center}
523  \end{minipage}
524  \hspace{0.1cm}
525  \begin{minipage}{4.0cm}
526  \begin{center}
527  Precipitation of 3C-SiC in Si\\[-0.1cm]
528  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
529  \& release of Si self-interstitials
530  \end{center}
531  \end{minipage}
532
533  \vspace{0.1cm}
534
535  \begin{minipage}{4.0cm}
536  \begin{center}
537  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
538  \end{center}
539  \end{minipage}
540  \hspace{0.1cm}
541  \begin{minipage}{4.1cm}
542  \begin{center}
543  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
544  \end{center}
545  \end{minipage}
546  \hspace{0.1cm}
547  \begin{minipage}{4.0cm}
548  \begin{center}
549  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
550  \end{center}
551  \end{minipage}
552
553 \begin{pspicture}(0,0)(0,0)
554 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
555 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
556 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
557 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
558 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
559  $4a_{\text{Si}}=5a_{\text{SiC}}$
560  }}}
561 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
562 \hkl(h k l) planes match
563  }}}
564 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
565 r = \unit[2--4]{nm}
566  }}}
567 \end{pspicture}
568
569 \end{slide}
570
571 \begin{slide}
572
573 \headphd
574 {\large\bf
575  Supposed precipitation mechanism of SiC in Si
576 }
577
578  \scriptsize
579
580  \vspace{0.1cm}
581
582  \framebox{
583  \begin{minipage}{3.6cm}
584  \begin{center}
585  Si \& SiC lattice structure\\[0.1cm]
586  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
587  \end{center}
588 {\tiny
589  \begin{minipage}{1.7cm}
590 \underline{Silicon}\\
591 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
592 $a=\unit[5.429]{\\A}$\\
593 $\rho^*_{\text{Si}}=\unit[100]{\%}$
594  \end{minipage}
595  \begin{minipage}{1.7cm}
596 \underline{Silicon carbide}\\
597 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
598 $a=\unit[4.359]{\\A}$\\
599 $\rho^*_{\text{Si}}=\unit[97]{\%}$
600  \end{minipage}
601 }
602  \end{minipage}
603  }
604  \hspace{0.1cm}
605  \begin{minipage}{4.1cm}
606  \begin{center}
607  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
608  \end{center}
609  \end{minipage}
610  \hspace{0.1cm}
611  \begin{minipage}{4.0cm}
612  \begin{center}
613  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
614  \end{center}
615  \end{minipage}
616
617  \vspace{0.1cm}
618
619  \begin{minipage}{4.0cm}
620  \begin{center}
621  C-Si dimers (dumbbells)\\[-0.1cm]
622  on Si interstitial sites
623  \end{center}
624  \end{minipage}
625  \hspace{0.1cm}
626  \begin{minipage}{4.1cm}
627  \begin{center}
628  Agglomeration of C-Si dumbbells\\[-0.1cm]
629  $\Rightarrow$ dark contrasts
630  \end{center}
631  \end{minipage}
632  \hspace{0.1cm}
633  \begin{minipage}{4.0cm}
634  \begin{center}
635  Precipitation of 3C-SiC in Si\\[-0.1cm]
636  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
637  \& release of Si self-interstitials
638  \end{center}
639  \end{minipage}
640
641  \vspace{0.1cm}
642
643  \begin{minipage}{4.0cm}
644  \begin{center}
645  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
646  \end{center}
647  \end{minipage}
648  \hspace{0.1cm}
649  \begin{minipage}{4.1cm}
650  \begin{center}
651  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
652  \end{center}
653  \end{minipage}
654  \hspace{0.1cm}
655  \begin{minipage}{4.0cm}
656  \begin{center}
657  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
658  \end{center}
659  \end{minipage}
660
661 \begin{pspicture}(0,0)(0,0)
662 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
663 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
664 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
665 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
666 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
667  $4a_{\text{Si}}=5a_{\text{SiC}}$
668  }}}
669 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
670 \hkl(h k l) planes match
671  }}}
672 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
673 r = \unit[2--4]{nm}
674  }}}
675 % controversial view!
676 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
677 \begin{minipage}{14cm}
678 \hfill
679 \vspace{12cm}
680 \end{minipage}
681 }}
682 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
683 \begin{minipage}{10cm}
684 \small
685 \vspace*{0.2cm}
686 \begin{center}
687 {\color{gray}\bf Controversial findings}
688 \end{center}
689 \begin{itemize}
690 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
691  \begin{itemize}
692   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
693   \item \si{} reacting with further C in cleared volume
694  \end{itemize}
695 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
696  \begin{itemize}
697   \item Room temperature implantation $\rightarrow$ high C diffusion
698   \item Elevated temperature implantation $\rightarrow$ no C redistribution
699  \end{itemize}
700  $\Rightarrow$ mobile {\color{red}\ci} opposed to
701  stable {\color{blue}\cs{}} configurations
702 \item Strained silicon \& Si/SiC heterostructures
703       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
704  \begin{itemize}
705   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
706   \item Incoherent SiC (strain relaxation)
707  \end{itemize}
708 \end{itemize}
709 \vspace{0.1cm}
710 \begin{center}
711 {\Huge${\lightning}$} \hspace{0.3cm}
712 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
713 {\Huge${\lightning}$}
714 \end{center}
715 \vspace{0.2cm}
716 \end{minipage}
717  }}}
718 \end{pspicture}
719
720 \end{slide}
721
722 \begin{slide}
723
724 % contents
725
726 \headphd
727 {\large\bf
728  Outline
729 }
730
731  \begin{itemize}
732   {\color{gray}
733   \item Introduction / Motivation
734   \item Assumed SiC precipitation mechanisms / Controversy
735   }
736   \item Utilized simulation techniques
737         \begin{itemize}
738          \item Molecular dynamics (MD) simulations
739          \item Density functional theory (DFT) calculations
740         \end{itemize}
741   \item Simulation results
742         \begin{itemize}
743          \item C and Si self-interstitial point defects in silicon
744          \item Silicon carbide precipitation simulations
745         \end{itemize}
746   \item Summary / Conclusion
747  \end{itemize}
748
749 \end{slide}
750
751 \begin{slide}
752
753 \headphd
754 {\large\bf
755  Utilized computational methods
756 }
757
758 \vspace{0.3cm}
759
760 \small
761
762 {\bf Molecular dynamics (MD)}\\[0.1cm]
763 \scriptsize
764 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
765 \hline
766 System of $N$ particles &
767 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
768 Phase space propagation &
769 Velocity Verlet | timestep: \unit[1]{fs} \\
770 Analytical interaction potential &
771 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
772 (Erhart/Albe)
773 $\displaystyle
774 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
775     \pot_{ij} = {\color{red}f_C(r_{ij})}
776     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
777 $\\
778 Observables: time/ensemble averages &
779 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
780 \hline
781 \end{tabular}
782
783 \small
784
785 \vspace{0.3cm}
786
787 {\bf Density functional theory (DFT)}
788
789 \scriptsize
790
791 \begin{minipage}[t]{6cm}
792 \begin{itemize}
793  \item Hohenberg-Kohn theorem:\\
794        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
795  \item Kohn-Sham approach:\\
796        Single-particle effective theory
797 \end{itemize}
798 \hrule
799 \begin{itemize}
800 \item Code: \textsc{vasp}
801 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
802 %$\displaystyle
803 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
804 %$\\
805 %$\displaystyle
806 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
807 %$
808 \item Ultrasoft pseudopotential
809 \item Exchange \& correlation: GGA
810 \item Brillouin zone sampling: $\Gamma$-point
811 \item Supercell: $N=216\pm2$
812 \end{itemize}
813 \end{minipage}
814 \begin{minipage}{6cm}
815 \begin{pspicture}(0,0)(0,0)
816 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
817 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
818 $\displaystyle
819 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
820 $
821 }}
822 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
823 $\displaystyle
824 n(r)=\sum_i^N|\Phi_i(r)|^2
825 $
826 }}
827 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
828 $\displaystyle
829 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
830                  +V_{\text{XC}}[n(r)]
831 $
832 }}
833 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
834 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
835 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
836
837 \end{pspicture}
838 \end{minipage}
839
840 \end{slide}
841
842 \begin{slide}
843
844 \headphd
845  {\large\bf
846   Point defects \& defect migration
847  }
848
849  \small
850
851  \vspace{0.2cm}
852
853 \begin{minipage}[b]{7.5cm}
854 {\bf Defect structure}\\
855   \begin{pspicture}(0,0)(7,4.4)
856   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
857    \parbox{7cm}{
858    \begin{itemize}
859     \item Creation of c-Si simulation volume
860     \item Periodic boundary conditions
861     \item $T=0\text{ K}$, $p=0\text{ bar}$
862    \end{itemize}
863   }}}}
864 \rput(3.5,1.3){\rnode{insert}{\psframebox{
865  \parbox{7cm}{
866   \begin{center}
867   Insertion of interstitial C/Si atoms
868   \end{center}
869   }}}}
870   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
871    \parbox{7cm}{
872    \begin{center}
873    Relaxation / structural energy minimization
874    \end{center}
875   }}}}
876   \ncline[]{->}{init}{insert}
877   \ncline[]{->}{insert}{cool}
878  \end{pspicture}
879 \end{minipage}
880 \begin{minipage}[b]{4.5cm}
881 \begin{center}
882 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
883 \end{center}
884 \begin{minipage}{2.21cm}
885 {\scriptsize
886 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
887 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
888 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
889 }
890 \end{minipage}
891 \begin{minipage}{2.21cm}
892 {\scriptsize
893 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
894 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
895 {\color{black}$\bullet$} Vac. / Sub.
896 }
897 \end{minipage}
898 \end{minipage}
899
900 \vspace{0.2cm}
901
902 \begin{minipage}[b]{6cm}
903 {\bf Defect formation energy}\\
904 \framebox{
905 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
906 Particle reservoir: Si \& SiC\\[0.2cm]
907 {\bf Binding energy}\\
908 \framebox{
909 $
910 E_{\text{b}}=
911 E_{\text{f}}^{\text{comb}}-
912 E_{\text{f}}^{1^{\text{st}}}-
913 E_{\text{f}}^{2^{\text{nd}}}
914 $
915 }\\[0.1cm]
916 \footnotesize
917 $E_{\text{b}}<0$: energetically favorable configuration\\
918 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
919 \end{minipage}
920 \begin{minipage}[b]{6cm}
921 {\bf Migration barrier}
922 \footnotesize
923 \begin{itemize}
924  \item Displace diffusing atom
925  \item Constrain relaxation of (diffusing) atoms
926  \item Record configurational energy
927 \end{itemize}
928 \begin{picture}(0,0)(-60,-33)
929 \includegraphics[width=4.5cm]{crt_mod.eps}
930 \end{picture}
931 \end{minipage}
932
933 \end{slide}
934
935 \begin{slide}
936
937 \footnotesize
938
939 \headphd
940 {\large\bf
941  Si self-interstitial point defects in silicon\\[0.1cm]
942 }
943
944 \begin{center}
945 \begin{tabular}{l c c c c c}
946 \hline
947  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
948 \hline
949  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
950  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
951 \hline
952 \end{tabular}\\[0.4cm]
953 \end{center}
954
955 \begin{minipage}{3cm}
956 \begin{center}
957 \underline{Vacancy}\\
958 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
959 \end{center}
960 \end{minipage}
961 \begin{minipage}{3cm}
962 \begin{center}
963 \underline{\hkl<1 1 0> DB}\\
964 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
965 \end{center}
966 \end{minipage}
967 \begin{minipage}{3cm}
968 \begin{center}
969 \underline{\hkl<1 0 0> DB}\\
970 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
971 \end{center}
972 \end{minipage}
973 \begin{minipage}{3cm}
974 \begin{center}
975 \underline{Tetrahedral}\\
976 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
977 \end{center}
978 \end{minipage}\\
979
980 \underline{Hexagonal} \hspace{2pt}
981 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
982 \framebox{
983 \begin{minipage}{2.7cm}
984 $E_{\text{f}}^*=4.48\text{ eV}$\\
985 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
986 \end{minipage}
987 \begin{minipage}{0.4cm}
988 \begin{center}
989 $\Rightarrow$
990 \end{center}
991 \end{minipage}
992 \begin{minipage}{2.7cm}
993 $E_{\text{f}}=3.96\text{ eV}$\\
994 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
995 \end{minipage}
996 }
997 \begin{minipage}{5.5cm}
998 \begin{center}
999 {\tiny nearly T $\rightarrow$ T}\\
1000 \end{center}
1001 \includegraphics[width=6.0cm]{nhex_tet.ps}
1002 \end{minipage}
1003
1004 \end{slide}
1005
1006 \begin{slide}
1007
1008 \footnotesize
1009
1010 \headphd
1011 {\large\bf
1012  C interstitial point defects in silicon\\
1013 }
1014
1015 \begin{tabular}{l c c c c c c r}
1016 \hline
1017  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
1018  {\color{black} \cs{} \& \si}\\
1019 \hline
1020  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1021  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1022 \hline
1023 \end{tabular}\\[0.1cm]
1024
1025 \framebox{
1026 \begin{minipage}{2.8cm}
1027 \underline{Hexagonal} \hspace{2pt}
1028 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1029 $E_{\text{f}}^*=9.05\text{ eV}$\\
1030 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
1031 \end{minipage}
1032 \begin{minipage}{0.4cm}
1033 \begin{center}
1034 $\Rightarrow$
1035 \end{center}
1036 \end{minipage}
1037 \begin{minipage}{2.8cm}
1038 \underline{\hkl<1 0 0>}\\
1039 $E_{\text{f}}=3.88\text{ eV}$\\
1040 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
1041 \end{minipage}
1042 }
1043 \begin{minipage}{1.4cm}
1044 \hfill
1045 \end{minipage}
1046 \begin{minipage}{3.0cm}
1047 \begin{flushright}
1048 \underline{Tetrahedral}\\
1049 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
1050 \end{flushright}
1051 \end{minipage}
1052
1053 \framebox{
1054 \begin{minipage}{2.8cm}
1055 \underline{Bond-centered}\\
1056 $E_{\text{f}}^*=5.59\text{ eV}$\\
1057 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1058 \end{minipage}
1059 \begin{minipage}{0.4cm}
1060 \begin{center}
1061 $\Rightarrow$
1062 \end{center}
1063 \end{minipage}
1064 \begin{minipage}{2.8cm}
1065 \underline{\hkl<1 1 0> dumbbell}\\
1066 $E_{\text{f}}=5.18\text{ eV}$\\
1067 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1068 \end{minipage}
1069 }
1070 \begin{minipage}{1.4cm}
1071 \hfill
1072 \end{minipage}
1073 \begin{minipage}{3.0cm}
1074 \begin{flushright}
1075 \underline{Substitutional}\\
1076 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1077 \end{flushright}
1078 \end{minipage}
1079
1080 \end{slide}
1081
1082 \begin{slide}
1083
1084 \headphd
1085 {\large\bf\boldmath
1086  C-Si dimer \& bond-centered interstitial configuration
1087 }
1088
1089 \footnotesize
1090
1091 \vspace{0.1cm}
1092
1093 \begin{minipage}[t]{4.1cm}
1094 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1095 \begin{minipage}{2.0cm}
1096 \begin{center}
1097 \underline{Erhart/Albe}
1098 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1099 \end{center}
1100 \end{minipage}
1101 \begin{minipage}{2.0cm}
1102 \begin{center}
1103 \underline{\textsc{vasp}}
1104 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1105 \end{center}
1106 \end{minipage}\\[0.2cm]
1107 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1108 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1109 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1110 $\Rightarrow$ $sp^2$ hybridization
1111 \begin{center}
1112 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1113 {\tiny Charge density isosurface}
1114 \end{center}
1115 \end{minipage}
1116 \begin{minipage}{0.2cm}
1117 \hfill
1118 \end{minipage}
1119 \begin{minipage}[t]{8.1cm}
1120 \begin{flushright}
1121 {\bf Bond-centered interstitial}\\[0.1cm]
1122 \begin{minipage}{4.4cm}
1123 %\scriptsize
1124 \begin{itemize}
1125  \item Linear Si-C-Si bond
1126  \item Si: one C \& 3 Si neighbours
1127  \item Spin polarized calculations
1128  \item No saddle point!\\
1129        Real local minimum!
1130 \end{itemize}
1131 \end{minipage}
1132 \begin{minipage}{2.7cm}
1133 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1134 \vspace{0.2cm}
1135 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1136 \end{minipage}
1137
1138 \framebox{
1139  \tiny
1140  \begin{minipage}[t]{6.5cm}
1141   \begin{minipage}[t]{1.2cm}
1142   {\color{red}Si}\\
1143   {\tiny sp$^3$}\\[0.8cm]
1144   \underline{${\color{black}\uparrow}$}
1145   \underline{${\color{black}\uparrow}$}
1146   \underline{${\color{black}\uparrow}$}
1147   \underline{${\color{red}\uparrow}$}\\
1148   sp$^3$
1149   \end{minipage}
1150   \begin{minipage}[t]{1.4cm}
1151   \begin{center}
1152   {\color{red}M}{\color{blue}O}\\[0.8cm]
1153   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1154   $\sigma_{\text{ab}}$\\[0.5cm]
1155   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1156   $\sigma_{\text{b}}$
1157   \end{center}
1158   \end{minipage}
1159   \begin{minipage}[t]{1.0cm}
1160   \begin{center}
1161   {\color{blue}C}\\
1162   {\tiny sp}\\[0.2cm]
1163   \underline{${\color{white}\uparrow\uparrow}$}
1164   \underline{${\color{white}\uparrow\uparrow}$}\\
1165   2p\\[0.4cm]
1166   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1167   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1168   sp
1169   \end{center}
1170   \end{minipage}
1171   \begin{minipage}[t]{1.4cm}
1172   \begin{center}
1173   {\color{blue}M}{\color{green}O}\\[0.8cm]
1174   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1175   $\sigma_{\text{ab}}$\\[0.5cm]
1176   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1177   $\sigma_{\text{b}}$
1178   \end{center}
1179   \end{minipage}
1180   \begin{minipage}[t]{1.2cm}
1181   \begin{flushright}
1182   {\color{green}Si}\\
1183   {\tiny sp$^3$}\\[0.8cm]
1184   \underline{${\color{green}\uparrow}$}
1185   \underline{${\color{black}\uparrow}$}
1186   \underline{${\color{black}\uparrow}$}
1187   \underline{${\color{black}\uparrow}$}\\
1188   sp$^3$
1189   \end{flushright}
1190   \end{minipage}
1191  \end{minipage}
1192 }\\[0.4cm]
1193
1194 %\framebox{
1195 \begin{minipage}{3.0cm}
1196 %\scriptsize
1197 \underline{Charge density}\\
1198 {\color{gray}$\bullet$} Spin up\\
1199 {\color{green}$\bullet$} Spin down\\
1200 {\color{blue}$\bullet$} Resulting spin up\\
1201 {\color{yellow}$\bullet$} Si atoms\\
1202 {\color{red}$\bullet$} C atom
1203 \end{minipage}
1204 \begin{minipage}{3.6cm}
1205 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1206 \end{minipage}
1207 %}
1208
1209 \end{flushright}
1210
1211 \end{minipage}
1212 \begin{pspicture}(0,0)(0,0)
1213 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1214 \end{pspicture}
1215
1216 \end{slide}
1217
1218 \begin{slide}
1219
1220 \headphd
1221 {\large\bf\boldmath
1222  C interstitial migration --- ab initio
1223 }
1224
1225 \scriptsize
1226
1227 \vspace{0.1cm}
1228
1229 \begin{minipage}{6.8cm}
1230 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1231 \begin{minipage}{2.0cm}
1232 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1233 \end{minipage}
1234 \begin{minipage}{0.2cm}
1235 $\rightarrow$
1236 \end{minipage}
1237 \begin{minipage}{2.0cm}
1238 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1239 \end{minipage}
1240 \begin{minipage}{0.2cm}
1241 $\rightarrow$
1242 \end{minipage}
1243 \begin{minipage}{2.0cm}
1244 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1245 \end{minipage}\\[0.1cm]
1246 Spin polarization\\
1247 $\Rightarrow$ BC configuration constitutes local minimum\\
1248 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1249 \end{minipage}
1250 \begin{minipage}{5.4cm}
1251 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1252 \end{minipage}\\[0.2cm]
1253 %\hrule
1254 %
1255 \begin{minipage}{6.8cm}
1256 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1257 \begin{minipage}{2.0cm}
1258 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1259 \end{minipage}
1260 \begin{minipage}{0.2cm}
1261 $\rightarrow$
1262 \end{minipage}
1263 \begin{minipage}{2.0cm}
1264 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1265 \end{minipage}
1266 \begin{minipage}{0.2cm}
1267 $\rightarrow$
1268 \end{minipage}
1269 \begin{minipage}{2.0cm}
1270 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1271 \end{minipage}\\[0.1cm]
1272 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1273 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1274 Note: Change in orientation
1275 \end{minipage}
1276 \begin{minipage}{5.4cm}
1277 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1278 \end{minipage}\\[0.1cm]
1279 %
1280 \begin{center}
1281 Reorientation pathway composed of two consecutive processes of the above type
1282 \end{center}
1283
1284 \end{slide}
1285
1286 \begin{slide}
1287
1288 \headphd
1289 {\large\bf\boldmath
1290  C interstitial migration --- analytical potential
1291 }
1292
1293 \scriptsize
1294
1295 \vspace{0.3cm}
1296
1297 \begin{minipage}[t]{6.0cm}
1298 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1299 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1300 \begin{itemize}
1301  \item Lowermost migration barrier
1302  \item $\Delta E \approx \unit[2.2]{eV}$
1303  \item 2.4 times higher than ab initio result
1304  \item Different pathway
1305 \end{itemize}
1306 \end{minipage}
1307 \begin{minipage}[t]{0.2cm}
1308 \hfill
1309 \end{minipage}
1310 \begin{minipage}[t]{6.0cm}
1311 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1312 \vspace{0.1cm}
1313 \begin{itemize}
1314  \item Bond-centered configuration unstable\\
1315        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1316  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1317        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1318 \end{itemize}
1319 \vspace{0.1cm}
1320 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1321 \begin{itemize}
1322  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1323  \item 2.4 -- 3.4 times higher than ab initio result
1324  \item After all: Change of the DB orientation
1325 \end{itemize}
1326 \end{minipage}
1327
1328 \vspace{0.5cm}
1329 \begin{center}
1330 {\color{red}\bf Drastically overestimated diffusion barrier}
1331 \end{center}
1332
1333 \begin{pspicture}(0,0)(0,0)
1334 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1335 \end{pspicture}
1336
1337 \end{slide}
1338
1339 \begin{slide}
1340
1341 \headphd
1342 {\large\bf\boldmath
1343  Defect combinations
1344 }
1345
1346 \footnotesize
1347
1348 \vspace{0.3cm}
1349
1350 \begin{minipage}{9cm}
1351 {\bf
1352  Summary of combinations}\\[0.1cm]
1353 {\scriptsize
1354 \begin{tabular}{l c c c c c c}
1355 \hline
1356  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1357  \hline
1358  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1359  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1360  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1361  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1362  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1363  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1364  \hline
1365  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1366  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1367 \hline
1368 \end{tabular}
1369 }
1370 \vspace{0.2cm}
1371 \begin{center}
1372 {\color{blue}
1373  $E_{\text{b}}$ explainable by stress compensation / increase
1374 }
1375 \end{center}
1376 \end{minipage}
1377 \begin{minipage}{3cm}
1378 \includegraphics[width=3.5cm]{comb_pos.eps}
1379 \end{minipage}
1380
1381 \vspace{0.2cm}
1382
1383 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1384 \begin{minipage}[t]{3.2cm}
1385 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1386 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1387 \end{minipage}
1388 \begin{minipage}[t]{3.0cm}
1389 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1390 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1391 \end{minipage}
1392 \begin{minipage}[t]{6.1cm}
1393 \vspace{0.7cm}
1394 \begin{itemize}
1395  \item \ci{} agglomeration energetically favorable
1396  \item Most favorable: C clustering\\
1397        {\color{red}However \ldots}\\
1398         \ldots high migration barrier ($>4\,\text{eV}$)\\
1399         \ldots entropy:
1400         $4\times{\color{cyan}[-2.25]}$ versus
1401         $2\times{\color{orange}[-2.39]}$
1402 \end{itemize}
1403 \begin{center}
1404 {\color{blue}\ci{} agglomeration / no C clustering}
1405 \end{center}
1406 \end{minipage}
1407
1408 \end{slide}
1409
1410 \begin{slide}
1411
1412 \headphd
1413 {\large\bf\boldmath
1414  Defect combinations
1415 }
1416
1417 \footnotesize
1418
1419 \vspace{0.3cm}
1420
1421 \begin{minipage}{9cm}
1422 {\bf
1423  Summary of combinations}\\[0.1cm]
1424 {\scriptsize
1425 \begin{tabular}{l c c c c c c}
1426 \hline
1427  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1428  \hline
1429  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1430  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1431  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1432  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1433  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1434  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1435  \hline
1436  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1437  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1438 \hline
1439 \end{tabular}
1440 }
1441 \vspace{0.2cm}
1442 \begin{center}
1443 {\color{blue}
1444  $E_{\text{b}}$ explainable by stress compensation / increase
1445 }
1446 \end{center}
1447 \end{minipage}
1448 \begin{minipage}{3cm}
1449 \includegraphics[width=3.5cm]{comb_pos.eps}
1450 \end{minipage}
1451
1452 \vspace{0.2cm}
1453
1454 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1455 \begin{minipage}[t]{3.2cm}
1456 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1457 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1458 \end{minipage}
1459 \begin{minipage}[t]{3.0cm}
1460 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1461 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1462 \end{minipage}
1463 \begin{minipage}[t]{6.1cm}
1464 \vspace{0.7cm}
1465 \begin{itemize}
1466  \item \ci{} agglomeration energetically favorable
1467  \item Most favorable: C clustering\\
1468        {\color{red}However \ldots}\\
1469         \ldots high migration barrier ($>4\,\text{eV}$)\\
1470         \ldots entropy:
1471         $4\times{\color{cyan}[-2.25]}$ versus
1472         $2\times{\color{orange}[-2.39]}$
1473 \end{itemize}
1474 \begin{center}
1475 {\color{blue}\ci{} agglomeration / no C clustering}
1476 \end{center}
1477 \end{minipage}
1478
1479 % insert graph ...
1480 \begin{pspicture}(0,0)(0,0)
1481 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1482 \begin{minipage}{14cm}
1483 \hfill
1484 \vspace{12cm}
1485 \end{minipage}
1486 }}
1487 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1488 \begin{minipage}{8cm}
1489 \begin{center}
1490 \vspace{0.2cm}
1491 \scriptsize
1492 Interaction along \hkl[1 1 0]
1493 \includegraphics[width=7cm]{db_along_110_cc.ps}
1494 \end{center}
1495 \end{minipage}
1496 }}}
1497 \end{pspicture}
1498
1499 \end{slide}
1500
1501 \begin{slide}
1502
1503 \headphd
1504 {\large\bf
1505  Defect combinations of C-Si dimers and vacancies
1506 }
1507 \footnotesize
1508
1509 \vspace{0.2cm}
1510
1511 \begin{minipage}[b]{2.6cm}
1512 \begin{flushleft}
1513 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1514 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1515 \end{flushleft}
1516 \end{minipage}
1517 \begin{minipage}[b]{7cm}
1518 \hfill
1519 \end{minipage}
1520 \begin{minipage}[b]{2.6cm}
1521 \begin{flushright}
1522 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1523 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1524 \end{flushright}
1525 \end{minipage}\\[0.2cm]
1526
1527 \begin{minipage}{6.5cm}
1528 \includegraphics[width=6.0cm]{059-539.ps}
1529 \end{minipage}
1530 \begin{minipage}{5.7cm}
1531 \includegraphics[width=6.0cm]{314-539.ps}
1532 \end{minipage}
1533
1534 \begin{pspicture}(0,0)(0,0)
1535 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1536
1537 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1538 \begin{minipage}{6.5cm}
1539 \begin{center}
1540 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1541 Low migration barrier towards C$_{\text{sub}}$\\
1542 \&\\
1543 High barrier for reverse process\\[0.3cm]
1544 {\color{blue}
1545 High probability of stable C$_{\text{sub}}$ configuration
1546 }
1547 \end{center}
1548 \end{minipage}
1549 }}}
1550 \end{pspicture}
1551
1552 \end{slide}
1553
1554 \begin{slide}
1555
1556 \headphd
1557 {\large\bf
1558  Combinations of substitutional C and Si self-interstitials
1559 }
1560
1561 \scriptsize
1562
1563 \vspace{0.3cm}
1564
1565 \begin{minipage}{6.2cm}
1566 \begin{center}
1567 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1568 \begin{itemize}
1569  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1570  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1571  \item Interaction drops quickly to zero\\
1572        $\rightarrow$ low capture radius
1573 \end{itemize}
1574 \end{center}
1575 \end{minipage}
1576 \begin{minipage}{0.2cm}
1577 \hfill
1578 \end{minipage}
1579 \begin{minipage}{6.0cm}
1580 \begin{center}
1581 {\bf Transition from the ground state}
1582 \begin{itemize}
1583  \item Low transition barrier
1584  \item Barrier smaller than \ci{} migration barrier
1585  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1586        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1587 \end{itemize}
1588 \end{center}
1589 \end{minipage}\\[0.3cm]
1590
1591 \begin{minipage}{6.0cm}
1592 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1593 \end{minipage}
1594 \begin{minipage}{0.4cm}
1595 \hfill
1596 \end{minipage}
1597 \begin{minipage}{6.0cm}
1598 \begin{flushright}
1599 \includegraphics[width=6.0cm]{162-097.ps}
1600 \end{flushright}
1601 \end{minipage}
1602
1603 \begin{pspicture}(0,0)(0,0)
1604 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1605 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1606 \begin{minipage}{8cm}
1607 \begin{center}
1608 \vspace{0.1cm}
1609 {\color{black}
1610 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1611 IBS --- process far from equilibrium\\
1612 }
1613 \end{center}
1614 \end{minipage}
1615 }}}
1616 \end{pspicture}
1617
1618 \end{slide}
1619
1620 \begin{slide}
1621
1622 \headphd
1623 {\large\bf
1624  Combinations of substitutional C and Si self-interstitials
1625 }
1626
1627 \scriptsize
1628
1629 \vspace{0.3cm}
1630
1631 \begin{minipage}{6.2cm}
1632 \begin{center}
1633 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1634 \begin{itemize}
1635  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1636  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1637  \item Interaction drops quickly to zero\\
1638        $\rightarrow$ low capture radius
1639 \end{itemize}
1640 \end{center}
1641 \end{minipage}
1642 \begin{minipage}{0.2cm}
1643 \hfill
1644 \end{minipage}
1645 \begin{minipage}{6.0cm}
1646 \begin{center}
1647 {\bf Transition from the ground state}
1648 \begin{itemize}
1649  \item Low transition barrier
1650  \item Barrier smaller than \ci{} migration barrier
1651  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1652        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1653 \end{itemize}
1654 \end{center}
1655 \end{minipage}\\[0.3cm]
1656
1657 \begin{minipage}{6.0cm}
1658 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1659 \end{minipage}
1660 \begin{minipage}{0.4cm}
1661 \hfill
1662 \end{minipage}
1663 \begin{minipage}{6.0cm}
1664 \begin{flushright}
1665 \includegraphics[width=6.0cm]{162-097.ps}
1666 \end{flushright}
1667 \end{minipage}
1668
1669 \begin{pspicture}(0,0)(0,0)
1670 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1671 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1672 \begin{minipage}{8cm}
1673 \begin{center}
1674 \vspace{0.1cm}
1675 {\color{black}
1676 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1677 IBS --- process far from equilibrium\\
1678 }
1679 \end{center}
1680 \end{minipage}
1681 }}}
1682 \end{pspicture}
1683
1684 % md support
1685 \begin{pspicture}(0,0)(0,0)
1686 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1687 \begin{minipage}{14cm}
1688 \hfill
1689 \vspace{14cm}
1690 \end{minipage}
1691 }}
1692 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1693 \begin{minipage}{11cm}
1694 \begin{center}
1695 \vspace{0.2cm}
1696 \scriptsize
1697 Ab initio MD at \degc{900}\\[0.4cm]
1698 \begin{minipage}{5.4cm}
1699 \centering
1700 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1701 $t=\unit[2230]{fs}$
1702 \end{minipage}
1703 \begin{minipage}{5.4cm}
1704 \centering
1705 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1706 $t=\unit[2900]{fs}$
1707 \end{minipage}\\[0.5cm]
1708 {\color{blue}
1709 Contribution of entropy to structural formation\\[0.1cm]
1710 }
1711 \end{center}
1712 \end{minipage}
1713 }}}
1714 \end{pspicture}
1715
1716 \end{slide}
1717
1718 \begin{slide}
1719
1720 \headphd
1721 {\large\bf
1722  Silicon carbide precipitation simulations
1723 }
1724
1725 \small
1726
1727 \vspace{0.2cm}
1728
1729 {\bf Procedure}
1730
1731 {\scriptsize
1732  \begin{pspicture}(0,0)(12,6.5)
1733   % nodes
1734   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1735    \parbox{7cm}{
1736    \begin{itemize}
1737     \item Create c-Si volume
1738     \item Periodc boundary conditions
1739     \item Set requested $T$ and $p=0\text{ bar}$
1740     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1741    \end{itemize}
1742   }}}}
1743   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1744    \parbox{7cm}{
1745    Insertion of C atoms at constant T
1746    \begin{itemize}
1747     \item total simulation volume {\pnode{in1}}
1748     \item volume of minimal SiC precipitate size {\pnode{in2}}
1749     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1750           precipitate
1751    \end{itemize} 
1752   }}}}
1753   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1754    \parbox{7.0cm}{
1755    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1756   }}}}
1757   \ncline[]{->}{init}{insert}
1758   \ncline[]{->}{insert}{cool}
1759   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1760   \rput(7.6,6){\footnotesize $V_1$}
1761   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1762   \rput(8.9,4.85){\tiny $V_2$}
1763   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1764   \rput(9.25,4.45){\footnotesize $V_3$}
1765   \rput(7.9,3.2){\pnode{ins1}}
1766   \rput(8.92,2.8){\pnode{ins2}}
1767   \rput(10.8,2.4){\pnode{ins3}}
1768   \ncline[]{->}{in1}{ins1}
1769   \ncline[]{->}{in2}{ins2}
1770   \ncline[]{->}{in3}{ins3}
1771  \end{pspicture}
1772 }
1773
1774 \vspace{-0.5cm}
1775
1776 {\bf Note}
1777
1778 \footnotesize
1779
1780 \begin{minipage}{5.7cm}
1781 \begin{itemize}
1782  \item Amount of C atoms: 6000\\
1783        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1784  \item Simulation volume: $31^3$ Si unit cells\\
1785        (238328 Si atoms)
1786 \end{itemize}
1787 \end{minipage}
1788 \begin{minipage}{0.3cm}
1789 \hfill
1790 \end{minipage}
1791 \framebox{
1792 \begin{minipage}{6.0cm}
1793 Restricted to classical potential caclulations\\
1794 $\rightarrow$ Low C diffusion / overestimated barrier\\
1795 $\rightarrow$ Consider $V_2$ and $V_3$
1796 %\begin{itemize}
1797 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1798 %\end{itemize}
1799 \end{minipage}
1800 }
1801
1802 \end{slide}
1803
1804 \begin{slide}
1805
1806 \headphd
1807 {\large\bf\boldmath
1808  Silicon carbide precipitation simulations at \degc{450} as in IBS
1809 }
1810
1811 \small
1812
1813 \begin{minipage}{6.3cm}
1814 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1815 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1816 \hfill
1817 \end{minipage} 
1818 \begin{minipage}{6.1cm}
1819 \scriptsize
1820 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1821 \hkl<1 0 0> C-Si dumbbell dominated structure
1822 \begin{itemize}
1823  \item Si-C bumbs around \unit[0.19]{nm}
1824  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1825        concatenated differently oriented \ci{} DBs
1826  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1827 \end{itemize}
1828 \begin{pspicture}(0,0)(6.0,1.0)
1829 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1830 \begin{minipage}{6cm}
1831 \centering
1832 Formation of \ci{} dumbbells\\
1833 C atoms in proper 3C-SiC distance first
1834 \end{minipage}
1835 }}
1836 \end{pspicture}\\[0.1cm]
1837 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1838 \begin{itemize}
1839 \item High amount of strongly bound C-C bonds
1840 \item Increased defect \& damage density\\
1841       $\rightarrow$ Arrangements hard to categorize and trace
1842 \item Only short range order observable
1843 \end{itemize}
1844 \begin{pspicture}(0,0)(6.0,0.8)
1845 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1846 \begin{minipage}{6cm}
1847 \centering
1848 Amorphous SiC-like phase
1849 \end{minipage}
1850 }}
1851 \end{pspicture}\\[0.3cm]
1852 \begin{pspicture}(0,0)(6.0,2.0)
1853 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1854 \begin{minipage}{6cm}
1855 \hfill
1856 \vspace{2.5cm}
1857 \end{minipage}
1858 }}
1859 \end{pspicture}
1860 \end{minipage} 
1861
1862 \end{slide}
1863
1864 \begin{slide}
1865
1866 \headphd
1867 {\large\bf\boldmath
1868  Silicon carbide precipitation simulations at \degc{450} as in IBS
1869 }
1870
1871 \small
1872
1873 \begin{minipage}{6.3cm}
1874 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1875 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1876 \hfill
1877 \end{minipage} 
1878 \begin{minipage}{6.1cm}
1879 \scriptsize
1880 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1881 \hkl<1 0 0> C-Si dumbbell dominated structure
1882 \begin{itemize}
1883  \item Si-C bumbs around \unit[0.19]{nm}
1884  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1885        concatenated differently oriented \ci{} DBs
1886  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1887 \end{itemize}
1888 \begin{pspicture}(0,0)(6.0,1.0)
1889 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1890 \begin{minipage}{6cm}
1891 \centering
1892 Formation of \ci{} dumbbells\\
1893 C atoms in proper 3C-SiC distance first
1894 \end{minipage}
1895 }}
1896 \end{pspicture}\\[0.1cm]
1897 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1898 \begin{itemize}
1899 \item High amount of strongly bound C-C bonds
1900 \item Increased defect \& damage density\\
1901       $\rightarrow$ Arrangements hard to categorize and trace
1902 \item Only short range order observable
1903 \end{itemize}
1904 \begin{pspicture}(0,0)(6.0,0.8)
1905 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1906 \begin{minipage}{6cm}
1907 \centering
1908 Amorphous SiC-like phase
1909 \end{minipage}
1910 }}
1911 \end{pspicture}\\[0.3cm]
1912 \begin{pspicture}(0,0)(6.0,2.0)
1913 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1914 \begin{minipage}{6cm}
1915 \vspace{0.1cm}
1916 \centering
1917 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1918 \begin{minipage}{0.8cm}
1919 {\bf\boldmath $V_1$:}
1920 \end{minipage}
1921 \begin{minipage}{5.1cm}
1922 Formation of \ci{} indeed occurs\\
1923 Agllomeration not observed
1924 \end{minipage}\\[0.3cm]
1925 \begin{minipage}{0.8cm}
1926 {\bf\boldmath $V_{2,3}$:}
1927 \end{minipage}
1928 \begin{minipage}{5.1cm}
1929 Amorphous SiC-like structure\\
1930 (not expected at \degc{450})\\[0.05cm]
1931 No rearrangement/transition into 3C-SiC
1932 \end{minipage}\\[0.1cm]
1933 \end{minipage}
1934 }}
1935 \end{pspicture}
1936 \end{minipage} 
1937
1938 \end{slide}
1939
1940 \begin{slide}
1941
1942 \headphd
1943 {\large\bf
1944  Limitations of MD and short range potentials
1945 }
1946
1947 \small
1948
1949 \vspace{0.2cm}
1950
1951 {\bf Time scale problem of MD}\\[0.2cm]
1952 Precise integration \& thermodynamic sampling\\
1953 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1954               $\omega$: vibrational mode\\
1955 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1956 Several local minima separated by large energy barriers\\
1957 $\Rightarrow$ Transition event corresponds to a multiple
1958               of vibrational periods\\
1959 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1960               infrequent transition events\\[0.2cm]
1961 {\color{blue}Accelerated methods:}
1962 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1963
1964 \vspace{0.2cm}
1965
1966 {\bf Limitations related to the short range potential}\\[0.2cm]
1967 Cut-off function limits interaction to next neighbours\\
1968 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1969               (factor: 2.4--3.4)
1970
1971 \vspace{1.4cm}
1972
1973 {\bf Approach to the (twofold) problem}\\[0.2cm]
1974 Increased temperature simulations without TAD corrections\\
1975 Accelerated methods or higher time scales exclusively not sufficient!
1976
1977 \begin{pspicture}(0,0)(0,0)
1978 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1979 \begin{minipage}{7.5cm}
1980 \centering
1981 \vspace{0.05cm}
1982 Potential enhanced slow phase space propagation
1983 \end{minipage}
1984 }}
1985 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1986 \begin{minipage}{2.7cm}
1987 \tiny
1988 \centering
1989 retain proper\\
1990 thermodynamic sampling
1991 \end{minipage}
1992 }}
1993 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1994 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1995 \begin{minipage}{3.6cm}
1996 \tiny
1997 \centering
1998 \underline{IBS}\\[0.1cm]
1999 3C-SiC also observed for higher T\\[0.1cm]
2000 Higher T inside sample\\[0.1cm]
2001 Structural evolution vs.\\
2002 equilibrium properties
2003 \end{minipage}
2004 }}
2005 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
2006 \end{pspicture}
2007
2008 \end{slide}
2009
2010 \begin{slide}
2011
2012 \headphd
2013 {\large\bf\boldmath
2014  Increased temperature simulations --- $V_1$
2015 }
2016
2017 \small
2018
2019 \begin{minipage}{6.2cm}
2020 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2021 \hfill
2022 \end{minipage}
2023 \begin{minipage}{6.2cm}
2024 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2025 \end{minipage}
2026
2027 \begin{minipage}{6.2cm}
2028 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2029 \hfill
2030 \end{minipage}
2031 \begin{minipage}{6.3cm}
2032 \scriptsize
2033  \underline{Si-C bonds:}
2034  \begin{itemize}
2035   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2036   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2037  \end{itemize}
2038  \underline{Si-Si bonds:}
2039  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2040  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2041  \underline{C-C bonds:}
2042  \begin{itemize}
2043   \item C-C next neighbour pairs reduced (mandatory)
2044   \item Peak at 0.3 nm slightly shifted
2045         \begin{itemize}
2046          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2047                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2048                combinations (|)\\
2049                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2050                ($\downarrow$)
2051          \item Range [|-$\downarrow$]:
2052                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2053                with nearby Si$_{\text{I}}$}
2054         \end{itemize}
2055  \end{itemize}
2056 \end{minipage}
2057
2058 \end{slide}
2059
2060 \begin{slide}
2061
2062 \headphd
2063 {\large\bf\boldmath
2064  Increased temperature simulations --- $V_1$
2065 }
2066
2067 \small
2068
2069 \begin{minipage}{6.2cm}
2070 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2071 \hfill
2072 \end{minipage}
2073 \begin{minipage}{6.2cm}
2074 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2075 \end{minipage}
2076
2077 \begin{minipage}{6.2cm}
2078 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2079 \hfill
2080 \end{minipage}
2081 \begin{minipage}{6.3cm}
2082 \scriptsize
2083  \underline{Si-C bonds:}
2084  \begin{itemize}
2085   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2086   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2087  \end{itemize}
2088  \underline{Si-Si bonds:}
2089  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2090  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2091  \underline{C-C bonds:}
2092  \begin{itemize}
2093   \item C-C next neighbour pairs reduced (mandatory)
2094   \item Peak at 0.3 nm slightly shifted
2095         \begin{itemize}
2096          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2097                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2098                combinations (|)\\
2099                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2100                ($\downarrow$)
2101          \item Range [|-$\downarrow$]:
2102                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2103                with nearby Si$_{\text{I}}$}
2104         \end{itemize}
2105  \end{itemize}
2106 \end{minipage}
2107
2108 % conclusions
2109 \begin{pspicture}(0,0)(0,0)
2110 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2111 \begin{minipage}{14cm}
2112 \hfill
2113 \vspace{14cm}
2114 \end{minipage}
2115 }}
2116 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2117 \begin{minipage}{9cm}
2118 \vspace{0.2cm}
2119 \small
2120 \begin{center}
2121 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2122 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2123 \end{center}
2124 \begin{itemize}
2125 \item Stretched coherent SiC structures\\
2126 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2127 \item Role of \si{}
2128       \begin{itemize}
2129        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2130        \item Building block for surrounding Si host \& further SiC
2131        \item Strain compensation \ldots\\
2132              \ldots Si/SiC interface\\
2133              \ldots within stretched coherent SiC structure
2134       \end{itemize}
2135 \item Explains annealing behavior of high/low T C implantations
2136       \begin{itemize}
2137        \item Low T: highly mobile {\color{red}\ci}
2138        \item High T: stable configurations of {\color{blue}\cs}
2139       \end{itemize}
2140 \end{itemize}
2141 \vspace{0.2cm}
2142 \centering
2143 \psframebox[linecolor=blue,linewidth=0.05cm]{
2144 \begin{minipage}{7cm}
2145 \centering
2146 Precipitation mechanism involving \cs\\
2147 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2148 \end{minipage}
2149 }
2150 \end{minipage}
2151 \vspace{0.2cm}
2152 }}
2153 \end{pspicture}
2154
2155 \end{slide}
2156
2157 % skip high c conc results
2158 \ifnum1=0
2159
2160 \begin{slide}
2161
2162  {\large\bf
2163   Increased temperature simulations at high C concentration
2164  }
2165
2166 \footnotesize
2167
2168 \begin{minipage}{6.0cm}
2169 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2170 \end{minipage}
2171 \begin{minipage}{6.0cm}
2172 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2173 \end{minipage}
2174
2175 \vspace{0.1cm}
2176
2177 \scriptsize
2178
2179 \framebox{
2180 \begin{minipage}[t]{6.0cm}
2181 0.186 nm: Si-C pairs $\uparrow$\\
2182 (as expected in 3C-SiC)\\[0.2cm]
2183 0.282 nm: Si-C-C\\[0.2cm]
2184 $\approx$0.35 nm: C-Si-Si
2185 \end{minipage}
2186 }
2187 \begin{minipage}{0.2cm}
2188 \hfill
2189 \end{minipage}
2190 \framebox{
2191 \begin{minipage}[t]{6.0cm}
2192 0.15 nm: C-C pairs $\uparrow$\\
2193 (as expected in graphite/diamond)\\[0.2cm]
2194 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2195 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2196 \end{minipage}
2197 }
2198
2199 \begin{itemize}
2200 \item Decreasing cut-off artifact
2201 \item {\color{red}Amorphous} SiC-like phase remains
2202 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2203 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2204 \end{itemize}
2205
2206 \vspace{-0.1cm}
2207
2208 \begin{center}
2209 {\color{blue}
2210 \framebox{
2211 {\color{black}
2212 High C \& small $V$ \& short $t$
2213 $\Rightarrow$
2214 }
2215 Slow restructuring due to strong C-C bonds
2216 {\color{black}
2217 $\Leftarrow$
2218 High C \& low T implants
2219 }
2220 }
2221 }
2222 \end{center}
2223
2224 \end{slide}
2225
2226 % skip high c conc
2227 \fi
2228
2229 % for preparation
2230 %\fi
2231
2232 \begin{slide}
2233
2234 \headphd
2235 {\large\bf
2236  Summary and Conclusions
2237 }
2238
2239 \footnotesize
2240
2241 \vspace{0.1cm}
2242
2243 \framebox{
2244 \begin{minipage}{12.3cm}
2245  \underline{Defects}
2246  \begin{itemize}
2247    \item DFT / EA
2248         \begin{itemize}
2249          \item Point defects excellently / fairly well described
2250                by DFT / EA
2251          \item Identified \ci{} migration path
2252          \item EA drastically overestimates the diffusion barrier
2253         \end{itemize}
2254    \item Combinations of defects
2255          \begin{itemize}
2256           \item Agglomeration of point defects energetically favorable
2257           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2258           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2259                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2260         \end{itemize}
2261  \end{itemize}
2262 \end{minipage}
2263 }
2264
2265 \framebox{
2266 \begin{minipage}[t]{12.3cm}
2267  \underline{Pecipitation simulations}
2268  \begin{itemize}
2269   \item Problem of potential enhanced slow phase space propagation
2270   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2271   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2272   \item High T necessary to simulate IBS conditions (far from equilibrium)
2273   \item Increased participation of \cs{} in the precipitation process
2274   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2275         (stretched SiC, interface)
2276  \end{itemize}
2277 \end{minipage}
2278 }
2279
2280 \begin{center}
2281 {\color{blue}\bf
2282 \framebox{Precipitation by successive agglomeration of \cs{}}
2283 }
2284 \end{center}
2285
2286 \end{slide}
2287
2288 \begin{slide}
2289
2290 \headphd
2291 {\large\bf
2292  Acknowledgements
2293 }
2294
2295  \vspace{0.1cm}
2296
2297  \small
2298
2299  Thanks to \ldots
2300
2301  \underline{Augsburg}
2302  \begin{itemize}
2303   \item Prof. B. Stritzker
2304   \item Prof. F. Haider
2305   \item Ralf Utermann
2306  \end{itemize}
2307  
2308  \underline{Berlin/Brandenburg}
2309  \begin{itemize}
2310   \item PD V. Eyert
2311  \end{itemize}
2312  
2313  \underline{Helsinki}
2314  \begin{itemize}
2315   \item Prof. K. Nordlund
2316  \end{itemize}
2317  
2318  \underline{Munich}
2319  \begin{itemize}
2320   \item Bayerische Forschungsstiftung
2321  \end{itemize}
2322  
2323  \underline{Paderborn}
2324  \begin{itemize}
2325   \item Prof. J. Lindner
2326   \item Prof. G. Schmidt
2327   \item Dr. E. Rauls
2328  \end{itemize}
2329
2330 \vspace{0.1cm}
2331
2332 \begin{center}
2333 \framebox{
2334 \bf Thank you for your attention!
2335 }
2336 \end{center}
2337
2338 \end{slide}
2339
2340 \end{document}
2341