beta
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \ifnum1=0
126 \begin{slide}
127 \center
128 {\Huge
129 E\\
130 F\\
131 G\\
132 A B C D E F G H G F E D C B A
133 G\\
134 F\\
135 E\\
136 }
137 \end{slide}
138 \fi
139
140 % topic
141
142 \begin{slide}
143 \begin{center}
144
145  \vspace{16pt}
146
147  {\Large\bf
148   \hrule
149   \vspace{5pt}
150   Atomistic simulation study on silicon carbide\\[0.2cm]
151   precipitation in silicon\\
152   \vspace{10pt}
153   \hrule
154  }
155
156  \vspace{60pt}
157
158  \textsc{Frank Zirkelbach}
159
160  \vspace{60pt}
161
162  Defense of doctor's thesis
163
164  \vspace{08pt}
165
166  Augsburg, 10.01.2012
167
168 \end{center}
169 \end{slide}
170
171 % no vertical centering
172 \centerslidesfalse
173
174 % skip for preparation
175 %\ifnum1=0
176
177 % intro
178
179 % motivation / properties / applications of silicon carbide
180
181 \begin{slide}
182
183 \vspace*{1.8cm}
184
185 \small
186
187 \begin{pspicture}(0,0)(13.5,5)
188
189  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
190
191  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
193
194  \rput[lt](0,4.6){\color{gray}PROPERTIES}
195
196  \rput[lt](0.3,4){wide band gap}
197  \rput[lt](0.3,3.5){high electric breakdown field}
198  \rput[lt](0.3,3){good electron mobility}
199  \rput[lt](0.3,2.5){high electron saturation drift velocity}
200  \rput[lt](0.3,2){high thermal conductivity}
201
202  \rput[lt](0.3,1.5){hard and mechanically stable}
203  \rput[lt](0.3,1){chemically inert}
204
205  \rput[lt](0.3,0.5){radiation hardness}
206
207  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
208
209  \rput[rt](12.5,3.85){high-temperature, high power}
210  \rput[rt](12.5,3.5){and high-frequency}
211  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
212
213  \rput[rt](12.5,2.35){material suitable for extreme conditions}
214  \rput[rt](12.5,2){microelectromechanical systems}
215  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
216
217  \rput[rt](12.5,0.85){first wall reactor material, detectors}
218  \rput[rt](12.5,0.5){and electronic devices for space}
219
220 \end{pspicture}
221
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
230 \end{picture}
231 %%%%
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
234 \end{picture}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
238 \end{picture}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
242 \end{picture}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
245 \end{picture}
246
247 \end{slide}
248
249 % fabrication
250
251 \begin{slide}
252
253 \headphd
254 {\large\bf
255  IBS of epitaxial single crystalline 3C-SiC
256 }
257
258 \footnotesize
259
260 \vspace{0.2cm}
261
262 \begin{center}
263 \begin{itemize}
264  \item \underline{Implantation step 1}\\[0.1cm]
265         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
266         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
267         {\color{blue}precipitates}
268  \item \underline{Implantation step 2}\\[0.1cm]
269         Low remaining amount of dose | \unit[180]{keV} | \degc{250}\\
270         $\Rightarrow$
271         Destruction/Amorphization of precipitates at layer interface
272  \item \underline{Annealing}\\[0.1cm]
273        \unit[10]{h} at \degc{1250}\\
274        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
275 \end{itemize}
276 \end{center}
277
278 \begin{minipage}{6.9cm}
279 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
280 \begin{center}
281 {\tiny
282  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
283 }
284 \end{center}
285 \end{minipage}
286 \begin{minipage}{5cm}
287 \begin{pspicture}(0,0)(0,0)
288 \rnode{box}{
289 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
290 \begin{minipage}{5.3cm}
291  \begin{center}
292  {\color{blue}
293   3C-SiC precipitation\\
294   not yet fully understood
295  }
296  \end{center}
297 % \vspace*{0.1cm}
298 % \renewcommand\labelitemi{$\Rightarrow$}
299 % Details of the SiC precipitation
300 % \begin{itemize}
301 %  \item significant technological progress\\
302 %        in SiC thin film formation
303 %  \item perspectives for processes relying\\
304 %        upon prevention of SiC precipitation
305 % \end{itemize}
306 \end{minipage}
307 }}
308 \rput(-6.8,5.5){\pnode{h0}}
309 \rput(-3.0,5.5){\pnode{h1}}
310 \ncline[linecolor=blue]{-}{h0}{h1}
311 \ncline[linecolor=blue]{->}{h1}{box}
312 \end{pspicture}
313 \end{minipage}
314
315 \end{slide}
316
317 \begin{slide}
318
319 \headphd
320 {\large\bf
321   Supposed precipitation mechanism of SiC in Si
322 }
323
324  \scriptsize
325
326  \vspace{0.1cm}
327
328  \framebox{
329  \begin{minipage}{3.6cm}
330  \begin{center}
331  Si \& SiC lattice structure\\[0.1cm]
332  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
333  \end{center}
334 {\tiny
335  \begin{minipage}{1.7cm}
336 \underline{Silicon}\\
337 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
338 $a=\unit[5.429]{\\A}$\\
339 $\rho^*_{\text{Si}}=\unit[100]{\%}$
340  \end{minipage}
341  \begin{minipage}{1.7cm}
342 \underline{Silicon carbide}\\
343 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
344 $a=\unit[4.359]{\\A}$\\
345 $\rho^*_{\text{Si}}=\unit[97]{\%}$
346  \end{minipage}
347 }
348  \end{minipage}
349  }
350  \hspace{0.1cm}
351  \begin{minipage}{4.1cm}
352  \begin{center}
353  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
354  \end{center}
355  \end{minipage}
356  \hspace{0.1cm}
357  \begin{minipage}{4.0cm}
358  \begin{center}
359  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
360  \end{center}
361  \end{minipage}
362
363  \vspace{0.1cm}
364
365  \begin{minipage}{4.0cm}
366  \begin{center}
367  C-Si dimers (dumbbells)\\[-0.1cm]
368  on Si lattice sites
369  \end{center}
370  \end{minipage}
371  \hspace{0.1cm}
372  \begin{minipage}{4.1cm}
373  \begin{center}
374  Agglomeration of C-Si dumbbells\\[-0.1cm]
375  $\Rightarrow$ dark contrasts
376  \end{center}
377  \end{minipage}
378  \hspace{0.1cm}
379  \begin{minipage}{4.0cm}
380  \begin{center}
381  Precipitation of 3C-SiC in Si\\[-0.1cm]
382  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
383  \& release of Si self-interstitials
384  \end{center}
385  \end{minipage}
386
387  \vspace{0.1cm}
388
389  \begin{minipage}{4.0cm}
390  \begin{center}
391  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
392  \end{center}
393  \end{minipage}
394  \hspace{0.1cm}
395  \begin{minipage}{4.1cm}
396  \begin{center}
397  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
398  \end{center}
399  \end{minipage}
400  \hspace{0.1cm}
401  \begin{minipage}{4.0cm}
402  \begin{center}
403  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
404  \end{center}
405  \end{minipage}
406
407 \begin{pspicture}(0,0)(0,0)
408 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
409 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
410 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
411 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
412 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
413  $4a_{\text{Si}}=5a_{\text{SiC}}$
414  }}}
415 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
416 \hkl(h k l) planes match
417  }}}
418 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
419 r = \unit[2--4]{nm}
420  }}}
421 \end{pspicture}
422
423 \end{slide}
424
425 \begin{slide}
426
427 \headphd
428 {\large\bf
429  Supposed precipitation mechanism of SiC in Si
430 }
431
432  \scriptsize
433
434  \vspace{0.1cm}
435
436  \framebox{
437  \begin{minipage}{3.6cm}
438  \begin{center}
439  Si \& SiC lattice structure\\[0.1cm]
440  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
441  \end{center}
442 {\tiny
443  \begin{minipage}{1.7cm}
444 \underline{Silicon}\\
445 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
446 $a=\unit[5.429]{\\A}$\\
447 $\rho^*_{\text{Si}}=\unit[100]{\%}$
448  \end{minipage}
449  \begin{minipage}{1.7cm}
450 \underline{Silicon carbide}\\
451 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
452 $a=\unit[4.359]{\\A}$\\
453 $\rho^*_{\text{Si}}=\unit[97]{\%}$
454  \end{minipage}
455 }
456  \end{minipage}
457  }
458  \hspace{0.1cm}
459  \begin{minipage}{4.1cm}
460  \begin{center}
461  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
462  \end{center}
463  \end{minipage}
464  \hspace{0.1cm}
465  \begin{minipage}{4.0cm}
466  \begin{center}
467  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
468  \end{center}
469  \end{minipage}
470
471  \vspace{0.1cm}
472
473  \begin{minipage}{4.0cm}
474  \begin{center}
475  C-Si dimers (dumbbells)\\[-0.1cm]
476  on Si interstitial sites
477  \end{center}
478  \end{minipage}
479  \hspace{0.1cm}
480  \begin{minipage}{4.1cm}
481  \begin{center}
482  Agglomeration of C-Si dumbbells\\[-0.1cm]
483  $\Rightarrow$ dark contrasts
484  \end{center}
485  \end{minipage}
486  \hspace{0.1cm}
487  \begin{minipage}{4.0cm}
488  \begin{center}
489  Precipitation of 3C-SiC in Si\\[-0.1cm]
490  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
491  \& release of Si self-interstitials
492  \end{center}
493  \end{minipage}
494
495  \vspace{0.1cm}
496
497  \begin{minipage}{4.0cm}
498  \begin{center}
499  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
500  \end{center}
501  \end{minipage}
502  \hspace{0.1cm}
503  \begin{minipage}{4.1cm}
504  \begin{center}
505  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
506  \end{center}
507  \end{minipage}
508  \hspace{0.1cm}
509  \begin{minipage}{4.0cm}
510  \begin{center}
511  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
512  \end{center}
513  \end{minipage}
514
515 \begin{pspicture}(0,0)(0,0)
516 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
517 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
518 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
519 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
520 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
521  $4a_{\text{Si}}=5a_{\text{SiC}}$
522  }}}
523 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
524 \hkl(h k l) planes match
525  }}}
526 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
527 r = \unit[2--4]{nm}
528  }}}
529 % controversial view!
530 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
531 \begin{minipage}{14cm}
532 \hfill
533 \vspace{12cm}
534 \end{minipage}
535 }}
536 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
537 \begin{minipage}{10cm}
538 \small
539 \vspace*{0.2cm}
540 \begin{center}
541 {\color{gray}\bf Controversial findings}
542 \end{center}
543 \begin{itemize}
544 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
545  \begin{itemize}
546   \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
547   \item \si{} reacting with further C in cleared volume
548  \end{itemize}
549 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
550  \begin{itemize}
551   \item Room temperature implantation $\rightarrow$ high C diffusion
552   \item Elevated temperature implantation $\rightarrow$ no C redistribution
553  \end{itemize}
554  $\Rightarrow$ mobile {\color{red}\ci} opposed to
555  stable {\color{blue}\cs{}} configurations
556 \item Strained Si$_{1-y}$C$_y$/Si heterostructures
557       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
558  \begin{itemize}
559   \item Initial {\color{blue}coherent} SiC structures (tensile strain)
560   \item Incoherent SiC nanocrystals (strain relaxation)
561  \end{itemize}
562 \end{itemize}
563 \vspace{0.1cm}
564 \begin{center}
565 {\Huge${\lightning}$} \hspace{0.3cm}
566 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
567 {\Huge${\lightning}$}
568 \end{center}
569 \vspace{0.2cm}
570 \end{minipage}
571  }}}
572 \end{pspicture}
573
574 \end{slide}
575
576 \begin{slide}
577
578 % contents
579
580 \headphd
581 {\large\bf
582  Outline
583 }
584
585  \begin{itemize}
586   {\color{gray}
587   \item Introduction / Motivation
588   \item Assumed SiC precipitation mechanisms / Controversy
589   }
590   \item Utilized simulation techniques
591         \begin{itemize}
592          \item Molecular dynamics (MD) simulations
593          \item Density functional theory (DFT) calculations
594         \end{itemize}
595   \item Simulation results
596         \begin{itemize}
597          \item C and Si self-interstitial point defects in silicon
598          \item Silicon carbide precipitation simulations
599         \end{itemize}
600   \item Summary / Conclusion
601  \end{itemize}
602
603 \end{slide}
604
605 \begin{slide}
606
607 \headphd
608 {\large\bf
609  Utilized computational methods
610 }
611
612 \vspace{0.3cm}
613
614 \small
615
616 {\bf Molecular dynamics (MD)}\\[0.1cm]
617 \scriptsize
618 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
619 \hline
620 System of $N$ particles &
621 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
622 Phase space propagation &
623 Velocity Verlet | timestep: \unit[1]{fs} \\
624 Analytical interaction potential &
625 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
626 (Erhart/Albe)
627 $\displaystyle
628 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
629     \pot_{ij} = {\color{red}f_C(r_{ij})}
630     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
631 $\\
632 Observables: time/ensemble averages &
633 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
634 \hline
635 \end{tabular}
636
637 \small
638
639 \vspace{0.3cm}
640
641 {\bf Density functional theory (DFT)}
642
643 \scriptsize
644
645 \begin{minipage}[t]{6cm}
646 \begin{itemize}
647  \item Hohenberg-Kohn theorem:\\
648        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
649  \item Kohn-Sham approach:\\
650        Single-particle effective theory
651 \end{itemize}
652 \hrule
653 \begin{itemize}
654 \item Code: \textsc{vasp}
655 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
656 %$\displaystyle
657 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
658 %$\\
659 %$\displaystyle
660 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
661 %$
662 \item Ultrasoft pseudopotential
663 \item Exchange \& correlation: GGA
664 \item Brillouin zone sampling: $\Gamma$-point
665 \item Supercell: $N=216\pm2$
666 \end{itemize}
667 \end{minipage}
668 \begin{minipage}{6cm}
669 \begin{pspicture}(0,0)(0,0)
670 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
671 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
672 $\displaystyle
673 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
674 $
675 }}
676 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
677 $\displaystyle
678 n(r)=\sum_i^N|\Phi_i(r)|^2
679 $
680 }}
681 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
682 $\displaystyle
683 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
684                  +V_{\text{XC}}[n(r)]
685 $
686 }}
687 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
688 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
689 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
690
691 \end{pspicture}
692 \end{minipage}
693
694 \end{slide}
695
696 \begin{slide}
697
698 \headphd
699  {\large\bf
700   Point defects \& defect migration
701  }
702
703  \small
704
705  \vspace{0.2cm}
706
707 \begin{minipage}[b]{7.5cm}
708 {\bf Defect structure}\\
709   \begin{pspicture}(0,0)(7,4.4)
710   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
711    \parbox{7cm}{
712    \begin{itemize}
713     \item Creation of c-Si simulation volume
714     \item Periodic boundary conditions
715     \item $T=0\text{ K}$, $p=0\text{ bar}$
716    \end{itemize}
717   }}}}
718 \rput(3.5,1.3){\rnode{insert}{\psframebox{
719  \parbox{7cm}{
720   \begin{center}
721   Insertion of interstitial C/Si atoms
722   \end{center}
723   }}}}
724   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
725    \parbox{7cm}{
726    \begin{center}
727    Relaxation / structural energy minimization
728    \end{center}
729   }}}}
730   \ncline[]{->}{init}{insert}
731   \ncline[]{->}{insert}{cool}
732  \end{pspicture}
733 \end{minipage}
734 \begin{minipage}[b]{4.5cm}
735 \begin{center}
736 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
737 \end{center}
738 \begin{minipage}{2.21cm}
739 {\scriptsize
740 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
741 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
742 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
743 }
744 \end{minipage}
745 \begin{minipage}{2.21cm}
746 {\scriptsize
747 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
748 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
749 {\color{black}$\bullet$} Vac. / Sub.
750 }
751 \end{minipage}
752 \end{minipage}
753
754 \vspace{0.3cm}
755
756 \begin{minipage}[t]{6cm}
757 {\bf Defect formation energy}\\
758 \framebox{
759 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.5cm]
760 %Particle reservoir: Si \& SiC\\[0.2cm]
761 {\bf Binding energy}\\
762 \framebox{
763 $
764 E_{\text{b}}=
765 E_{\text{f}}^{\text{comb}}-
766 E_{\text{f}}^{1^{\text{st}}}-
767 E_{\text{f}}^{2^{\text{nd}}}
768 $
769 }\\[0.1cm]
770 \footnotesize
771 $E_{\text{b}}<0$: energetically favorable configuration\\
772 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
773 \end{minipage}
774 \begin{minipage}[t]{6cm}
775 \vspace{1.4cm}
776 {\bf Migration barrier}
777 \footnotesize
778 \begin{itemize}
779  \item Displace diffusing atom
780  \item Constrain relaxation of (diffusing) atoms
781  \item Record configurational energy
782 \end{itemize}
783 \begin{picture}(0,0)(-60,-33)
784 \includegraphics[width=4.5cm]{crt_mod.eps}
785 \end{picture}
786 \end{minipage}
787
788 \end{slide}
789
790 \begin{slide}
791
792 \footnotesize
793
794 \headphd
795 {\large\bf
796  C interstitial point defects in silicon\\
797 }
798
799 \begin{tabular}{l c c c c c c r}
800 \hline
801  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
802  {\color{black} \cs{} \& \si}\\
803 \hline
804  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
805  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
806 \hline
807 \end{tabular}\\[0.1cm]
808
809 \framebox{
810 \begin{minipage}{2.8cm}
811 \underline{Hexagonal} \hspace{2pt}
812 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
813 $E_{\text{f}}^*=9.05\text{ eV}$\\
814 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
815 \end{minipage}
816 \begin{minipage}{0.4cm}
817 \begin{center}
818 $\Rightarrow$
819 \end{center}
820 \end{minipage}
821 \begin{minipage}{2.8cm}
822 \underline{\hkl<1 0 0>}\\
823 $E_{\text{f}}=3.88\text{ eV}$\\
824 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
825 \end{minipage}
826 }
827 \begin{minipage}{1.4cm}
828 \hfill
829 \end{minipage}
830 \begin{minipage}{3.0cm}
831 \begin{flushright}
832 \underline{Tetrahedral}\\
833 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
834 \end{flushright}
835 \end{minipage}
836
837 \framebox{
838 \begin{minipage}{2.8cm}
839 \underline{Bond-centered}\\
840 $E_{\text{f}}^*=5.59\text{ eV}$\\
841 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
842 \end{minipage}
843 \begin{minipage}{0.4cm}
844 \begin{center}
845 $\Rightarrow$
846 \end{center}
847 \end{minipage}
848 \begin{minipage}{2.8cm}
849 \underline{\hkl<1 1 0> dumbbell}\\
850 $E_{\text{f}}=5.18\text{ eV}$\\
851 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
852 \end{minipage}
853 }
854 \begin{minipage}{1.4cm}
855 \hfill
856 \end{minipage}
857 \begin{minipage}{3.0cm}
858 \begin{flushright}
859 \underline{Substitutional}\\
860 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
861 \end{flushright}
862 \end{minipage}
863
864 \end{slide}
865
866 \begin{slide}
867
868 \headphd
869 {\large\bf\boldmath
870  C interstitial migration --- ab initio
871 }
872
873 \scriptsize
874
875 \vspace{0.3cm}
876
877 \begin{minipage}{6.8cm}
878 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
879 \begin{minipage}{2.0cm}
880 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
881 \end{minipage}
882 \begin{minipage}{0.2cm}
883 $\rightarrow$
884 \end{minipage}
885 \begin{minipage}{2.0cm}
886 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
887 \end{minipage}
888 \begin{minipage}{0.2cm}
889 $\rightarrow$
890 \end{minipage}
891 \begin{minipage}{2.0cm}
892 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
893 \end{minipage}\\[0.1cm]
894 Symmetry:\\
895 $\Rightarrow$ Sufficient to consider \hkl[00-1] to BC transition\\
896 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
897 \end{minipage}
898 \begin{minipage}{5.4cm}
899 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
900 %\end{minipage}\\[0.2cm]
901 \end{minipage}\\[0.4cm]
902 %\hrule
903 %
904 \begin{minipage}{6.8cm}
905 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
906 \begin{minipage}{2.0cm}
907 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
908 \end{minipage}
909 \begin{minipage}{0.2cm}
910 $\rightarrow$
911 \end{minipage}
912 \begin{minipage}{2.0cm}
913 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
914 \end{minipage}
915 \begin{minipage}{0.2cm}
916 $\rightarrow$
917 \end{minipage}
918 \begin{minipage}{2.0cm}
919 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
920 \end{minipage}\\[0.1cm]
921 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
922 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
923 Note: Change in orientation
924 \end{minipage}
925 \begin{minipage}{5.4cm}
926 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
927 \end{minipage}\\[0.1cm]
928 %
929 %\begin{center}
930 %Reorientation pathway composed of two consecutive processes of the above type
931 %\end{center}
932
933 \end{slide}
934
935 \begin{slide}
936
937 \headphd
938 {\large\bf\boldmath
939  C interstitial migration --- analytical potential
940 }
941
942 \scriptsize
943
944 \vspace{0.3cm}
945
946 \begin{minipage}[t]{6.0cm}
947 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
948 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
949 \begin{itemize}
950  \item Lowermost migration barrier
951  \item $\Delta E \approx \unit[2.2]{eV}$
952  \item 2.4 times higher than ab initio result
953  \item Different pathway
954 \end{itemize}
955 \end{minipage}
956 \begin{minipage}[t]{0.2cm}
957 \hfill
958 \end{minipage}
959 \begin{minipage}[t]{6.0cm}
960 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
961 \vspace{0.1cm}
962 \begin{itemize}
963  \item Bond-centered configuration unstable\\
964        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
965  \item Minimum of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
966        $\rightarrow$ \ci{} \hkl<1 1 0> DB
967 \end{itemize}
968 \vspace{0.1cm}
969 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
970 \begin{itemize}
971  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
972  \item 2.4 -- 3.4 times higher than ab initio result
973  \item After all: Change of the DB orientation
974 \end{itemize}
975 \end{minipage}
976
977 \vspace{0.5cm}
978 \begin{center}
979 {\color{red}\bf Drastically overestimated diffusion barrier}
980 \end{center}
981
982 \begin{pspicture}(0,0)(0,0)
983 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
984 \end{pspicture}
985
986 \end{slide}
987
988 \begin{slide}
989
990 \headphd
991 {\large\bf\boldmath
992  Defect combinations --- ab inito
993 }
994
995 \footnotesize
996
997 \vspace{0.3cm}
998
999 \begin{minipage}{9cm}
1000 {\bf
1001  Summary of combinations}\\[0.1cm]
1002 {\scriptsize
1003 \begin{tabular}{l c c c c c c}
1004 \hline
1005  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1006  \hline
1007  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1008  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1009  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1010  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1011  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1012  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1013  \hline
1014  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1015  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1016 \hline
1017 \end{tabular}
1018 }
1019 \vspace{0.2cm}
1020 \begin{center}
1021 {\color{blue}
1022  $E_{\text{b}}$ explainable by stress compensation / increase
1023 }
1024 \end{center}
1025 \end{minipage}
1026 \begin{minipage}{3cm}
1027 \includegraphics[width=3.5cm]{comb_pos.eps}
1028 \end{minipage}
1029
1030 \vspace{0.2cm}
1031
1032 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1033 \begin{minipage}[t]{3.2cm}
1034 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1035 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1036 \end{minipage}
1037 \begin{minipage}[t]{3.0cm}
1038 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1039 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1040 \end{minipage}
1041 \begin{minipage}[t]{6.1cm}
1042 \vspace{0.7cm}
1043 \begin{itemize}
1044  \item \ci{} agglomeration energetically favorable
1045  \item Most favorable: C clustering\\
1046        {\color{red}However \ldots}\\
1047         \ldots high migration barrier ($>4\,\text{eV}$)\\
1048         \ldots entropy:
1049         $4\times{\color{cyan}[-2.25]}$ versus
1050         $2\times{\color{orange}[-2.39]}$
1051 \end{itemize}
1052 \begin{center}
1053 {\color{blue}\ci{} agglomeration / no C clustering}
1054 \end{center}
1055 \end{minipage}
1056
1057 \end{slide}
1058
1059 \begin{slide}
1060
1061 \headphd
1062 {\large\bf\boldmath
1063  Defect combinations
1064 }
1065
1066 \footnotesize
1067
1068 \vspace{0.3cm}
1069
1070 \begin{minipage}{9cm}
1071 {\bf
1072  Summary of combinations}\\[0.1cm]
1073 {\scriptsize
1074 \begin{tabular}{l c c c c c c}
1075 \hline
1076  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1077  \hline
1078  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1079  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1080  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1081  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1082  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1083  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1084  \hline
1085  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1086  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1087 \hline
1088 \end{tabular}
1089 }
1090 \vspace{0.2cm}
1091 \begin{center}
1092 {\color{blue}
1093  $E_{\text{b}}$ explainable by stress compensation / increase
1094 }
1095 \end{center}
1096 \end{minipage}
1097 \begin{minipage}{3cm}
1098 \includegraphics[width=3.5cm]{comb_pos.eps}
1099 \end{minipage}
1100
1101 \vspace{0.2cm}
1102
1103 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1104 \begin{minipage}[t]{3.2cm}
1105 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1106 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1107 \end{minipage}
1108 \begin{minipage}[t]{3.0cm}
1109 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1110 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1111 \end{minipage}
1112 \begin{minipage}[t]{6.1cm}
1113 \vspace{0.7cm}
1114 \begin{itemize}
1115  \item \ci{} agglomeration energetically favorable
1116  \item Most favorable: C clustering\\
1117        {\color{red}However \ldots}\\
1118         \ldots high migration barrier ($>4\,\text{eV}$)\\
1119         \ldots entropy:
1120         $4\times{\color{cyan}[-2.25]}$ versus
1121         $2\times{\color{orange}[-2.39]}$
1122 \end{itemize}
1123 \begin{center}
1124 {\color{blue}\ci{} agglomeration / no C clustering}
1125 \end{center}
1126 \end{minipage}
1127
1128 % insert graph ...
1129 \begin{pspicture}(0,0)(0,0)
1130 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1131 \begin{minipage}{14cm}
1132 \hfill
1133 \vspace{12cm}
1134 \end{minipage}
1135 }}
1136 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1137 \begin{minipage}{8cm}
1138 \begin{center}
1139 \vspace{0.2cm}
1140 \scriptsize
1141 Interaction along \hkl[1 1 0]
1142 \includegraphics[width=7cm]{db_along_110_cc.ps}
1143 \end{center}
1144 \end{minipage}
1145 }}}
1146 \end{pspicture}
1147
1148 \end{slide}
1149
1150 \begin{slide}
1151
1152 \headphd
1153 {\large\bf
1154  Defect combinations of C-Si dimers and vacancies
1155 }
1156 \footnotesize
1157
1158 \vspace{0.2cm}
1159
1160 \begin{minipage}[b]{2.6cm}
1161 \begin{flushleft}
1162 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1163 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1164 \end{flushleft}
1165 \end{minipage}
1166 \begin{minipage}[b]{7cm}
1167 \hfill
1168 \end{minipage}
1169 \begin{minipage}[b]{2.6cm}
1170 \begin{flushright}
1171 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1172 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1173 \end{flushright}
1174 \end{minipage}\\[0.2cm]
1175
1176 \begin{minipage}{6.5cm}
1177 \includegraphics[width=6.0cm]{059-539.ps}
1178 \end{minipage}
1179 \begin{minipage}{5.7cm}
1180 \includegraphics[width=6.0cm]{314-539.ps}
1181 \end{minipage}
1182
1183 \begin{pspicture}(0,0)(0,0)
1184 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1185
1186 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1187 \begin{minipage}{6.5cm}
1188 \begin{center}
1189 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1190 Low migration barrier towards C$_{\text{sub}}$\\
1191 \&\\
1192 High barrier for reverse process\\[0.3cm]
1193 {\color{blue}
1194 High probability of stable C$_{\text{sub}}$ configuration
1195 }
1196 \end{center}
1197 \end{minipage}
1198 }}}
1199 \end{pspicture}
1200
1201 \end{slide}
1202
1203 \begin{slide}
1204
1205 \headphd
1206 {\large\bf
1207  Combinations of substitutional C and Si self-interstitials
1208 }
1209
1210 \scriptsize
1211
1212 \vspace{0.3cm}
1213
1214 \begin{minipage}{6.2cm}
1215 \begin{center}
1216 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1217 \begin{itemize}
1218  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1219  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1220  \item Interaction drops quickly to zero\\
1221        $\rightarrow$ low capture radius
1222 \end{itemize}
1223 \end{center}
1224 \end{minipage}
1225 \begin{minipage}{0.2cm}
1226 \hfill
1227 \end{minipage}
1228 \begin{minipage}{6.0cm}
1229 \begin{center}
1230 {\bf Transition from the ground state}
1231 \begin{itemize}
1232  \item Low transition barrier
1233  \item Barrier smaller than \ci{} migration barrier
1234  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1235        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1236 \end{itemize}
1237 \end{center}
1238 \end{minipage}\\[0.3cm]
1239
1240 \begin{minipage}{6.0cm}
1241 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1242 \end{minipage}
1243 \begin{minipage}{0.4cm}
1244 \hfill
1245 \end{minipage}
1246 \begin{minipage}{6.0cm}
1247 \begin{flushright}
1248 \includegraphics[width=6.0cm]{162-097.ps}
1249 \end{flushright}
1250 \end{minipage}
1251
1252 \begin{pspicture}(0,0)(0,0)
1253 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1254 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1255 \begin{minipage}{8cm}
1256 \begin{center}
1257 \vspace{0.1cm}
1258 {\color{black}
1259 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1260 IBS --- process far from equilibrium\\
1261 }
1262 \end{center}
1263 \end{minipage}
1264 }}}
1265 \end{pspicture}
1266
1267 \end{slide}
1268
1269 \begin{slide}
1270
1271 \headphd
1272 {\large\bf
1273  Combinations of substitutional C and Si self-interstitials
1274 }
1275
1276 \scriptsize
1277
1278 \vspace{0.3cm}
1279
1280 \begin{minipage}{6.2cm}
1281 \begin{center}
1282 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1283 \begin{itemize}
1284  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1285  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1286  \item Interaction drops quickly to zero\\
1287        $\rightarrow$ low capture radius
1288 \end{itemize}
1289 \end{center}
1290 \end{minipage}
1291 \begin{minipage}{0.2cm}
1292 \hfill
1293 \end{minipage}
1294 \begin{minipage}{6.0cm}
1295 \begin{center}
1296 {\bf Transition from the ground state}
1297 \begin{itemize}
1298  \item Low transition barrier
1299  \item Barrier smaller than \ci{} migration barrier
1300  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1301        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1302 \end{itemize}
1303 \end{center}
1304 \end{minipage}\\[0.3cm]
1305
1306 \begin{minipage}{6.0cm}
1307 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1308 \end{minipage}
1309 \begin{minipage}{0.4cm}
1310 \hfill
1311 \end{minipage}
1312 \begin{minipage}{6.0cm}
1313 \begin{flushright}
1314 \includegraphics[width=6.0cm]{162-097.ps}
1315 \end{flushright}
1316 \end{minipage}
1317
1318 \begin{pspicture}(0,0)(0,0)
1319 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1320 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1321 \begin{minipage}{8cm}
1322 \begin{center}
1323 \vspace{0.1cm}
1324 {\color{black}
1325 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1326 IBS --- process far from equilibrium\\
1327 }
1328 \end{center}
1329 \end{minipage}
1330 }}}
1331 \end{pspicture}
1332
1333 % md support
1334 \begin{pspicture}(0,0)(0,0)
1335 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1336 \begin{minipage}{14cm}
1337 \hfill
1338 \vspace{14cm}
1339 \end{minipage}
1340 }}
1341 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1342 \begin{minipage}{11cm}
1343 \begin{center}
1344 \vspace{0.2cm}
1345 \scriptsize
1346 Ab initio MD at \degc{900}\\[0.4cm]
1347 \begin{minipage}{5.4cm}
1348 \centering
1349 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1350 $t=\unit[2230]{fs}$
1351 \end{minipage}
1352 \begin{minipage}{5.4cm}
1353 \centering
1354 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1355 $t=\unit[2900]{fs}$
1356 \end{minipage}\\[0.5cm]
1357 {\color{blue}
1358 Contribution of entropy to structural formation\\[0.1cm]
1359 }
1360 \end{center}
1361 \end{minipage}
1362 }}}
1363 \end{pspicture}
1364
1365 \end{slide}
1366
1367 \begin{slide}
1368
1369 \headphd
1370 {\large\bf
1371  Silicon carbide precipitation simulations
1372 }
1373
1374 \small
1375
1376 \vspace{0.2cm}
1377
1378 {\bf Procedure}
1379
1380 {\scriptsize
1381  \begin{pspicture}(0,0)(12,6.5)
1382   % nodes
1383   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1384    \parbox{7cm}{
1385    \begin{itemize}
1386     \item Create c-Si volume
1387     \item Periodc boundary conditions
1388     \item Set requested $T$ and $p=0\text{ bar}$
1389     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1390    \end{itemize}
1391   }}}}
1392   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1393    \parbox{7cm}{
1394    Insertion of C atoms at constant T
1395    \begin{itemize}
1396     \item total simulation volume {\pnode{in1}}
1397     \item volume of minimal SiC precipitate size {\pnode{in2}}
1398     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1399           precipitate
1400    \end{itemize} 
1401   }}}}
1402   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1403    \parbox{7.0cm}{
1404    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1405   }}}}
1406   \ncline[]{->}{init}{insert}
1407   \ncline[]{->}{insert}{cool}
1408   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1409   \rput(7.6,6){\footnotesize $V_1$}
1410   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1411   \rput(8.9,4.85){\tiny $V_2$}
1412   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1413   \rput(9.25,4.45){\footnotesize $V_3$}
1414   \rput(7.9,3.2){\pnode{ins1}}
1415   \rput(8.92,2.8){\pnode{ins2}}
1416   \rput(10.8,2.4){\pnode{ins3}}
1417   \ncline[]{->}{in1}{ins1}
1418   \ncline[]{->}{in2}{ins2}
1419   \ncline[]{->}{in3}{ins3}
1420  \end{pspicture}
1421 }
1422
1423 \vspace{-0.5cm}
1424
1425 {\bf Note}
1426
1427 \footnotesize
1428
1429 \begin{minipage}{5.7cm}
1430 \begin{itemize}
1431  \item Amount of C atoms: 6000\\
1432        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1433  \item Simulation volume: $31^3$ Si unit cells\\
1434        (238328 Si atoms)
1435 \end{itemize}
1436 \end{minipage}
1437 \begin{minipage}{0.3cm}
1438 \hfill
1439 \end{minipage}
1440 \framebox{
1441 \begin{minipage}{6.0cm}
1442 Restricted to classical potential caclulations\\
1443 $\rightarrow$ Low C diffusion / overestimated barrier\\
1444 $\rightarrow$ Consider $V_2$ and $V_3$
1445 %\begin{itemize}
1446 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1447 %\end{itemize}
1448 \end{minipage}
1449 }
1450
1451 \end{slide}
1452
1453 \begin{slide}
1454
1455 \headphd
1456 {\large\bf\boldmath
1457  Silicon carbide precipitation simulations at \degc{450} as in IBS
1458 }
1459
1460 \small
1461
1462 \begin{minipage}{6.3cm}
1463 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1464 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1465 \hfill
1466 \end{minipage} 
1467 \begin{minipage}{6.1cm}
1468 \scriptsize
1469 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1470 \ci{} \hkl<1 0 0> dumbbell dominated structure
1471 \begin{itemize}
1472  \item Si-C bumbs around \unit[0.19]{nm}
1473  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1474        concatenated differently oriented \ci{} DBs
1475  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1476 \end{itemize}
1477 \begin{pspicture}(0,0)(6.0,1.0)
1478 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1479 \begin{minipage}{6cm}
1480 \centering
1481 Formation of \ci{} dumbbells\\
1482 C atoms separated as expected in 3C-SiC
1483 \end{minipage}
1484 }}
1485 \end{pspicture}\\[0.1cm]
1486 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1487 \begin{itemize}
1488 \item High amount of strongly bound C-C bonds
1489 \item Increased defect \& damage density\\
1490       $\rightarrow$ Arrangements hard to categorize and trace
1491 \item Only short range order observable
1492 \end{itemize}
1493 \begin{pspicture}(0,0)(6.0,0.8)
1494 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1495 \begin{minipage}{6cm}
1496 \centering
1497 Amorphous SiC-like phase
1498 \end{minipage}
1499 }}
1500 \end{pspicture}\\[0.3cm]
1501 \begin{pspicture}(0,0)(6.0,2.0)
1502 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1503 \begin{minipage}{6cm}
1504 \hfill
1505 \vspace{2.5cm}
1506 \end{minipage}
1507 }}
1508 \end{pspicture}
1509 \end{minipage} 
1510
1511 \end{slide}
1512
1513 \begin{slide}
1514
1515 \headphd
1516 {\large\bf\boldmath
1517  Silicon carbide precipitation simulations at \degc{450} as in IBS
1518 }
1519
1520 \small
1521
1522 \begin{minipage}{6.3cm}
1523 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1524 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1525 \hfill
1526 \end{minipage} 
1527 \begin{minipage}{6.1cm}
1528 \scriptsize
1529 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1530 \ci{} \hkl<1 0 0> dumbbell dominated structure
1531 \begin{itemize}
1532  \item Si-C bumbs around \unit[0.19]{nm}
1533  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1534        concatenated differently oriented \ci{} DBs
1535  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1536 \end{itemize}
1537 \begin{pspicture}(0,0)(6.0,1.0)
1538 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1539 \begin{minipage}{6cm}
1540 \centering
1541 Formation of \ci{} dumbbells\\
1542 C atoms separated as expected in 3C-SiC
1543 \end{minipage}
1544 }}
1545 \end{pspicture}\\[0.1cm]
1546 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1547 \begin{itemize}
1548 \item High amount of strongly bound C-C bonds
1549 \item Increased defect \& damage density\\
1550       $\rightarrow$ Arrangements hard to categorize and trace
1551 \item Only short range order observable
1552 \end{itemize}
1553 \begin{pspicture}(0,0)(6.0,0.8)
1554 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1555 \begin{minipage}{6cm}
1556 \centering
1557 Amorphous SiC-like phase
1558 \end{minipage}
1559 }}
1560 \end{pspicture}\\[0.3cm]
1561 \begin{pspicture}(0,0)(6.0,2.0)
1562 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1563 \begin{minipage}{6cm}
1564 \vspace{0.1cm}
1565 \centering
1566 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1567 \begin{minipage}{0.8cm}
1568 {\bf\boldmath $V_1$:}
1569 \end{minipage}
1570 \begin{minipage}{5.1cm}
1571 Formation of \ci{} indeed occurs\\
1572 Agllomeration not observed
1573 \end{minipage}\\[0.3cm]
1574 \begin{minipage}{0.8cm}
1575 {\bf\boldmath $V_{2,3}$:}
1576 \end{minipage}
1577 \begin{minipage}{5.1cm}
1578 Amorphous SiC-like structure\\
1579 (not expected at \degc{450})\\[0.05cm]
1580 No rearrangement/transition into 3C-SiC
1581 \end{minipage}\\[0.1cm]
1582 \end{minipage}
1583 }}
1584 \end{pspicture}
1585 \end{minipage} 
1586
1587 \end{slide}
1588
1589 \begin{slide}
1590
1591 \headphd
1592 {\large\bf
1593  Limitations of MD and short range potentials
1594 }
1595
1596 \small
1597
1598 \vspace{0.2cm}
1599
1600 {\bf Time scale problem of MD}\\[0.2cm]
1601 Minimize integration error \& precise thermodynamic sampling\\
1602 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1603               $\omega$: vibrational mode\\
1604 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1605 Several local minima separated by large energy barriers\\
1606 $\Rightarrow$ Transition event corresponds to a multiple
1607               of vibrational periods\\
1608 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1609               infrequent transition events\\[0.2cm]
1610 {\color{blue}Accelerated methods:}
1611 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1612
1613 \vspace{0.2cm}
1614
1615 {\bf Limitations related to the short range potential}\\[0.2cm]
1616 Cut-off function limits interaction to next neighbours\\
1617 $\Rightarrow$ Overestimated diffusion barrier (factor: 2.4--3.4)
1618
1619 \vspace{1.4cm}
1620
1621 {\bf Approach to the (twofold) problem}\\[0.2cm]
1622 Increased temperature simulations without TAD corrections\\
1623 Accelerated methods or higher time scales exclusively not sufficient!
1624
1625 \begin{pspicture}(0,0)(0,0)
1626 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1627 \begin{minipage}{7.5cm}
1628 \centering
1629 \vspace{0.05cm}
1630 Potential enhanced slow phase space propagation
1631 \end{minipage}
1632 }}
1633 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1634 \begin{minipage}{2.7cm}
1635 \tiny
1636 \centering
1637 retain proper\\
1638 thermodynamic sampling
1639 \end{minipage}
1640 }}
1641 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1642 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1643 \begin{minipage}{3.6cm}
1644 \tiny
1645 \centering
1646 \underline{IBS}\\[0.1cm]
1647 3C-SiC also observed for higher T\\[0.1cm]
1648 Higher T inside sample\\[0.1cm]
1649 Structural evolution vs.\\
1650 equilibrium properties
1651 \end{minipage}
1652 }}
1653 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1654 \end{pspicture}
1655
1656 \end{slide}
1657
1658 \begin{slide}
1659
1660 \headphd
1661 {\large\bf\boldmath
1662  Increased temperature simulations --- $V_1$
1663 }
1664
1665 \small
1666
1667 \begin{minipage}{6.2cm}
1668 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1669 \hfill
1670 \end{minipage}
1671 \begin{minipage}{6.2cm}
1672 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1673 \end{minipage}
1674
1675 \begin{minipage}{6.2cm}
1676 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1677 \hfill
1678 \end{minipage}
1679 \begin{minipage}{6.3cm}
1680 \scriptsize
1681  \underline{Si-C bonds:}
1682  \begin{itemize}
1683   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1684   \item Structural change: \ci{} \hkl<1 0 0> DB $\rightarrow$
1685         {\color{blue}\cs{}}
1686  \end{itemize}
1687  \underline{Si-Si bonds:}
1688  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1689  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1690  \underline{C-C bonds:}
1691  \begin{itemize}
1692   \item C-C next neighbour pairs reduced (mandatory)
1693   \item Peak at 0.3 nm slightly shifted\\[0.05cm]
1694         $\searrow$ \ci{} combinations (dashed arrows)\\
1695         $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
1696         $\nearrow$ \ci{} pure \cs{} combinations ($\Downarrow$)\\[0.05cm]
1697         Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
1698  \end{itemize}
1699 \end{minipage}
1700
1701 \end{slide}
1702
1703 \begin{slide}
1704
1705 \headphd
1706 {\large\bf\boldmath
1707  Increased temperature simulations --- $V_1$
1708 }
1709
1710 \small
1711
1712 \begin{minipage}{6.2cm}
1713 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1714 \hfill
1715 \end{minipage}
1716 \begin{minipage}{6.2cm}
1717 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1718 \end{minipage}
1719
1720 \begin{minipage}{6.2cm}
1721 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1722 \hfill
1723 \end{minipage}
1724 \begin{minipage}{6.3cm}
1725 \scriptsize
1726  \underline{Si-C bonds:}
1727  \begin{itemize}
1728   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1729   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1730  \end{itemize}
1731  \underline{Si-Si bonds:}
1732  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1733  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1734  \underline{C-C bonds:}
1735  \begin{itemize}
1736   \item C-C next neighbour pairs reduced (mandatory)
1737   \item Peak at 0.3 nm slightly shifted
1738   \item Peak at 0.3 nm slightly shifted\\[0.05cm]
1739         $\searrow$ \ci{} combinations (dashed arrows)\\
1740         $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
1741         $\nearrow$ \ci{} pure \cs{} combinations ($\Downarrow$)\\[0.05cm]
1742         Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
1743  \end{itemize}
1744 \end{minipage}
1745
1746 % conclusions
1747 \begin{pspicture}(0,0)(0,0)
1748 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1749 \begin{minipage}{14cm}
1750 \hfill
1751 \vspace{14cm}
1752 \end{minipage}
1753 }}
1754 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1755 \begin{minipage}{9cm}
1756 \vspace{0.2cm}
1757 \small
1758 \begin{center}
1759 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
1760 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
1761 \end{center}
1762 \begin{itemize}
1763 \item Stretched coherent SiC structures directly observed
1764 \begin{center}
1765 \psframebox[linecolor=blue,linewidth=0.05cm]{
1766 \begin{minipage}{7cm}
1767 \centering
1768 \cs{} extensively involved in the precipitation mechanism\\
1769 \end{minipage}
1770 }
1771 \end{center}
1772 \item Emission of \si{} serves several needs:
1773       \begin{itemize}
1774        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
1775        \item Building block for surrounding Si host \& further SiC
1776        \item Strain compensation \ldots\\
1777              \ldots Si/SiC interface\\
1778              \ldots within stretched coherent SiC structure
1779       \end{itemize}
1780 \item Explains annealing behavior of high/low T C implantations
1781       \begin{itemize}
1782        \item Low T: highly mobile {\color{red}\ci}
1783        \item High T: stable configurations of {\color{blue}\cs}
1784       \end{itemize}
1785 \end{itemize}
1786 \vspace{0.2cm}
1787 \centering
1788 \psframebox[linecolor=blue,linewidth=0.05cm]{
1789 \begin{minipage}{7cm}
1790 \centering
1791 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
1792 \end{minipage}
1793 }
1794 \end{minipage}
1795 \vspace{0.2cm}
1796 }}
1797 \end{pspicture}
1798
1799 \end{slide}
1800
1801 % skip high c conc results
1802 \ifnum1=0
1803
1804 \begin{slide}
1805
1806  {\large\bf
1807   Increased temperature simulations at high C concentration
1808  }
1809
1810 \footnotesize
1811
1812 \begin{minipage}{6.0cm}
1813 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1814 \end{minipage}
1815 \begin{minipage}{6.0cm}
1816 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1817 \end{minipage}
1818
1819 \vspace{0.1cm}
1820
1821 \scriptsize
1822
1823 \framebox{
1824 \begin{minipage}[t]{6.0cm}
1825 0.186 nm: Si-C pairs $\uparrow$\\
1826 (as expected in 3C-SiC)\\[0.2cm]
1827 0.282 nm: Si-C-C\\[0.2cm]
1828 $\approx$0.35 nm: C-Si-Si
1829 \end{minipage}
1830 }
1831 \begin{minipage}{0.2cm}
1832 \hfill
1833 \end{minipage}
1834 \framebox{
1835 \begin{minipage}[t]{6.0cm}
1836 0.15 nm: C-C pairs $\uparrow$\\
1837 (as expected in graphite/diamond)\\[0.2cm]
1838 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
1839 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
1840 \end{minipage}
1841 }
1842
1843 \begin{itemize}
1844 \item Decreasing cut-off artifact
1845 \item {\color{red}Amorphous} SiC-like phase remains
1846 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1847 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
1848 \end{itemize}
1849
1850 \vspace{-0.1cm}
1851
1852 \begin{center}
1853 {\color{blue}
1854 \framebox{
1855 {\color{black}
1856 High C \& small $V$ \& short $t$
1857 $\Rightarrow$
1858 }
1859 Slow restructuring due to strong C-C bonds
1860 {\color{black}
1861 $\Leftarrow$
1862 High C \& low T implants
1863 }
1864 }
1865 }
1866 \end{center}
1867
1868 \end{slide}
1869
1870 % skip high c conc
1871 \fi
1872
1873 \begin{slide}
1874
1875 \headphd
1876 {\large\bf
1877  Summary and Conclusions
1878 }
1879
1880 \footnotesize
1881
1882 \vspace{0.1cm}
1883
1884 \framebox{
1885 \begin{minipage}{12.3cm}
1886  \underline{Defects}
1887  \begin{itemize}
1888    \item DFT / EA
1889         \begin{itemize}
1890          \item Point defects excellently / fairly well described
1891                by DFT / EA
1892          \item Identified \ci{} migration path
1893          \item EA drastically overestimates the diffusion barrier
1894         \end{itemize}
1895    \item Combinations of defects (DFT)
1896          \begin{itemize}
1897           \item Agglomeration of point defects energetically favorable
1898           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
1899           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
1900                 Low barrier (\unit[0.77]{eV}) \& low capture radius
1901         \end{itemize}
1902  \end{itemize}
1903 \end{minipage}
1904 }
1905
1906 \framebox{
1907 \begin{minipage}[t]{12.3cm}
1908  \underline{Pecipitation simulations}
1909  \begin{itemize}
1910   \item Problem of potential enhanced slow phase space propagation
1911   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
1912   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
1913   \item High T necessary to simulate IBS conditions (far from equilibrium)
1914   \item \cs{} involved in the precipitation process at elevated temperatures
1915   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
1916         (stretched SiC, interface)
1917  \end{itemize}
1918 \end{minipage}
1919 }
1920
1921 \begin{center}
1922 {\color{blue}\bf
1923 \framebox{IBS: 3C-SiC precipitation occurs by successive agglomeration of \cs{}}
1924 }
1925 \end{center}
1926
1927 \end{slide}
1928
1929 \begin{slide}
1930
1931 \headphd
1932 {\large\bf
1933  Acknowledgements
1934 }
1935
1936  \vspace{0.1cm}
1937
1938  \small
1939
1940  Thanks to \ldots
1941
1942  \underline{Augsburg}
1943  \begin{itemize}
1944   \item Prof. B. Stritzker
1945   \item Ralf Utermann
1946   \item EP \RM{4}
1947  \end{itemize}
1948  
1949  \underline{Helsinki}
1950  \begin{itemize}
1951   \item Prof. K. Nordlund
1952  \end{itemize}
1953  
1954  \underline{Munich}
1955  \begin{itemize}
1956   \item Bayerische Forschungsstiftung
1957  \end{itemize}
1958  
1959  \underline{Paderborn}
1960  \begin{itemize}
1961   \item Prof. J. Lindner
1962   \item Prof. G. Schmidt
1963   \item Dr. E. Rauls
1964  \end{itemize}
1965
1966 \vspace{0.2cm}
1967
1968 \begin{center}
1969 \framebox{
1970 \normalsize\bf Thank you for your attention!
1971 }
1972 \end{center}
1973 Referees: PD V. Eyert \& Prof. Haider
1974
1975 \end{slide}
1976
1977 \begin{slide}
1978
1979 \headphd
1980  {\large\bf
1981   Polytypes of SiC\\[0.6cm]
1982  }
1983
1984 \vspace{0.6cm}
1985
1986 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
1987 \begin{minipage}{1.9cm}
1988 {\tiny cubic (twist)}
1989 \end{minipage}
1990 \begin{minipage}{2.9cm}
1991 {\tiny hexagonal (no twist)}
1992 \end{minipage}
1993
1994 \begin{picture}(0,0)(-150,0)
1995  \includegraphics[width=7cm]{polytypes.eps}
1996 \end{picture}
1997
1998 \vspace{0.6cm}
1999
2000 \footnotesize
2001
2002 \begin{tabular}{l c c c c c c}
2003 \hline
2004  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
2005 \hline
2006 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
2007 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
2008 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
2009 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
2010 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
2011 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
2012 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
2013 \hline
2014 \end{tabular}
2015
2016 \begin{pspicture}(0,0)(0,0)
2017 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
2018 \end{pspicture}
2019 \begin{pspicture}(0,0)(0,0)
2020 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
2021 \end{pspicture}
2022 \begin{pspicture}(0,0)(0,0)
2023 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
2024 \end{pspicture}
2025
2026 \end{slide}
2027
2028 \begin{slide}
2029
2030 \footnotesize
2031
2032 \headphd
2033 {\large\bf
2034  Si self-interstitial point defects in silicon\\[0.1cm]
2035 }
2036
2037 \begin{center}
2038 \begin{tabular}{l c c c c c}
2039 \hline
2040  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
2041 \hline
2042  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
2043  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
2044 \hline
2045 \end{tabular}\\[0.4cm]
2046 \end{center}
2047
2048 \begin{minipage}{3cm}
2049 \begin{center}
2050 \underline{Vacancy}\\
2051 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
2052 \end{center}
2053 \end{minipage}
2054 \begin{minipage}{3cm}
2055 \begin{center}
2056 \underline{\hkl<1 1 0> DB}\\
2057 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
2058 \end{center}
2059 \end{minipage}
2060 \begin{minipage}{3cm}
2061 \begin{center}
2062 \underline{\hkl<1 0 0> DB}\\
2063 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
2064 \end{center}
2065 \end{minipage}
2066 \begin{minipage}{3cm}
2067 \begin{center}
2068 \underline{Tetrahedral}\\
2069 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
2070 \end{center}
2071 \end{minipage}\\
2072
2073 \underline{Hexagonal} \hspace{2pt}
2074 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
2075 \framebox{
2076 \begin{minipage}{2.7cm}
2077 $E_{\text{f}}^*=4.48\text{ eV}$\\
2078 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
2079 \end{minipage}
2080 \begin{minipage}{0.4cm}
2081 \begin{center}
2082 $\Rightarrow$
2083 \end{center}
2084 \end{minipage}
2085 \begin{minipage}{2.7cm}
2086 $E_{\text{f}}=3.96\text{ eV}$\\
2087 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
2088 \end{minipage}
2089 }
2090 \begin{minipage}{5.5cm}
2091 \begin{center}
2092 {\tiny nearly T $\rightarrow$ T}\\
2093 \end{center}
2094 \includegraphics[width=6.0cm]{nhex_tet.ps}
2095 \end{minipage}
2096
2097 \end{slide}
2098
2099 \begin{slide}
2100
2101 \headphd
2102 {\large\bf\boldmath
2103  C-Si dimer \& bond-centered interstitial configuration
2104 }
2105
2106 \footnotesize
2107
2108 \vspace{0.1cm}
2109
2110 \begin{minipage}[t]{4.1cm}
2111 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
2112 \begin{minipage}{2.0cm}
2113 \begin{center}
2114 \underline{Erhart/Albe}
2115 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
2116 \end{center}
2117 \end{minipage}
2118 \begin{minipage}{2.0cm}
2119 \begin{center}
2120 \underline{\textsc{vasp}}
2121 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
2122 \end{center}
2123 \end{minipage}\\[0.2cm]
2124 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
2125 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
2126 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
2127 $\Rightarrow$ $sp^2$ hybridization
2128 \begin{center}
2129 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
2130 {\tiny Charge density isosurface}
2131 \end{center}
2132 \end{minipage}
2133 \begin{minipage}{0.2cm}
2134 \hfill
2135 \end{minipage}
2136 \begin{minipage}[t]{8.1cm}
2137 \begin{flushright}
2138 {\bf Bond-centered interstitial}\\[0.1cm]
2139 \begin{minipage}{4.4cm}
2140 %\scriptsize
2141 \begin{itemize}
2142  \item Linear Si-C-Si bond
2143  \item Si: one C \& 3 Si neighbours
2144  \item Spin polarized calculations
2145  \item No saddle point!\\
2146        Real local minimum!
2147 \end{itemize}
2148 \end{minipage}
2149 \begin{minipage}{2.7cm}
2150 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
2151 \vspace{0.2cm}
2152 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
2153 \end{minipage}
2154
2155 \framebox{
2156  \tiny
2157  \begin{minipage}[t]{6.5cm}
2158   \begin{minipage}[t]{1.2cm}
2159   {\color{red}Si}\\
2160   {\tiny sp$^3$}\\[0.8cm]
2161   \underline{${\color{black}\uparrow}$}
2162   \underline{${\color{black}\uparrow}$}
2163   \underline{${\color{black}\uparrow}$}
2164   \underline{${\color{red}\uparrow}$}\\
2165   sp$^3$
2166   \end{minipage}
2167   \begin{minipage}[t]{1.4cm}
2168   \begin{center}
2169   {\color{red}M}{\color{blue}O}\\[0.8cm]
2170   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2171   $\sigma_{\text{ab}}$\\[0.5cm]
2172   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
2173   $\sigma_{\text{b}}$
2174   \end{center}
2175   \end{minipage}
2176   \begin{minipage}[t]{1.0cm}
2177   \begin{center}
2178   {\color{blue}C}\\
2179   {\tiny sp}\\[0.2cm]
2180   \underline{${\color{white}\uparrow\uparrow}$}
2181   \underline{${\color{white}\uparrow\uparrow}$}\\
2182   2p\\[0.4cm]
2183   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
2184   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
2185   sp
2186   \end{center}
2187   \end{minipage}
2188   \begin{minipage}[t]{1.4cm}
2189   \begin{center}
2190   {\color{blue}M}{\color{green}O}\\[0.8cm]
2191   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2192   $\sigma_{\text{ab}}$\\[0.5cm]
2193   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
2194   $\sigma_{\text{b}}$
2195   \end{center}
2196   \end{minipage}
2197   \begin{minipage}[t]{1.2cm}
2198   \begin{flushright}
2199   {\color{green}Si}\\
2200   {\tiny sp$^3$}\\[0.8cm]
2201   \underline{${\color{green}\uparrow}$}
2202   \underline{${\color{black}\uparrow}$}
2203   \underline{${\color{black}\uparrow}$}
2204   \underline{${\color{black}\uparrow}$}\\
2205   sp$^3$
2206   \end{flushright}
2207   \end{minipage}
2208  \end{minipage}
2209 }\\[0.4cm]
2210
2211 %\framebox{
2212 \begin{minipage}{3.0cm}
2213 %\scriptsize
2214 \underline{Charge density}\\
2215 {\color{gray}$\bullet$} Spin up\\
2216 {\color{green}$\bullet$} Spin down\\
2217 {\color{blue}$\bullet$} Resulting spin up\\
2218 {\color{yellow}$\bullet$} Si atoms\\
2219 {\color{red}$\bullet$} C atom
2220 \end{minipage}
2221 \begin{minipage}{3.6cm}
2222 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
2223 \end{minipage}
2224 %}
2225
2226 \end{flushright}
2227
2228 \end{minipage}
2229 \begin{pspicture}(0,0)(0,0)
2230 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
2231 \end{pspicture}
2232
2233 \end{slide}
2234
2235 \end{document}
2236