sec checkin (starting sic prec sims now)
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \begin{slide}
126 \center
127 {\Huge
128 E\\
129 F\\
130 G\\
131 A B C D E F G H G F E D C B A
132 G\\
133 F\\
134 E\\
135 }
136 \end{slide}
137
138 % topic
139
140 \begin{slide}
141 \begin{center}
142
143  \vspace{16pt}
144
145  {\Large\bf
146   \hrule
147   \vspace{5pt}
148   Atomistic simulation study on silicon carbide\\[0.2cm]
149   precipitation in silicon\\
150   \vspace{10pt}
151   \hrule
152  }
153
154  \vspace{60pt}
155
156  \textsc{Frank Zirkelbach}
157
158  \vspace{60pt}
159
160  Defense of doctor's thesis
161
162  \vspace{08pt}
163
164  Augsburg, 10.01.2012
165
166 \end{center}
167 \end{slide}
168
169 % no vertical centering
170 \centerslidesfalse
171
172 % skip for preparation
173 \ifnum1=0
174
175 % intro
176
177 % motivation / properties / applications of silicon carbide
178
179 \begin{slide}
180
181 \vspace*{1.8cm}
182
183 \small
184
185 \begin{pspicture}(0,0)(13.5,5)
186
187  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
188
189  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
190  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
191
192  \rput[lt](0,4.6){\color{gray}PROPERTIES}
193
194  \rput[lt](0.3,4){wide band gap}
195  \rput[lt](0.3,3.5){high electric breakdown field}
196  \rput[lt](0.3,3){good electron mobility}
197  \rput[lt](0.3,2.5){high electron saturation drift velocity}
198  \rput[lt](0.3,2){high thermal conductivity}
199
200  \rput[lt](0.3,1.5){hard and mechanically stable}
201  \rput[lt](0.3,1){chemically inert}
202
203  \rput[lt](0.3,0.5){radiation hardness}
204
205  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
206
207  \rput[rt](12.5,3.85){high-temperature, high power}
208  \rput[rt](12.5,3.5){and high-frequency}
209  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
210
211  \rput[rt](12.5,2.35){material suitable for extreme conditions}
212  \rput[rt](12.5,2){microelectromechanical systems}
213  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
214
215  \rput[rt](12.5,0.85){first wall reactor material, detectors}
216  \rput[rt](12.5,0.5){and electronic devices for space}
217
218 \end{pspicture}
219
220 \begin{picture}(0,0)(5,-162)
221 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
222 \end{picture}
223 \begin{picture}(0,0)(-120,-162)
224 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-270,-162)
227 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
228 \end{picture}
229 %%%%
230 \begin{picture}(0,0)(10,65)
231 \includegraphics[height=2.8cm]{sic_switch.eps}
232 \end{picture}
233 %\begin{picture}(0,0)(-243,65)
234 \begin{picture}(0,0)(-110,65)
235 \includegraphics[height=2.8cm]{ise_99.eps}
236 \end{picture}
237 %\begin{picture}(0,0)(-135,65)
238 \begin{picture}(0,0)(-100,65)
239 \includegraphics[height=1.2cm]{infineon_schottky.eps}
240 \end{picture}
241 \begin{picture}(0,0)(-233,65)
242 \includegraphics[height=2.8cm]{solar_car.eps}
243 \end{picture}
244
245 \end{slide}
246
247 % motivation
248
249 \begin{slide}
250
251 \headphd
252  {\large\bf
253   Polytypes of SiC\\[0.6cm]
254  }
255
256 \vspace{0.6cm}
257
258 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
259 \begin{minipage}{1.9cm}
260 {\tiny cubic (twist)}
261 \end{minipage}
262 \begin{minipage}{2.9cm}
263 {\tiny hexagonal (no twist)}
264 \end{minipage}
265
266 \begin{picture}(0,0)(-150,0)
267  \includegraphics[width=7cm]{polytypes.eps}
268 \end{picture}
269
270 \vspace{0.6cm}
271
272 \footnotesize
273
274 \begin{tabular}{l c c c c c c}
275 \hline
276  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
277 \hline
278 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
279 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
280 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
281 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
282 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
283 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
284 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
285 \hline
286 \end{tabular}
287
288 \begin{pspicture}(0,0)(0,0)
289 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
290 \end{pspicture}
291 \begin{pspicture}(0,0)(0,0)
292 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
293 \end{pspicture}
294 \begin{pspicture}(0,0)(0,0)
295 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
296 \end{pspicture}
297
298 \end{slide}
299
300 % fabrication
301
302 \begin{slide}
303
304 \headphd
305  {\large\bf
306   Fabrication of silicon carbide
307  }
308
309  \small
310  
311  \vspace{2pt}
312
313 \begin{center}
314  {\color{gray}
315  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
316  }
317 \end{center}
318
319 \vspace{2pt}
320
321 SiC thin films by MBE \& CVD
322 \begin{itemize}
323  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
324  \item \underline{Commercially available} semiconductor power devices based on
325        \underline{\foreignlanguage{greek}{a}-SiC}
326  \item Production of favored \underline{3C-SiC} material
327        \underline{less advanced}
328  \item Quality and size not yet sufficient
329 \end{itemize}
330 \begin{picture}(0,0)(-310,-20)
331   \includegraphics[width=2.0cm]{cree.eps}
332 \end{picture}
333
334 \vspace{-0.5cm}
335
336 \begin{center}
337 \color{red}
338 \framebox{
339 {\footnotesize\color{black}
340  Mismatch in \underline{thermal expansion coeefficient}
341  and \underline{lattice parameter} w.r.t. substrate
342 }
343 }
344 \end{center}
345
346 \vspace{0.1cm}
347
348 {\bf Alternative approach}\\
349 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
350
351 \vspace{0.1cm}
352
353 \scriptsize
354
355 \framebox{
356 \begin{minipage}{3.15cm}
357  \begin{center}
358 \includegraphics[width=3cm]{imp.eps}\\
359  {\tiny
360   Carbon implantation
361  }
362  \end{center}
363 \end{minipage}
364 \begin{minipage}{3.15cm}
365  \begin{center}
366 \includegraphics[width=3cm]{annealing.eps}\\
367  {\tiny
368  Postannealing at $>$ \degc{1200}
369  }
370  \end{center}
371 \end{minipage}
372 }
373 \begin{minipage}{5.5cm}
374 \begin{center}
375 {\footnotesize
376 No surface bending effects\\
377 High areal homogenity\\[0.1cm]
378 $\Downarrow$\\[0.1cm]
379 Synthesis of large area SiC films possible
380 }
381 \end{center}
382 \end{minipage}
383
384 \end{slide}
385
386 \begin{slide}
387
388 \headphd
389 {\large\bf
390  IBS of epitaxial single crystalline 3C-SiC
391 }
392
393 \footnotesize
394
395 \vspace{0.2cm}
396
397 \begin{center}
398 \begin{itemize}
399  \item \underline{Implantation step 1}\\[0.1cm]
400         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
401         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
402         {\color{blue}precipitates}
403  \item \underline{Implantation step 2}\\[0.1cm]
404         Little remaining dose | \unit[180]{keV} | \degc{250}\\
405         $\Rightarrow$
406         Destruction/Amorphization of precipitates at layer interface
407  \item \underline{Annealing}\\[0.1cm]
408        \unit[10]{h} at \degc{1250}\\
409        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
410 \end{itemize}
411 \end{center}
412
413 \begin{minipage}{6.9cm}
414 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
415 \begin{center}
416 {\tiny
417  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
418 }
419 \end{center}
420 \end{minipage}
421 \begin{minipage}{5cm}
422 \begin{pspicture}(0,0)(0,0)
423 \rnode{box}{
424 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
425 \begin{minipage}{5.3cm}
426  \begin{center}
427  {\color{blue}
428   3C-SiC precipitation\\
429   not yet fully understood
430  }
431  \end{center}
432  \vspace*{0.1cm}
433  \renewcommand\labelitemi{$\Rightarrow$}
434  Details of the SiC precipitation
435  \begin{itemize}
436   \item significant technological progress\\
437         in SiC thin film formation
438   \item perspectives for processes relying\\
439         upon prevention of SiC precipitation
440  \end{itemize}
441 \end{minipage}
442 }}
443 \rput(-6.8,5.5){\pnode{h0}}
444 \rput(-3.0,5.5){\pnode{h1}}
445 \ncline[linecolor=blue]{-}{h0}{h1}
446 \ncline[linecolor=blue]{->}{h1}{box}
447 \end{pspicture}
448 \end{minipage}
449
450 \end{slide}
451
452 % contents
453
454 \begin{slide}
455
456 \headphd
457 {\large\bf
458   Supposed precipitation mechanism of SiC in Si
459 }
460
461  \scriptsize
462
463  \vspace{0.1cm}
464
465  \framebox{
466  \begin{minipage}{3.6cm}
467  \begin{center}
468  Si \& SiC lattice structure\\[0.1cm]
469  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
470  \end{center}
471 {\tiny
472  \begin{minipage}{1.7cm}
473 \underline{Silicon}\\
474 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
475 $a=\unit[5.429]{\\A}$\\
476 $\rho^*_{\text{Si}}=\unit[100]{\%}$
477  \end{minipage}
478  \begin{minipage}{1.7cm}
479 \underline{Silicon carbide}\\
480 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
481 $a=\unit[4.359]{\\A}$\\
482 $\rho^*_{\text{Si}}=\unit[97]{\%}$
483  \end{minipage}
484 }
485  \end{minipage}
486  }
487  \hspace{0.1cm}
488  \begin{minipage}{4.1cm}
489  \begin{center}
490  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
491  \end{center}
492  \end{minipage}
493  \hspace{0.1cm}
494  \begin{minipage}{4.0cm}
495  \begin{center}
496  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
497  \end{center}
498  \end{minipage}
499
500  \vspace{0.1cm}
501
502  \begin{minipage}{4.0cm}
503  \begin{center}
504  C-Si dimers (dumbbells)\\[-0.1cm]
505  on Si lattice sites
506  \end{center}
507  \end{minipage}
508  \hspace{0.1cm}
509  \begin{minipage}{4.1cm}
510  \begin{center}
511  Agglomeration of C-Si dumbbells\\[-0.1cm]
512  $\Rightarrow$ dark contrasts
513  \end{center}
514  \end{minipage}
515  \hspace{0.1cm}
516  \begin{minipage}{4.0cm}
517  \begin{center}
518  Precipitation of 3C-SiC in Si\\[-0.1cm]
519  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
520  \& release of Si self-interstitials
521  \end{center}
522  \end{minipage}
523
524  \vspace{0.1cm}
525
526  \begin{minipage}{4.0cm}
527  \begin{center}
528  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
529  \end{center}
530  \end{minipage}
531  \hspace{0.1cm}
532  \begin{minipage}{4.1cm}
533  \begin{center}
534  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
535  \end{center}
536  \end{minipage}
537  \hspace{0.1cm}
538  \begin{minipage}{4.0cm}
539  \begin{center}
540  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
541  \end{center}
542  \end{minipage}
543
544 \begin{pspicture}(0,0)(0,0)
545 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
546 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
547 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
548 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
549 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
550  $4a_{\text{Si}}=5a_{\text{SiC}}$
551  }}}
552 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
553 \hkl(h k l) planes match
554  }}}
555 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
556 r = \unit[2--4]{nm}
557  }}}
558 \end{pspicture}
559
560 \end{slide}
561
562 \begin{slide}
563
564 \headphd
565 {\large\bf
566  Supposed precipitation mechanism of SiC in Si
567 }
568
569  \scriptsize
570
571  \vspace{0.1cm}
572
573  \framebox{
574  \begin{minipage}{3.6cm}
575  \begin{center}
576  Si \& SiC lattice structure\\[0.1cm]
577  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
578  \end{center}
579 {\tiny
580  \begin{minipage}{1.7cm}
581 \underline{Silicon}\\
582 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
583 $a=\unit[5.429]{\\A}$\\
584 $\rho^*_{\text{Si}}=\unit[100]{\%}$
585  \end{minipage}
586  \begin{minipage}{1.7cm}
587 \underline{Silicon carbide}\\
588 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
589 $a=\unit[4.359]{\\A}$\\
590 $\rho^*_{\text{Si}}=\unit[97]{\%}$
591  \end{minipage}
592 }
593  \end{minipage}
594  }
595  \hspace{0.1cm}
596  \begin{minipage}{4.1cm}
597  \begin{center}
598  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
599  \end{center}
600  \end{minipage}
601  \hspace{0.1cm}
602  \begin{minipage}{4.0cm}
603  \begin{center}
604  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
605  \end{center}
606  \end{minipage}
607
608  \vspace{0.1cm}
609
610  \begin{minipage}{4.0cm}
611  \begin{center}
612  C-Si dimers (dumbbells)\\[-0.1cm]
613  on Si interstitial sites
614  \end{center}
615  \end{minipage}
616  \hspace{0.1cm}
617  \begin{minipage}{4.1cm}
618  \begin{center}
619  Agglomeration of C-Si dumbbells\\[-0.1cm]
620  $\Rightarrow$ dark contrasts
621  \end{center}
622  \end{minipage}
623  \hspace{0.1cm}
624  \begin{minipage}{4.0cm}
625  \begin{center}
626  Precipitation of 3C-SiC in Si\\[-0.1cm]
627  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
628  \& release of Si self-interstitials
629  \end{center}
630  \end{minipage}
631
632  \vspace{0.1cm}
633
634  \begin{minipage}{4.0cm}
635  \begin{center}
636  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
637  \end{center}
638  \end{minipage}
639  \hspace{0.1cm}
640  \begin{minipage}{4.1cm}
641  \begin{center}
642  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
643  \end{center}
644  \end{minipage}
645  \hspace{0.1cm}
646  \begin{minipage}{4.0cm}
647  \begin{center}
648  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
649  \end{center}
650  \end{minipage}
651
652 \begin{pspicture}(0,0)(0,0)
653 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
654 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
655 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
656 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
657 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
658  $4a_{\text{Si}}=5a_{\text{SiC}}$
659  }}}
660 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
661 \hkl(h k l) planes match
662  }}}
663 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
664 r = \unit[2--4]{nm}
665  }}}
666 % controversial view!
667 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
668 \begin{minipage}{14cm}
669 \hfill
670 \vspace{12cm}
671 \end{minipage}
672 }}
673 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
674 \begin{minipage}{10cm}
675 \small
676 \vspace*{0.2cm}
677 \begin{center}
678 {\color{gray}\bf Controversial findings}
679 \end{center}
680 \begin{itemize}
681 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
682  \begin{itemize}
683   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
684   \item \si{} reacting with further C in cleared volume
685  \end{itemize}
686 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
687  \begin{itemize}
688   \item Room temperature implantation $\rightarrow$ high C diffusion
689   \item Elevated temperature implantation $\rightarrow$ no C redistribution
690  \end{itemize}
691  $\Rightarrow$ mobile {\color{red}\ci} opposed to
692  stable {\color{blue}\cs{}} configurations
693 \item Strained silicon \& Si/SiC heterostructures
694       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
695  \begin{itemize}
696   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
697   \item Incoherent SiC (strain relaxation)
698  \end{itemize}
699 \end{itemize}
700 \vspace{0.1cm}
701 \begin{center}
702 {\Huge${\lightning}$} \hspace{0.3cm}
703 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
704 {\Huge${\lightning}$}
705 \end{center}
706 \vspace{0.2cm}
707 \end{minipage}
708  }}}
709 \end{pspicture}
710
711 \end{slide}
712
713 \begin{slide}
714
715 \headphd
716 {\large\bf
717  Outline
718 }
719
720  \begin{itemize}
721   {\color{gray}
722   \item Introduction / Motivation
723   \item Assumed SiC precipitation mechanisms / Controversy
724   }
725   \item Utilized simulation techniques
726         \begin{itemize}
727          \item Molecular dynamics (MD) simulations
728          \item Density functional theory (DFT) calculations
729         \end{itemize}
730   \item Simulation results
731         \begin{itemize}
732          \item C and Si self-interstitial point defects in silicon
733          \item Silicon carbide precipitation simulations
734         \end{itemize}
735   \item Summary / Conclusion
736  \end{itemize}
737
738 \end{slide}
739
740 \begin{slide}
741
742 \headphd
743 {\large\bf
744  Utilized computational methods
745 }
746
747 \vspace{0.3cm}
748
749 \small
750
751 {\bf Molecular dynamics (MD)}\\[0.1cm]
752 \scriptsize
753 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
754 \hline
755 System of $N$ particles &
756 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
757 Phase space propagation &
758 Velocity Verlet | timestep: \unit[1]{fs} \\
759 Analytical interaction potential &
760 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
761 (Erhart/Albe)
762 $\displaystyle
763 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
764     \pot_{ij} = {\color{red}f_C(r_{ij})}
765     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
766 $\\
767 Observables: time/ensemble averages &
768 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
769 \hline
770 \end{tabular}
771
772 \small
773
774 \vspace{0.3cm}
775
776 {\bf Density functional theory (DFT)}
777
778 \scriptsize
779
780 \begin{minipage}[t]{6cm}
781 \begin{itemize}
782  \item Hohenberg-Kohn theorem:\\
783        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
784  \item Kohn-Sham approach:\\
785        Single-particle effective theory
786 \end{itemize}
787 \hrule
788 \begin{itemize}
789 \item Code: \textsc{vasp}
790 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
791 %$\displaystyle
792 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
793 %$\\
794 %$\displaystyle
795 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
796 %$
797 \item Ultrasoft pseudopotential
798 \item Exchange \& correlation: GGA
799 \item Brillouin zone sampling: $\Gamma$-point
800 \item Supercell: $N=216\pm2$
801 \end{itemize}
802 \end{minipage}
803 \begin{minipage}{6cm}
804 \begin{pspicture}(0,0)(0,0)
805 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
806 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
807 $\displaystyle
808 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
809 $
810 }}
811 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
812 $\displaystyle
813 n(r)=\sum_i^N|\Phi_i(r)|^2
814 $
815 }}
816 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
817 $\displaystyle
818 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
819                  +V_{\text{XC}}[n(r)]
820 $
821 }}
822 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
823 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
824 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
825
826 \end{pspicture}
827 \end{minipage}
828
829 \end{slide}
830
831 \begin{slide}
832
833 \headphd
834  {\large\bf
835   Point defects \& defect migration
836  }
837
838  \small
839
840  \vspace{0.2cm}
841
842 \begin{minipage}[b]{7.5cm}
843 {\bf Defect structure}\\
844   \begin{pspicture}(0,0)(7,4.4)
845   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
846    \parbox{7cm}{
847    \begin{itemize}
848     \item Creation of c-Si simulation volume
849     \item Periodic boundary conditions
850     \item $T=0\text{ K}$, $p=0\text{ bar}$
851    \end{itemize}
852   }}}}
853 \rput(3.5,1.3){\rnode{insert}{\psframebox{
854  \parbox{7cm}{
855   \begin{center}
856   Insertion of interstitial C/Si atoms
857   \end{center}
858   }}}}
859   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
860    \parbox{7cm}{
861    \begin{center}
862    Relaxation / structural energy minimization
863    \end{center}
864   }}}}
865   \ncline[]{->}{init}{insert}
866   \ncline[]{->}{insert}{cool}
867  \end{pspicture}
868 \end{minipage}
869 \begin{minipage}[b]{4.5cm}
870 \begin{center}
871 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
872 \end{center}
873 \begin{minipage}{2.21cm}
874 {\scriptsize
875 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
876 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
877 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
878 }
879 \end{minipage}
880 \begin{minipage}{2.21cm}
881 {\scriptsize
882 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
883 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
884 {\color{black}$\bullet$} Vac. / Sub.
885 }
886 \end{minipage}
887 \end{minipage}
888
889 \vspace{0.2cm}
890
891 \begin{minipage}[b]{6cm}
892 {\bf Defect formation energy}\\
893 \framebox{
894 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
895 Particle reservoir: Si \& SiC\\[0.2cm]
896 {\bf Binding energy}\\
897 \framebox{
898 $
899 E_{\text{b}}=
900 E_{\text{f}}^{\text{comb}}-
901 E_{\text{f}}^{1^{\text{st}}}-
902 E_{\text{f}}^{2^{\text{nd}}}
903 $
904 }\\[0.1cm]
905 \footnotesize
906 $E_{\text{b}}<0$: energetically favorable configuration\\
907 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
908 \end{minipage}
909 \begin{minipage}[b]{6cm}
910 {\bf Migration barrier}
911 \footnotesize
912 \begin{itemize}
913  \item Displace diffusing atom
914  \item Constrain relaxation of (diffusing) atoms
915  \item Record configurational energy
916 \end{itemize}
917 \begin{picture}(0,0)(-60,-33)
918 \includegraphics[width=4.5cm]{crt_mod.eps}
919 \end{picture}
920 \end{minipage}
921
922 \end{slide}
923
924 \begin{slide}
925
926 \footnotesize
927
928 \headphd
929 {\large\bf
930  Si self-interstitial point defects in silicon\\[0.1cm]
931 }
932
933 \begin{center}
934 \begin{tabular}{l c c c c c}
935 \hline
936  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
937 \hline
938  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
939  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
940 \hline
941 \end{tabular}\\[0.4cm]
942 \end{center}
943
944 \begin{minipage}{3cm}
945 \begin{center}
946 \underline{Vacancy}\\
947 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
948 \end{center}
949 \end{minipage}
950 \begin{minipage}{3cm}
951 \begin{center}
952 \underline{\hkl<1 1 0> DB}\\
953 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
954 \end{center}
955 \end{minipage}
956 \begin{minipage}{3cm}
957 \begin{center}
958 \underline{\hkl<1 0 0> DB}\\
959 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
960 \end{center}
961 \end{minipage}
962 \begin{minipage}{3cm}
963 \begin{center}
964 \underline{Tetrahedral}\\
965 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
966 \end{center}
967 \end{minipage}\\
968
969 \underline{Hexagonal} \hspace{2pt}
970 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
971 \framebox{
972 \begin{minipage}{2.7cm}
973 $E_{\text{f}}^*=4.48\text{ eV}$\\
974 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
975 \end{minipage}
976 \begin{minipage}{0.4cm}
977 \begin{center}
978 $\Rightarrow$
979 \end{center}
980 \end{minipage}
981 \begin{minipage}{2.7cm}
982 $E_{\text{f}}=3.96\text{ eV}$\\
983 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
984 \end{minipage}
985 }
986 \begin{minipage}{5.5cm}
987 \begin{center}
988 {\tiny nearly T $\rightarrow$ T}\\
989 \end{center}
990 \includegraphics[width=6.0cm]{nhex_tet.ps}
991 \end{minipage}
992
993 \end{slide}
994
995 \begin{slide}
996
997 \footnotesize
998
999 \headphd
1000 {\large\bf
1001  C interstitial point defects in silicon\\
1002 }
1003
1004 \begin{tabular}{l c c c c c c r}
1005 \hline
1006  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
1007  {\color{black} \cs{} \& \si}\\
1008 \hline
1009  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1010  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1011 \hline
1012 \end{tabular}\\[0.1cm]
1013
1014 \framebox{
1015 \begin{minipage}{2.8cm}
1016 \underline{Hexagonal} \hspace{2pt}
1017 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1018 $E_{\text{f}}^*=9.05\text{ eV}$\\
1019 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
1020 \end{minipage}
1021 \begin{minipage}{0.4cm}
1022 \begin{center}
1023 $\Rightarrow$
1024 \end{center}
1025 \end{minipage}
1026 \begin{minipage}{2.8cm}
1027 \underline{\hkl<1 0 0>}\\
1028 $E_{\text{f}}=3.88\text{ eV}$\\
1029 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
1030 \end{minipage}
1031 }
1032 \begin{minipage}{1.4cm}
1033 \hfill
1034 \end{minipage}
1035 \begin{minipage}{3.0cm}
1036 \begin{flushright}
1037 \underline{Tetrahedral}\\
1038 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
1039 \end{flushright}
1040 \end{minipage}
1041
1042 \framebox{
1043 \begin{minipage}{2.8cm}
1044 \underline{Bond-centered}\\
1045 $E_{\text{f}}^*=5.59\text{ eV}$\\
1046 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1047 \end{minipage}
1048 \begin{minipage}{0.4cm}
1049 \begin{center}
1050 $\Rightarrow$
1051 \end{center}
1052 \end{minipage}
1053 \begin{minipage}{2.8cm}
1054 \underline{\hkl<1 1 0> dumbbell}\\
1055 $E_{\text{f}}=5.18\text{ eV}$\\
1056 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1057 \end{minipage}
1058 }
1059 \begin{minipage}{1.4cm}
1060 \hfill
1061 \end{minipage}
1062 \begin{minipage}{3.0cm}
1063 \begin{flushright}
1064 \underline{Substitutional}\\
1065 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1066 \end{flushright}
1067 \end{minipage}
1068
1069 \end{slide}
1070
1071 \begin{slide}
1072
1073 \headphd
1074 {\large\bf\boldmath
1075  C-Si dimer \& bond-centered interstitial configuration
1076 }
1077
1078 \footnotesize
1079
1080 \vspace{0.1cm}
1081
1082 \begin{minipage}[t]{4.1cm}
1083 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1084 \begin{minipage}{2.0cm}
1085 \begin{center}
1086 \underline{Erhart/Albe}
1087 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1088 \end{center}
1089 \end{minipage}
1090 \begin{minipage}{2.0cm}
1091 \begin{center}
1092 \underline{\textsc{vasp}}
1093 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1094 \end{center}
1095 \end{minipage}\\[0.2cm]
1096 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1097 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1098 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1099 $\Rightarrow$ $sp^2$ hybridization
1100 \begin{center}
1101 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1102 {\tiny Charge density isosurface}
1103 \end{center}
1104 \end{minipage}
1105 \begin{minipage}{0.2cm}
1106 \hfill
1107 \end{minipage}
1108 \begin{minipage}[t]{8.1cm}
1109 \begin{flushright}
1110 {\bf Bond-centered interstitial}\\[0.1cm]
1111 \begin{minipage}{4.4cm}
1112 %\scriptsize
1113 \begin{itemize}
1114  \item Linear Si-C-Si bond
1115  \item Si: one C \& 3 Si neighbours
1116  \item Spin polarized calculations
1117  \item No saddle point!\\
1118        Real local minimum!
1119 \end{itemize}
1120 \end{minipage}
1121 \begin{minipage}{2.7cm}
1122 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1123 \vspace{0.2cm}
1124 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1125 \end{minipage}
1126
1127 \framebox{
1128  \tiny
1129  \begin{minipage}[t]{6.5cm}
1130   \begin{minipage}[t]{1.2cm}
1131   {\color{red}Si}\\
1132   {\tiny sp$^3$}\\[0.8cm]
1133   \underline{${\color{black}\uparrow}$}
1134   \underline{${\color{black}\uparrow}$}
1135   \underline{${\color{black}\uparrow}$}
1136   \underline{${\color{red}\uparrow}$}\\
1137   sp$^3$
1138   \end{minipage}
1139   \begin{minipage}[t]{1.4cm}
1140   \begin{center}
1141   {\color{red}M}{\color{blue}O}\\[0.8cm]
1142   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1143   $\sigma_{\text{ab}}$\\[0.5cm]
1144   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1145   $\sigma_{\text{b}}$
1146   \end{center}
1147   \end{minipage}
1148   \begin{minipage}[t]{1.0cm}
1149   \begin{center}
1150   {\color{blue}C}\\
1151   {\tiny sp}\\[0.2cm]
1152   \underline{${\color{white}\uparrow\uparrow}$}
1153   \underline{${\color{white}\uparrow\uparrow}$}\\
1154   2p\\[0.4cm]
1155   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1156   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1157   sp
1158   \end{center}
1159   \end{minipage}
1160   \begin{minipage}[t]{1.4cm}
1161   \begin{center}
1162   {\color{blue}M}{\color{green}O}\\[0.8cm]
1163   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1164   $\sigma_{\text{ab}}$\\[0.5cm]
1165   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1166   $\sigma_{\text{b}}$
1167   \end{center}
1168   \end{minipage}
1169   \begin{minipage}[t]{1.2cm}
1170   \begin{flushright}
1171   {\color{green}Si}\\
1172   {\tiny sp$^3$}\\[0.8cm]
1173   \underline{${\color{green}\uparrow}$}
1174   \underline{${\color{black}\uparrow}$}
1175   \underline{${\color{black}\uparrow}$}
1176   \underline{${\color{black}\uparrow}$}\\
1177   sp$^3$
1178   \end{flushright}
1179   \end{minipage}
1180  \end{minipage}
1181 }\\[0.4cm]
1182
1183 %\framebox{
1184 \begin{minipage}{3.0cm}
1185 %\scriptsize
1186 \underline{Charge density}\\
1187 {\color{gray}$\bullet$} Spin up\\
1188 {\color{green}$\bullet$} Spin down\\
1189 {\color{blue}$\bullet$} Resulting spin up\\
1190 {\color{yellow}$\bullet$} Si atoms\\
1191 {\color{red}$\bullet$} C atom
1192 \end{minipage}
1193 \begin{minipage}{3.6cm}
1194 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1195 \end{minipage}
1196 %}
1197
1198 \end{flushright}
1199
1200 \end{minipage}
1201 \begin{pspicture}(0,0)(0,0)
1202 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1203 \end{pspicture}
1204
1205 \end{slide}
1206
1207 \begin{slide}
1208
1209 \headphd
1210 {\large\bf\boldmath
1211  C interstitial migration --- ab initio
1212 }
1213
1214 \scriptsize
1215
1216 \vspace{0.1cm}
1217
1218 \begin{minipage}{6.8cm}
1219 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1220 \begin{minipage}{2.0cm}
1221 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1222 \end{minipage}
1223 \begin{minipage}{0.2cm}
1224 $\rightarrow$
1225 \end{minipage}
1226 \begin{minipage}{2.0cm}
1227 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1228 \end{minipage}
1229 \begin{minipage}{0.2cm}
1230 $\rightarrow$
1231 \end{minipage}
1232 \begin{minipage}{2.0cm}
1233 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1234 \end{minipage}\\[0.1cm]
1235 Spin polarization\\
1236 $\Rightarrow$ BC configuration constitutes local minimum\\
1237 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1238 \end{minipage}
1239 \begin{minipage}{5.4cm}
1240 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1241 \end{minipage}\\[0.2cm]
1242 %\hrule
1243 %
1244 \begin{minipage}{6.8cm}
1245 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1246 \begin{minipage}{2.0cm}
1247 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1248 \end{minipage}
1249 \begin{minipage}{0.2cm}
1250 $\rightarrow$
1251 \end{minipage}
1252 \begin{minipage}{2.0cm}
1253 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1254 \end{minipage}
1255 \begin{minipage}{0.2cm}
1256 $\rightarrow$
1257 \end{minipage}
1258 \begin{minipage}{2.0cm}
1259 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1260 \end{minipage}\\[0.1cm]
1261 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1262 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1263 Note: Change in orientation
1264 \end{minipage}
1265 \begin{minipage}{5.4cm}
1266 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1267 \end{minipage}\\[0.1cm]
1268 %
1269 \begin{center}
1270 Reorientation pathway composed of two consecutive processes of the above type
1271 \end{center}
1272
1273 \end{slide}
1274
1275 \begin{slide}
1276
1277 \headphd
1278 {\large\bf\boldmath
1279  C interstitial migration --- analytical potential
1280 }
1281
1282 \scriptsize
1283
1284 \vspace{0.3cm}
1285
1286 \begin{minipage}[t]{6.0cm}
1287 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1288 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1289 \begin{itemize}
1290  \item Lowermost migration barrier
1291  \item $\Delta E \approx \unit[2.2]{eV}$
1292  \item 2.4 times higher than ab initio result
1293  \item Different pathway
1294 \end{itemize}
1295 \end{minipage}
1296 \begin{minipage}[t]{0.2cm}
1297 \hfill
1298 \end{minipage}
1299 \begin{minipage}[t]{6.0cm}
1300 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1301 \vspace{0.1cm}
1302 \begin{itemize}
1303  \item Bond-centered configuration unstable\\
1304        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1305  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1306        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1307 \end{itemize}
1308 \vspace{0.1cm}
1309 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1310 \begin{itemize}
1311  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1312  \item 2.4 -- 3.4 times higher than ab initio result
1313  \item After all: Change of the DB orientation
1314 \end{itemize}
1315 \end{minipage}
1316
1317 \vspace{0.5cm}
1318 \begin{center}
1319 {\color{red}\bf Drastically overestimated diffusion barrier}
1320 \end{center}
1321
1322 \begin{pspicture}(0,0)(0,0)
1323 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1324 \end{pspicture}
1325
1326 \end{slide}
1327
1328 \begin{slide}
1329
1330 \headphd
1331 {\large\bf\boldmath
1332  Defect combinations
1333 }
1334
1335 \footnotesize
1336
1337 \vspace{0.3cm}
1338
1339 \begin{minipage}{9cm}
1340 {\bf
1341  Summary of combinations}\\[0.1cm]
1342 {\scriptsize
1343 \begin{tabular}{l c c c c c c}
1344 \hline
1345  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1346  \hline
1347  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1348  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1349  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1350  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1351  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1352  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1353  \hline
1354  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1355  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1356 \hline
1357 \end{tabular}
1358 }
1359 \vspace{0.2cm}
1360 \begin{center}
1361 {\color{blue}
1362  $E_{\text{b}}$ explainable by stress compensation / increase
1363 }
1364 \end{center}
1365 \end{minipage}
1366 \begin{minipage}{3cm}
1367 \includegraphics[width=3.5cm]{comb_pos.eps}
1368 \end{minipage}
1369
1370 \vspace{0.2cm}
1371
1372 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1373 \begin{minipage}[t]{3.2cm}
1374 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1375 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1376 \end{minipage}
1377 \begin{minipage}[t]{3.0cm}
1378 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1379 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1380 \end{minipage}
1381 \begin{minipage}[t]{6.1cm}
1382 \vspace{0.7cm}
1383 \begin{itemize}
1384  \item \ci{} agglomeration energetically favorable
1385  \item Most favorable: C clustering\\
1386        {\color{red}However \ldots}\\
1387         \ldots high migration barrier ($>4\,\text{eV}$)\\
1388         \ldots entropy:
1389         $4\times{\color{cyan}[-2.25]}$ versus
1390         $2\times{\color{orange}[-2.39]}$
1391 \end{itemize}
1392 \begin{center}
1393 {\color{blue}\ci{} agglomeration / no C clustering}
1394 \end{center}
1395 \end{minipage}
1396
1397 \end{slide}
1398
1399 \begin{slide}
1400
1401 \headphd
1402 {\large\bf\boldmath
1403  Defect combinations
1404 }
1405
1406 \footnotesize
1407
1408 \vspace{0.3cm}
1409
1410 \begin{minipage}{9cm}
1411 {\bf
1412  Summary of combinations}\\[0.1cm]
1413 {\scriptsize
1414 \begin{tabular}{l c c c c c c}
1415 \hline
1416  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1417  \hline
1418  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1419  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1420  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1421  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1422  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1423  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1424  \hline
1425  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1426  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1427 \hline
1428 \end{tabular}
1429 }
1430 \vspace{0.2cm}
1431 \begin{center}
1432 {\color{blue}
1433  $E_{\text{b}}$ explainable by stress compensation / increase
1434 }
1435 \end{center}
1436 \end{minipage}
1437 \begin{minipage}{3cm}
1438 \includegraphics[width=3.5cm]{comb_pos.eps}
1439 \end{minipage}
1440
1441 \vspace{0.2cm}
1442
1443 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1444 \begin{minipage}[t]{3.2cm}
1445 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1446 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1447 \end{minipage}
1448 \begin{minipage}[t]{3.0cm}
1449 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1450 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1451 \end{minipage}
1452 \begin{minipage}[t]{6.1cm}
1453 \vspace{0.7cm}
1454 \begin{itemize}
1455  \item \ci{} agglomeration energetically favorable
1456  \item Most favorable: C clustering\\
1457        {\color{red}However \ldots}\\
1458         \ldots high migration barrier ($>4\,\text{eV}$)\\
1459         \ldots entropy:
1460         $4\times{\color{cyan}[-2.25]}$ versus
1461         $2\times{\color{orange}[-2.39]}$
1462 \end{itemize}
1463 \begin{center}
1464 {\color{blue}\ci{} agglomeration / no C clustering}
1465 \end{center}
1466 \end{minipage}
1467
1468 % insert graph ...
1469 \begin{pspicture}(0,0)(0,0)
1470 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1471 \begin{minipage}{14cm}
1472 \hfill
1473 \vspace{12cm}
1474 \end{minipage}
1475 }}
1476 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1477 \begin{minipage}{8cm}
1478 \begin{center}
1479 \vspace{0.2cm}
1480 \scriptsize
1481 Interaction along \hkl[1 1 0]
1482 \includegraphics[width=7cm]{db_along_110_cc.ps}
1483 \end{center}
1484 \end{minipage}
1485 }}}
1486 \end{pspicture}
1487
1488 \end{slide}
1489
1490 \begin{slide}
1491
1492 \headphd
1493 {\large\bf
1494  Defect combinations of C-Si dimers and vacancies
1495 }
1496 \footnotesize
1497
1498 \vspace{0.2cm}
1499
1500 \begin{minipage}[b]{2.6cm}
1501 \begin{flushleft}
1502 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1503 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1504 \end{flushleft}
1505 \end{minipage}
1506 \begin{minipage}[b]{7cm}
1507 \hfill
1508 \end{minipage}
1509 \begin{minipage}[b]{2.6cm}
1510 \begin{flushright}
1511 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1512 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1513 \end{flushright}
1514 \end{minipage}\\[0.2cm]
1515
1516 \begin{minipage}{6.5cm}
1517 \includegraphics[width=6.0cm]{059-539.ps}
1518 \end{minipage}
1519 \begin{minipage}{5.7cm}
1520 \includegraphics[width=6.0cm]{314-539.ps}
1521 \end{minipage}
1522
1523 \begin{pspicture}(0,0)(0,0)
1524 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1525
1526 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1527 \begin{minipage}{6.5cm}
1528 \begin{center}
1529 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1530 Low migration barrier towards C$_{\text{sub}}$\\
1531 \&\\
1532 High barrier for reverse process\\[0.3cm]
1533 {\color{blue}
1534 High probability of stable C$_{\text{sub}}$ configuration
1535 }
1536 \end{center}
1537 \end{minipage}
1538 }}}
1539 \end{pspicture}
1540
1541 \end{slide}
1542
1543 \begin{slide}
1544
1545 \headphd
1546 {\large\bf
1547  Combinations of substitutional C and Si self-interstitials
1548 }
1549
1550 \scriptsize
1551
1552 \vspace{0.3cm}
1553
1554 \begin{minipage}{6.2cm}
1555 \begin{center}
1556 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1557 \begin{itemize}
1558  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1559  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1560  \item Interaction drops quickly to zero\\
1561        $\rightarrow$ low capture radius
1562 \end{itemize}
1563 \end{center}
1564 \end{minipage}
1565 \begin{minipage}{0.2cm}
1566 \hfill
1567 \end{minipage}
1568 \begin{minipage}{6.0cm}
1569 \begin{center}
1570 {\bf Transition from the ground state}
1571 \begin{itemize}
1572  \item Low transition barrier
1573  \item Barrier smaller than \ci{} migration barrier
1574  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1575        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1576 \end{itemize}
1577 \end{center}
1578 \end{minipage}\\[0.3cm]
1579
1580 \begin{minipage}{6.0cm}
1581 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1582 \end{minipage}
1583 \begin{minipage}{0.4cm}
1584 \hfill
1585 \end{minipage}
1586 \begin{minipage}{6.0cm}
1587 \begin{flushright}
1588 \includegraphics[width=6.0cm]{162-097.ps}
1589 \end{flushright}
1590 \end{minipage}
1591
1592 \begin{pspicture}(0,0)(0,0)
1593 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1594 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1595 \begin{minipage}{8cm}
1596 \begin{center}
1597 \vspace{0.1cm}
1598 {\color{black}
1599 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1600 IBS --- process far from equilibrium\\
1601 }
1602 \end{center}
1603 \end{minipage}
1604 }}}
1605 \end{pspicture}
1606
1607 \end{slide}
1608
1609 \begin{slide}
1610
1611 \headphd
1612 {\large\bf
1613  Combinations of substitutional C and Si self-interstitials
1614 }
1615
1616 \scriptsize
1617
1618 \vspace{0.3cm}
1619
1620 \begin{minipage}{6.2cm}
1621 \begin{center}
1622 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1623 \begin{itemize}
1624  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1625  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1626  \item Interaction drops quickly to zero\\
1627        $\rightarrow$ low capture radius
1628 \end{itemize}
1629 \end{center}
1630 \end{minipage}
1631 \begin{minipage}{0.2cm}
1632 \hfill
1633 \end{minipage}
1634 \begin{minipage}{6.0cm}
1635 \begin{center}
1636 {\bf Transition from the ground state}
1637 \begin{itemize}
1638  \item Low transition barrier
1639  \item Barrier smaller than \ci{} migration barrier
1640  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1641        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1642 \end{itemize}
1643 \end{center}
1644 \end{minipage}\\[0.3cm]
1645
1646 \begin{minipage}{6.0cm}
1647 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1648 \end{minipage}
1649 \begin{minipage}{0.4cm}
1650 \hfill
1651 \end{minipage}
1652 \begin{minipage}{6.0cm}
1653 \begin{flushright}
1654 \includegraphics[width=6.0cm]{162-097.ps}
1655 \end{flushright}
1656 \end{minipage}
1657
1658 \begin{pspicture}(0,0)(0,0)
1659 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1660 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1661 \begin{minipage}{8cm}
1662 \begin{center}
1663 \vspace{0.1cm}
1664 {\color{black}
1665 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1666 IBS --- process far from equilibrium\\
1667 }
1668 \end{center}
1669 \end{minipage}
1670 }}}
1671 \end{pspicture}
1672
1673 % md support
1674 \begin{pspicture}(0,0)(0,0)
1675 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1676 \begin{minipage}{14cm}
1677 \hfill
1678 \vspace{14cm}
1679 \end{minipage}
1680 }}
1681 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1682 \begin{minipage}{11cm}
1683 \begin{center}
1684 \vspace{0.2cm}
1685 \scriptsize
1686 Ab initio MD at \degc{900}\\[0.4cm]
1687 \begin{minipage}{5.4cm}
1688 \centering
1689 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1690 $t=\unit[2230]{fs}$
1691 \end{minipage}
1692 \begin{minipage}{5.4cm}
1693 \centering
1694 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1695 $t=\unit[2900]{fs}$
1696 \end{minipage}\\[0.5cm]
1697 {\color{blue}
1698 Contribution of entropy to structural formation\\[0.1cm]
1699 }
1700 \end{center}
1701 \end{minipage}
1702 }}}
1703 \end{pspicture}
1704
1705 \end{slide}
1706
1707 % temp
1708 \fi
1709
1710 \begin{slide}
1711
1712 \headphd
1713 {\large\bf
1714  Silicon carbide precipitation simulations
1715 }
1716
1717 \small
1718
1719 \vspace{0.2cm}
1720
1721 {\bf Procedure}
1722
1723 {\scriptsize
1724  \begin{pspicture}(0,0)(12,6.5)
1725   % nodes
1726   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1727    \parbox{7cm}{
1728    \begin{itemize}
1729     \item Create c-Si volume
1730     \item Periodc boundary conditions
1731     \item Set requested $T$ and $p=0\text{ bar}$
1732     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1733    \end{itemize}
1734   }}}}
1735   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1736    \parbox{7cm}{
1737    Insertion of C atoms at constant T
1738    \begin{itemize}
1739     \item total simulation volume {\pnode{in1}}
1740     \item volume of minimal SiC precipitate size {\pnode{in2}}
1741     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1742           precipitate
1743    \end{itemize} 
1744   }}}}
1745   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1746    \parbox{7.0cm}{
1747    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1748   }}}}
1749   \ncline[]{->}{init}{insert}
1750   \ncline[]{->}{insert}{cool}
1751   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1752   \rput(7.6,6){\footnotesize $V_1$}
1753   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1754   \rput(8.9,4.85){\tiny $V_2$}
1755   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1756   \rput(9.25,4.45){\footnotesize $V_3$}
1757   \rput(7.9,3.2){\pnode{ins1}}
1758   \rput(8.92,2.8){\pnode{ins2}}
1759   \rput(10.8,2.4){\pnode{ins3}}
1760   \ncline[]{->}{in1}{ins1}
1761   \ncline[]{->}{in2}{ins2}
1762   \ncline[]{->}{in3}{ins3}
1763  \end{pspicture}
1764 }
1765
1766 \vspace{-0.5cm}
1767
1768 {\bf Note}
1769
1770 \footnotesize
1771
1772 \begin{minipage}{5.7cm}
1773 \begin{itemize}
1774  \item Amount of C atoms: 6000\\
1775        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1776  \item Simulation volume: $31^3$ Si unit cells\\
1777        (238328 Si atoms)
1778 \end{itemize}
1779 \end{minipage}
1780 \begin{minipage}{0.3cm}
1781 \hfill
1782 \end{minipage}
1783 \framebox{
1784 \begin{minipage}{6.0cm}
1785 Restricted to classical potential caclulations\\
1786 $\rightarrow$ Low C diffusion / overestimated barrier\\
1787 $\rightarrow$ Consider $V_2$ and $V_3$
1788 %\begin{itemize}
1789 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1790 %\end{itemize}
1791 \end{minipage}
1792 }
1793
1794 \end{slide}
1795
1796 \begin{slide}
1797
1798 \headphd
1799 {\large\bf\boldmath
1800  Silicon carbide precipitation simulations at \degc{450} as in IBS
1801 }
1802
1803 \small
1804
1805 \begin{minipage}{6.3cm}
1806 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1807 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1808 \hfill
1809 \end{minipage} 
1810 \begin{minipage}{6.1cm}
1811 \scriptsize
1812 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1813 \hkl<1 0 0> C-Si dumbbell dominated structure
1814 \begin{itemize}
1815  \item Si-C bumbs around \unit[0.19]{nm}
1816  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1817        concatenated differently oriented \ci{} DBs
1818  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1819 \end{itemize}
1820 \begin{pspicture}(0,0)(6.0,1.0)
1821 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1822 \begin{minipage}{6cm}
1823 \centering
1824 Formation of \ci{} dumbbells\\
1825 C atoms in proper 3C-SiC distance first
1826 \end{minipage}
1827 }}
1828 \end{pspicture}\\[0.1cm]
1829 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1830 \begin{itemize}
1831 \item High amount of strongly bound C-C bonds
1832 \item Increased defect \& damage density\\
1833       $\rightarrow$ Arrangements hard to categorize and trace
1834 \item Only short range order observable
1835 \end{itemize}
1836 \begin{pspicture}(0,0)(6.0,0.8)
1837 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1838 \begin{minipage}{6cm}
1839 \centering
1840 Amorphous SiC-like phase
1841 \end{minipage}
1842 }}
1843 \end{pspicture}\\[0.3cm]
1844 \begin{pspicture}(0,0)(6.0,2.0)
1845 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1846 \begin{minipage}{6cm}
1847 \hfill
1848 \vspace{2.5cm}
1849 \end{minipage}
1850 }}
1851 \end{pspicture}
1852 \end{minipage} 
1853
1854 \end{slide}
1855
1856 \begin{slide}
1857
1858 \headphd
1859 {\large\bf\boldmath
1860  Silicon carbide precipitation simulations at \degc{450} as in IBS
1861 }
1862
1863 \small
1864
1865 \begin{minipage}{6.3cm}
1866 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1867 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1868 \hfill
1869 \end{minipage} 
1870 \begin{minipage}{6.1cm}
1871 \scriptsize
1872 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1873 \hkl<1 0 0> C-Si dumbbell dominated structure
1874 \begin{itemize}
1875  \item Si-C bumbs around \unit[0.19]{nm}
1876  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1877        concatenated differently oriented \ci{} DBs
1878  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1879 \end{itemize}
1880 \begin{pspicture}(0,0)(6.0,1.0)
1881 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1882 \begin{minipage}{6cm}
1883 \centering
1884 Formation of \ci{} dumbbells\\
1885 C atoms in proper 3C-SiC distance first
1886 \end{minipage}
1887 }}
1888 \end{pspicture}\\[0.1cm]
1889 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1890 \begin{itemize}
1891 \item High amount of strongly bound C-C bonds
1892 \item Increased defect \& damage density\\
1893       $\rightarrow$ Arrangements hard to categorize and trace
1894 \item Only short range order observable
1895 \end{itemize}
1896 \begin{pspicture}(0,0)(6.0,0.8)
1897 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1898 \begin{minipage}{6cm}
1899 \centering
1900 Amorphous SiC-like phase
1901 \end{minipage}
1902 }}
1903 \end{pspicture}\\[0.3cm]
1904 \begin{pspicture}(0,0)(6.0,2.0)
1905 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1906 \begin{minipage}{6cm}
1907 \vspace{0.1cm}
1908 \centering
1909 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1910 \begin{minipage}{0.8cm}
1911 {\bf\boldmath $V_1$:}
1912 \end{minipage}
1913 \begin{minipage}{5.1cm}
1914 Formation of \ci{} indeed occurs\\
1915 Agllomeration not observed
1916 \end{minipage}\\[0.3cm]
1917 \begin{minipage}{0.8cm}
1918 {\bf\boldmath $V_{2,3}$:}
1919 \end{minipage}
1920 \begin{minipage}{5.1cm}
1921 Amorphous SiC-like structure\\
1922 (not expected at \degc{450})\\[0.05cm]
1923 No rearrangement/transition into 3C-SiC
1924 \end{minipage}\\[0.1cm]
1925 \end{minipage}
1926 }}
1927 \end{pspicture}
1928 \end{minipage} 
1929
1930 \end{slide}
1931
1932 \begin{slide}
1933
1934 \headphd
1935 {\large\bf
1936  Limitations of MD and short range potentials
1937 }
1938
1939 \small
1940
1941 \vspace{0.2cm}
1942
1943 {\bf Time scale problem of MD}\\[0.2cm]
1944 Precise integration \& thermodynamic sampling\\
1945 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1946               $\omega$: vibrational mode\\
1947 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1948 Several local minima separated by large energy barriers\\
1949 $\Rightarrow$ Transition event corresponds to a multiple
1950               of vibrational periods\\
1951 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1952               infrequent transition events\\[0.2cm]
1953 {\color{blue}Accelerated methods:}
1954 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1955
1956 \vspace{0.2cm}
1957
1958 {\bf Limitations related to the short range potential}\\[0.2cm]
1959 Cut-off function limits interaction to next neighbours\\
1960 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1961               (factor: 2.4--3.4)
1962
1963 \vspace{1.4cm}
1964
1965 {\bf Approach to the (twofold) problem}\\[0.2cm]
1966 Increased temperature simulations without TAD corrections\\
1967 Accelerated methods or higher time scales exclusively not sufficient!
1968
1969 \begin{pspicture}(0,0)(0,0)
1970 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1971 \begin{minipage}{7.5cm}
1972 \centering
1973 \vspace{0.05cm}
1974 Potential enhanced slow phase space propagation
1975 \end{minipage}
1976 }}
1977 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1978 \begin{minipage}{2.7cm}
1979 \tiny
1980 \centering
1981 retain proper\\
1982 thermodynamic sampling
1983 \end{minipage}
1984 }}
1985 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1986 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1987 \begin{minipage}{3.6cm}
1988 \tiny
1989 \centering
1990 \underline{IBS}\\[0.1cm]
1991 3C-SiC also observed for higher T\\[0.1cm]
1992 Higher T inside sample\\[0.1cm]
1993 Structural evolution vs.\\
1994 equilibrium properties
1995 \end{minipage}
1996 }}
1997 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1998 \end{pspicture}
1999
2000 \end{slide}
2001
2002 \begin{slide}
2003
2004 \headphd
2005 {\large\bf\boldmath
2006  Increased temperature simulations --- $V_1$
2007 }
2008
2009 \small
2010
2011 \begin{minipage}{6.2cm}
2012 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2013 \hfill
2014 \end{minipage}
2015 \begin{minipage}{6.2cm}
2016 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2017 \end{minipage}
2018
2019 \begin{minipage}{6.2cm}
2020 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2021 \hfill
2022 \end{minipage}
2023 \begin{minipage}{6.3cm}
2024 \scriptsize
2025  \underline{Si-C bonds:}
2026  \begin{itemize}
2027   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2028   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2029  \end{itemize}
2030  \underline{Si-Si bonds:}
2031  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2032  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2033  \underline{C-C bonds:}
2034  \begin{itemize}
2035   \item C-C next neighbour pairs reduced (mandatory)
2036   \item Peak at 0.3 nm slightly shifted
2037         \begin{itemize}
2038          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2039                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2040                combinations (|)\\
2041                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2042                ($\downarrow$)
2043          \item Range [|-$\downarrow$]:
2044                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2045                with nearby Si$_{\text{I}}$}
2046         \end{itemize}
2047  \end{itemize}
2048 \end{minipage}
2049
2050 \end{slide}
2051
2052 \begin{slide}
2053
2054 \headphd
2055 {\large\bf\boldmath
2056  Increased temperature simulations --- $V_1$
2057 }
2058
2059 \small
2060
2061 \begin{minipage}{6.2cm}
2062 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2063 \hfill
2064 \end{minipage}
2065 \begin{minipage}{6.2cm}
2066 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2067 \end{minipage}
2068
2069 \begin{minipage}{6.2cm}
2070 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2071 \hfill
2072 \end{minipage}
2073 \begin{minipage}{6.3cm}
2074 \scriptsize
2075  \underline{Si-C bonds:}
2076  \begin{itemize}
2077   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2078   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2079  \end{itemize}
2080  \underline{Si-Si bonds:}
2081  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2082  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2083  \underline{C-C bonds:}
2084  \begin{itemize}
2085   \item C-C next neighbour pairs reduced (mandatory)
2086   \item Peak at 0.3 nm slightly shifted
2087         \begin{itemize}
2088          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2089                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2090                combinations (|)\\
2091                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2092                ($\downarrow$)
2093          \item Range [|-$\downarrow$]:
2094                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2095                with nearby Si$_{\text{I}}$}
2096         \end{itemize}
2097  \end{itemize}
2098 \end{minipage}
2099
2100 % conclusions
2101 \begin{pspicture}(0,0)(0,0)
2102 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2103 \begin{minipage}{14cm}
2104 \hfill
2105 \vspace{14cm}
2106 \end{minipage}
2107 }}
2108 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2109 \begin{minipage}{9cm}
2110 \vspace{0.2cm}
2111 \small
2112 \begin{center}
2113 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2114 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2115 \end{center}
2116 \begin{itemize}
2117 \item Stretched coherent SiC structures\\
2118 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2119 \item Explains annealing behavior of high/low T C implantations
2120       \begin{itemize}
2121        \item Low T: highly mobile {\color{red}\ci}
2122        \item High T: stable configurations of {\color{blue}\cs}
2123       \end{itemize}
2124 \item Role of \si{}
2125       \begin{itemize}
2126        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2127        \item Building block for surrounding Si host \& further SiC
2128        \item Strain compensation \ldots\\
2129              \ldots Si/SiC interface\\
2130              \ldots within stretched coherent SiC structure
2131       \end{itemize}
2132 \end{itemize}
2133 \vspace{0.2cm}
2134 \centering
2135 \psframebox[linecolor=blue,linewidth=0.05cm]{
2136 \begin{minipage}{7cm}
2137 \centering
2138 Precipitation mechanism involving \cs\\
2139 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2140 \end{minipage}
2141 }
2142 \end{minipage}
2143 \vspace{0.2cm}
2144 }}
2145 \end{pspicture}
2146
2147 \end{slide}
2148
2149 \begin{slide}
2150
2151  {\large\bf
2152   Increased temperature simulations at high C concentration
2153  }
2154
2155 \footnotesize
2156
2157 \begin{minipage}{6.5cm}
2158 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2159 \end{minipage}
2160 \begin{minipage}{6.5cm}
2161 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2162 \end{minipage}
2163
2164 \vspace{0.1cm}
2165
2166 \scriptsize
2167
2168 \framebox{
2169 \begin{minipage}[t]{6.0cm}
2170 0.186 nm: Si-C pairs $\uparrow$\\
2171 (as expected in 3C-SiC)\\[0.2cm]
2172 0.282 nm: Si-C-C\\[0.2cm]
2173 $\approx$0.35 nm: C-Si-Si
2174 \end{minipage}
2175 }
2176 \begin{minipage}{0.2cm}
2177 \hfill
2178 \end{minipage}
2179 \framebox{
2180 \begin{minipage}[t]{6.0cm}
2181 0.15 nm: C-C pairs $\uparrow$\\
2182 (as expected in graphite/diamond)\\[0.2cm]
2183 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2184 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2185 \end{minipage}
2186 }
2187
2188 \begin{itemize}
2189 \item Decreasing cut-off artifact
2190 \item {\color{red}Amorphous} SiC-like phase remains
2191 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2192 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2193 \end{itemize}
2194
2195 \vspace{-0.1cm}
2196
2197 \begin{center}
2198 {\color{blue}
2199 \framebox{
2200 {\color{black}
2201 High C \& small $V$ \& short $t$
2202 $\Rightarrow$
2203 }
2204 Slow restructuring due to strong C-C bonds
2205 {\color{black}
2206 $\Leftarrow$
2207 High C \& low T implants
2208 }
2209 }
2210 }
2211 \end{center}
2212
2213 \end{slide}
2214
2215 \begin{slide}
2216
2217 \headphd
2218 {\large\bf
2219  Summary / Conclusions
2220 }
2221
2222 \small
2223
2224 \begin{pspicture}(0,0)(12,1.0)
2225 \psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
2226 \begin{minipage}{11cm}
2227 {\color{black}Diploma thesis}\\
2228  \underline{Monte Carlo} simulation modeling the selforganization process\\
2229  leading to periodic arrays of nanometric amorphous SiC precipitates
2230 \end{minipage}
2231 }
2232 \end{pspicture}\\[0.4cm]
2233 \begin{pspicture}(0,0)(12,2)
2234 \psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
2235 \begin{minipage}{11cm}
2236 {\color{black}Doctoral studies}\\
2237  Classical potential \underline{molecular dynamics} simulations \ldots\\
2238  \underline{Density functional theory} calculations \ldots\\[0.2cm]
2239  \ldots on defect formation and SiC precipitation in Si
2240 \end{minipage}
2241 }
2242 \end{pspicture}\\[0.5cm]
2243 \begin{pspicture}(0,0)(12,3)
2244 \psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
2245 \begin{minipage}{11cm}
2246 \vspace{0.2cm}
2247 {\color{black}\bf How to proceed \ldots}\\[0.1cm]
2248 MC $\rightarrow$ empirical potential MD $\rightarrow$ Ground-state DFT \ldots
2249 \begin{itemize}
2250  \renewcommand\labelitemi{$\ldots$}
2251  \item beyond LDA/GGA methods \& ground-state DFT
2252 \end{itemize}
2253 Investigation of structure \& structural evolution \ldots
2254 \begin{itemize}
2255  \renewcommand\labelitemi{$\ldots$}
2256  \item electronic/optical properties
2257  \item electronic correlations
2258  \item non-equilibrium systems
2259 \end{itemize}
2260 \end{minipage}
2261 }
2262 \end{pspicture}\\[0.5cm]
2263
2264 \end{slide}
2265
2266 \begin{slide}
2267
2268  {\large\bf
2269   Acknowledgements
2270  }
2271
2272  \vspace{0.1cm}
2273
2274  \small
2275
2276  Thanks to \ldots
2277
2278  \underline{Augsburg}
2279  \begin{itemize}
2280   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2281   \item Ralf Utermann (EDV)
2282  \end{itemize}
2283  
2284  \underline{Berlin/Brandenburg}
2285  \begin{itemize}
2286   \item PD Volker Eyert (Ref)
2287  \end{itemize}
2288  
2289  \underline{Helsinki}
2290  \begin{itemize}
2291   \item Prof. K. Nordlund (MD)
2292  \end{itemize}
2293  
2294  \underline{Munich}
2295  \begin{itemize}
2296   \item Bayerische Forschungsstiftung (financial support)
2297  \end{itemize}
2298  
2299  \underline{Paderborn}
2300  \begin{itemize}
2301   \item Prof. J. Lindner (SiC)
2302   \item Prof. G. Schmidt (DFT + financial support)
2303   \item Dr. E. Rauls (DFT + SiC)
2304  \end{itemize}
2305
2306 \begin{center}
2307 \framebox{
2308 \bf Thank you for your attention!
2309 }
2310 \end{center}
2311
2312 \end{slide}
2313
2314 \end{document}
2315