more defense talk ...
[lectures/latex.git] / posic / talks / defense.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
63
64 \begin{document}
65
66 \extraslideheight{10in}
67 \slideframe{plain}
68
69 \pagestyle{empty}
70
71 % specify width and height
72 \slidewidth 26.3cm 
73 \slideheight 19.9cm 
74
75 % margin
76 \def\slidetopmargin{-0.15cm}
77
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
82
83 % itemize level ii
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
85
86 % nice phi
87 \renewcommand{\phi}{\varphi}
88
89 % roman letters
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
91
92 % colors
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
98
99 % head
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
104 \hfill
105 \vspace{0.7cm}
106 \end{minipage}
107 }}
108 \end{pspicture}
109 }
110
111 % shortcuts
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
119
120 % no vertical centering
121 %\centerslidesfalse
122
123 % layout check
124 %\layout
125 \begin{slide}
126 \center
127 {\Huge
128 E\\
129 F\\
130 G\\
131 A B C D E F G H G F E D C B A
132 G\\
133 F\\
134 E\\
135 }
136 \end{slide}
137
138 % topic
139
140 \begin{slide}
141 \begin{center}
142
143  \vspace{16pt}
144
145  {\Large\bf
146   \hrule
147   \vspace{5pt}
148   Atomistic simulation study on silicon carbide\\[0.2cm]
149   precipitation in silicon\\
150   \vspace{10pt}
151   \hrule
152  }
153
154  \vspace{60pt}
155
156  \textsc{Frank Zirkelbach}
157
158  \vspace{60pt}
159
160  Defense of doctor's thesis
161
162  \vspace{08pt}
163
164  Augsburg, 10.01.2012
165
166 \end{center}
167 \end{slide}
168
169 % no vertical centering
170 \centerslidesfalse
171
172 % skip for preparation
173 \ifnum1=0
174
175 % intro
176
177 % motivation / properties / applications of silicon carbide
178
179 \begin{slide}
180
181 \vspace*{1.8cm}
182
183 \small
184
185 \begin{pspicture}(0,0)(13.5,5)
186
187  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
188
189  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
190  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
191
192  \rput[lt](0,4.6){\color{gray}PROPERTIES}
193
194  \rput[lt](0.3,4){wide band gap}
195  \rput[lt](0.3,3.5){high electric breakdown field}
196  \rput[lt](0.3,3){good electron mobility}
197  \rput[lt](0.3,2.5){high electron saturation drift velocity}
198  \rput[lt](0.3,2){high thermal conductivity}
199
200  \rput[lt](0.3,1.5){hard and mechanically stable}
201  \rput[lt](0.3,1){chemically inert}
202
203  \rput[lt](0.3,0.5){radiation hardness}
204
205  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
206
207  \rput[rt](12.5,3.85){high-temperature, high power}
208  \rput[rt](12.5,3.5){and high-frequency}
209  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
210
211  \rput[rt](12.5,2.35){material suitable for extreme conditions}
212  \rput[rt](12.5,2){microelectromechanical systems}
213  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
214
215  \rput[rt](12.5,0.85){first wall reactor material, detectors}
216  \rput[rt](12.5,0.5){and electronic devices for space}
217
218 \end{pspicture}
219
220 \begin{picture}(0,0)(5,-162)
221 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
222 \end{picture}
223 \begin{picture}(0,0)(-120,-162)
224 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-270,-162)
227 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
228 \end{picture}
229 %%%%
230 \begin{picture}(0,0)(10,65)
231 \includegraphics[height=2.8cm]{sic_switch.eps}
232 \end{picture}
233 %\begin{picture}(0,0)(-243,65)
234 \begin{picture}(0,0)(-110,65)
235 \includegraphics[height=2.8cm]{ise_99.eps}
236 \end{picture}
237 %\begin{picture}(0,0)(-135,65)
238 \begin{picture}(0,0)(-100,65)
239 \includegraphics[height=1.2cm]{infineon_schottky.eps}
240 \end{picture}
241 \begin{picture}(0,0)(-233,65)
242 \includegraphics[height=2.8cm]{solar_car.eps}
243 \end{picture}
244
245 \end{slide}
246
247 % motivation
248
249 \begin{slide}
250
251  {\large\bf
252   Polytypes of SiC\\[0.6cm]
253  }
254
255 \vspace{0.6cm}
256
257 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
258 \begin{minipage}{1.9cm}
259 {\tiny cubic (twist)}
260 \end{minipage}
261 \begin{minipage}{2.9cm}
262 {\tiny hexagonal (no twist)}
263 \end{minipage}
264
265 \begin{picture}(0,0)(-150,0)
266  \includegraphics[width=7cm]{polytypes.eps}
267 \end{picture}
268
269 \vspace{0.6cm}
270
271 \footnotesize
272
273 \begin{tabular}{l c c c c c c}
274 \hline
275  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
276 \hline
277 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
278 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
279 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
280 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
281 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
282 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
283 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
284 \hline
285 \end{tabular}
286
287 \begin{pspicture}(0,0)(0,0)
288 \psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
289 \end{pspicture}
290 \begin{pspicture}(0,0)(0,0)
291 \psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
292 \end{pspicture}
293 \begin{pspicture}(0,0)(0,0)
294 \psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
295 \end{pspicture}
296
297 \end{slide}
298
299 \fi
300
301 % fabrication
302
303 \begin{slide}
304
305 \headphd
306  {\large\bf
307   Fabrication of silicon carbide
308  }
309
310  \small
311  
312  \vspace{2pt}
313
314 \begin{center}
315  {\color{gray}
316  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
317  }
318 \end{center}
319
320 \vspace{2pt}
321
322 SiC thin films by MBE \& CVD
323 \begin{itemize}
324  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
325  \item \underline{Commercially available} semiconductor power devices based on
326        \underline{\foreignlanguage{greek}{a}-SiC}
327  \item Production of favored \underline{3C-SiC} material
328        \underline{less advanced}
329  \item Quality and size not yet sufficient
330 \end{itemize}
331 \begin{picture}(0,0)(-310,-20)
332   \includegraphics[width=2.0cm]{cree.eps}
333 \end{picture}
334 {\color{red}\scriptsize Mismatch in thermal expansion coeefficient
335                         and lattice paramater}
336
337 \vspace{-0.2cm}
338
339 {\bf Alternative approach}\\
340 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
341
342 \vspace{0.1cm}
343
344 \scriptsize
345
346 \framebox{
347 \begin{minipage}{3.15cm}
348  \begin{center}
349 \includegraphics[width=3cm]{imp.eps}\\
350  {\tiny
351   Carbon implantation
352  }
353  \end{center}
354 \end{minipage}
355 \begin{minipage}{3.15cm}
356  \begin{center}
357 \includegraphics[width=3cm]{annealing.eps}\\
358  {\tiny
359  Postannealing at $>$ \degc{1200}
360  }
361  \end{center}
362 \end{minipage}
363 }
364 \begin{minipage}{5.5cm}
365 \begin{center}
366 {\small
367 No surface bending effects\\
368 $\Rightarrow$ Synthesis of large area SiC films possible
369 }
370 \end{center}
371 \end{minipage}
372
373 \end{slide}
374
375 \begin{slide}
376
377 \headphd
378 {\large\bf
379  IBS of epitaxial single crystalline 3C-SiC
380 }
381
382 \footnotesize
383
384 \vspace{0.2cm}
385
386 \begin{center}
387 \begin{itemize}
388  \item \underline{Implantation step 1}\\[0.1cm]
389         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
390         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
391         {\color{blue}precipitates}
392  \item \underline{Implantation step 2}\\[0.1cm]
393         Little remaining dose | \unit[180]{keV} | \degc{250}\\
394         $\Rightarrow$
395         Destruction/Amorphization of precipitates at layer interface
396  \item \underline{Annealing}\\[0.1cm]
397        \unit[10]{h} at \degc{1250}\\
398        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
399 \end{itemize}
400 \end{center}
401
402 \begin{minipage}{6.9cm}
403 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
404 \begin{center}
405 {\tiny
406  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
407 }
408 \end{center}
409 \end{minipage}
410 \begin{minipage}{5cm}
411 \begin{pspicture}(0,0)(0,0)
412 \rnode{box}{
413 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
414 \begin{minipage}{5.3cm}
415  \begin{center}
416  {\color{blue}
417   3C-SiC precipitation\\
418   not yet fully understood
419  }
420  \end{center}
421  \vspace*{0.1cm}
422  \renewcommand\labelitemi{$\Rightarrow$}
423  Details of the SiC precipitation
424  \begin{itemize}
425   \item significant technological progress\\
426         in SiC thin film formation
427   \item perspectives for processes relying\\
428         upon prevention of SiC precipitation
429  \end{itemize}
430 \end{minipage}
431 }}
432 \rput(-6.8,5.5){\pnode{h0}}
433 \rput(-3.0,5.5){\pnode{h1}}
434 \ncline[linecolor=blue]{-}{h0}{h1}
435 \ncline[linecolor=blue]{->}{h1}{box}
436 \end{pspicture}
437 \end{minipage}
438
439 \end{slide}
440
441 \end{document}
442 % temp
443 \ifnum1=0
444
445 % contents
446
447 \begin{slide}
448
449 \headphd
450 {\large\bf
451  Outline
452 }
453
454  \begin{itemize}
455   \item Supposed precipitation mechanism of SiC in Si
456   \item Utilized simulation techniques
457         \begin{itemize}
458          \item Molecular dynamics (MD) simulations
459          \item Density functional theory (DFT) calculations
460         \end{itemize}
461   \item C and Si self-interstitial point defects in silicon
462   \item Silicon carbide precipitation simulations
463   \item Summary / Conclusion
464  \end{itemize}
465
466 \end{slide}
467
468 \begin{slide}
469
470 \headphd
471 {\large\bf
472   Supposed precipitation mechanism of SiC in Si
473 }
474
475  \scriptsize
476
477  \vspace{0.1cm}
478
479  \framebox{
480  \begin{minipage}{3.6cm}
481  \begin{center}
482  Si \& SiC lattice structure\\[0.1cm]
483  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
484  \end{center}
485 {\tiny
486  \begin{minipage}{1.7cm}
487 \underline{Silicon}\\
488 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
489 $a=\unit[5.429]{\\A}$\\
490 $\rho^*_{\text{Si}}=\unit[100]{\%}$
491  \end{minipage}
492  \begin{minipage}{1.7cm}
493 \underline{Silicon carbide}\\
494 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
495 $a=\unit[4.359]{\\A}$\\
496 $\rho^*_{\text{Si}}=\unit[97]{\%}$
497  \end{minipage}
498 }
499  \end{minipage}
500  }
501  \hspace{0.1cm}
502  \begin{minipage}{4.1cm}
503  \begin{center}
504  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
505  \end{center}
506  \end{minipage}
507  \hspace{0.1cm}
508  \begin{minipage}{4.0cm}
509  \begin{center}
510  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
511  \end{center}
512  \end{minipage}
513
514  \vspace{0.1cm}
515
516  \begin{minipage}{4.0cm}
517  \begin{center}
518  C-Si dimers (dumbbells)\\[-0.1cm]
519  on Si interstitial sites
520  \end{center}
521  \end{minipage}
522  \hspace{0.1cm}
523  \begin{minipage}{4.1cm}
524  \begin{center}
525  Agglomeration of C-Si dumbbells\\[-0.1cm]
526  $\Rightarrow$ dark contrasts
527  \end{center}
528  \end{minipage}
529  \hspace{0.1cm}
530  \begin{minipage}{4.0cm}
531  \begin{center}
532  Precipitation of 3C-SiC in Si\\[-0.1cm]
533  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
534  \& release of Si self-interstitials
535  \end{center}
536  \end{minipage}
537
538  \vspace{0.1cm}
539
540  \begin{minipage}{4.0cm}
541  \begin{center}
542  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
543  \end{center}
544  \end{minipage}
545  \hspace{0.1cm}
546  \begin{minipage}{4.1cm}
547  \begin{center}
548  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
549  \end{center}
550  \end{minipage}
551  \hspace{0.1cm}
552  \begin{minipage}{4.0cm}
553  \begin{center}
554  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
555  \end{center}
556  \end{minipage}
557
558 \begin{pspicture}(0,0)(0,0)
559 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
560 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
561 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
562 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
563 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
564  $4a_{\text{Si}}=5a_{\text{SiC}}$
565  }}}
566 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
567 \hkl(h k l) planes match
568  }}}
569 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
570 r = \unit[2--4]{nm}
571  }}}
572 \end{pspicture}
573
574 \end{slide}
575
576 \begin{slide}
577
578 \headphd
579 {\large\bf
580  Supposed precipitation mechanism of SiC in Si
581 }
582
583  \scriptsize
584
585  \vspace{0.1cm}
586
587  \framebox{
588  \begin{minipage}{3.6cm}
589  \begin{center}
590  Si \& SiC lattice structure\\[0.1cm]
591  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
592  \end{center}
593 {\tiny
594  \begin{minipage}{1.7cm}
595 \underline{Silicon}\\
596 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
597 $a=\unit[5.429]{\\A}$\\
598 $\rho^*_{\text{Si}}=\unit[100]{\%}$
599  \end{minipage}
600  \begin{minipage}{1.7cm}
601 \underline{Silicon carbide}\\
602 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
603 $a=\unit[4.359]{\\A}$\\
604 $\rho^*_{\text{Si}}=\unit[97]{\%}$
605  \end{minipage}
606 }
607  \end{minipage}
608  }
609  \hspace{0.1cm}
610  \begin{minipage}{4.1cm}
611  \begin{center}
612  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
613  \end{center}
614  \end{minipage}
615  \hspace{0.1cm}
616  \begin{minipage}{4.0cm}
617  \begin{center}
618  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
619  \end{center}
620  \end{minipage}
621
622  \vspace{0.1cm}
623
624  \begin{minipage}{4.0cm}
625  \begin{center}
626  C-Si dimers (dumbbells)\\[-0.1cm]
627  on Si interstitial sites
628  \end{center}
629  \end{minipage}
630  \hspace{0.1cm}
631  \begin{minipage}{4.1cm}
632  \begin{center}
633  Agglomeration of C-Si dumbbells\\[-0.1cm]
634  $\Rightarrow$ dark contrasts
635  \end{center}
636  \end{minipage}
637  \hspace{0.1cm}
638  \begin{minipage}{4.0cm}
639  \begin{center}
640  Precipitation of 3C-SiC in Si\\[-0.1cm]
641  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
642  \& release of Si self-interstitials
643  \end{center}
644  \end{minipage}
645
646  \vspace{0.1cm}
647
648  \begin{minipage}{4.0cm}
649  \begin{center}
650  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
651  \end{center}
652  \end{minipage}
653  \hspace{0.1cm}
654  \begin{minipage}{4.1cm}
655  \begin{center}
656  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
657  \end{center}
658  \end{minipage}
659  \hspace{0.1cm}
660  \begin{minipage}{4.0cm}
661  \begin{center}
662  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
663  \end{center}
664  \end{minipage}
665
666 \begin{pspicture}(0,0)(0,0)
667 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
668 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
669 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
670 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
671 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
672  $4a_{\text{Si}}=5a_{\text{SiC}}$
673  }}}
674 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
675 \hkl(h k l) planes match
676  }}}
677 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
678 r = \unit[2--4]{nm}
679  }}}
680 % controversial view!
681 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
682 \begin{minipage}{14cm}
683 \hfill
684 \vspace{12cm}
685 \end{minipage}
686 }}
687 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
688 \begin{minipage}{10cm}
689 \small
690 \vspace*{0.2cm}
691 \begin{center}
692 {\color{gray}\bf Controversial findings}
693 \end{center}
694 \begin{itemize}
695 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
696  \begin{itemize}
697   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
698   \item \si{} reacting with further C in cleared volume
699  \end{itemize}
700 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
701  \begin{itemize}
702   \item Room temperature implantation $\rightarrow$ high C diffusion
703   \item Elevated temperature implantation $\rightarrow$ no C redistribution
704  \end{itemize}
705  $\Rightarrow$ mobile {\color{red}\ci} opposed to
706  stable {\color{blue}\cs{}} configurations
707 \item Strained silicon \& Si/SiC heterostructures
708       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
709  \begin{itemize}
710   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
711   \item Incoherent SiC (strain relaxation)
712  \end{itemize}
713 \end{itemize}
714 \vspace{0.1cm}
715 \begin{center}
716 {\Huge${\lightning}$} \hspace{0.3cm}
717 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
718 {\Huge${\lightning}$}
719 \end{center}
720 \vspace{0.2cm}
721 \end{minipage}
722  }}}
723 \end{pspicture}
724
725 \end{slide}
726
727 \begin{slide}
728
729 \headphd
730 {\large\bf
731  Utilized computational methods
732 }
733
734 \vspace{0.3cm}
735
736 \small
737
738 {\bf Molecular dynamics (MD)}\\[0.1cm]
739 \scriptsize
740 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
741 \hline
742 System of $N$ particles &
743 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
744 Phase space propagation &
745 Velocity Verlet | timestep: \unit[1]{fs} \\
746 Analytical interaction potential &
747 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
748 (Erhart/Albe)
749 $\displaystyle
750 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
751     \pot_{ij} = {\color{red}f_C(r_{ij})}
752     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
753 $\\
754 Observables: time/ensemble averages &
755 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
756 \hline
757 \end{tabular}
758
759 \small
760
761 \vspace{0.3cm}
762
763 {\bf Density functional theory (DFT)}
764
765 \scriptsize
766
767 \begin{minipage}[t]{6cm}
768 \begin{itemize}
769  \item Hohenberg-Kohn theorem:\\
770        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
771  \item Kohn-Sham approach:\\
772        Single-particle effective theory
773 \end{itemize}
774 \hrule
775 \begin{itemize}
776 \item Code: \textsc{vasp}
777 \item Plane wave basis set
778 %$\displaystyle
779 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
780 %$\\
781 %$\displaystyle
782 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
783 %$
784 \item Ultrasoft pseudopotential
785 \item Exchange \& correlation: GGA
786 \item Brillouin zone sampling: $\Gamma$-point
787 \item Supercell: $N=216\pm2$
788 \end{itemize}
789 \end{minipage}
790 \begin{minipage}{6cm}
791 \begin{pspicture}(0,0)(0,0)
792 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
793 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
794 $\displaystyle
795 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
796 $
797 }}
798 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
799 $\displaystyle
800 n(r)=\sum_i^N|\Phi_i(r)|^2
801 $
802 }}
803 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
804 $\displaystyle
805 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
806                  +V_{\text{XC}}[n(r)]
807 $
808 }}
809 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
810 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
811 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
812
813 \end{pspicture}
814 \end{minipage}
815
816 \end{slide}
817
818 \begin{slide}
819
820 \headphd
821  {\large\bf
822   Point defects \& defect migration
823  }
824
825  \small
826
827  \vspace{0.2cm}
828
829 \begin{minipage}[b]{7.5cm}
830 {\bf Defect structure}\\
831   \begin{pspicture}(0,0)(7,4.4)
832   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
833    \parbox{7cm}{
834    \begin{itemize}
835     \item Creation of c-Si simulation volume
836     \item Periodic boundary conditions
837     \item $T=0\text{ K}$, $p=0\text{ bar}$
838    \end{itemize}
839   }}}}
840 \rput(3.5,1.3){\rnode{insert}{\psframebox{
841  \parbox{7cm}{
842   \begin{center}
843   Insertion of interstitial C/Si atoms
844   \end{center}
845   }}}}
846   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
847    \parbox{7cm}{
848    \begin{center}
849    Relaxation / structural energy minimization
850    \end{center}
851   }}}}
852   \ncline[]{->}{init}{insert}
853   \ncline[]{->}{insert}{cool}
854  \end{pspicture}
855 \end{minipage}
856 \begin{minipage}[b]{4.5cm}
857 \begin{center}
858 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
859 \end{center}
860 \begin{minipage}{2.21cm}
861 {\scriptsize
862 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
863 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
864 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
865 }
866 \end{minipage}
867 \begin{minipage}{2.21cm}
868 {\scriptsize
869 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
870 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
871 {\color{black}$\bullet$} Vac. / Sub.
872 }
873 \end{minipage}
874 \end{minipage}
875
876 \vspace{0.2cm}
877
878 \begin{minipage}[b]{6cm}
879 {\bf Defect formation energy}\\
880 \framebox{
881 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
882 Particle reservoir: Si \& SiC\\[0.2cm]
883 {\bf Binding energy}\\
884 \framebox{
885 $
886 E_{\text{b}}=
887 E_{\text{f}}^{\text{comb}}-
888 E_{\text{f}}^{1^{\text{st}}}-
889 E_{\text{f}}^{2^{\text{nd}}}
890 $
891 }\\[0.1cm]
892 \footnotesize
893 $E_{\text{b}}<0$: energetically favorable configuration\\
894 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
895 \end{minipage}
896 \begin{minipage}[b]{6cm}
897 {\bf Migration barrier}
898 \footnotesize
899 \begin{itemize}
900  \item Displace diffusing atom
901  \item Constrain relaxation of (diffusing) atoms
902  \item Record configurational energy
903 \end{itemize}
904 \begin{picture}(0,0)(-60,-33)
905 \includegraphics[width=4.5cm]{crt_mod.eps}
906 \end{picture}
907 \end{minipage}
908
909 \end{slide}
910
911 \begin{slide}
912
913 \footnotesize
914
915 \headphd
916 {\large\bf
917  Si self-interstitial point defects in silicon\\[0.1cm]
918 }
919
920 \begin{center}
921 \begin{tabular}{l c c c c c}
922 \hline
923  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
924 \hline
925  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
926  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
927 \hline
928 \end{tabular}\\[0.4cm]
929 \end{center}
930
931 \begin{minipage}{3cm}
932 \begin{center}
933 \underline{Vacancy}\\
934 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
935 \end{center}
936 \end{minipage}
937 \begin{minipage}{3cm}
938 \begin{center}
939 \underline{\hkl<1 1 0> DB}\\
940 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
941 \end{center}
942 \end{minipage}
943 \begin{minipage}{3cm}
944 \begin{center}
945 \underline{\hkl<1 0 0> DB}\\
946 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
947 \end{center}
948 \end{minipage}
949 \begin{minipage}{3cm}
950 \begin{center}
951 \underline{Tetrahedral}\\
952 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
953 \end{center}
954 \end{minipage}\\
955
956 \underline{Hexagonal} \hspace{2pt}
957 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
958 \framebox{
959 \begin{minipage}{2.7cm}
960 $E_{\text{f}}^*=4.48\text{ eV}$\\
961 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
962 \end{minipage}
963 \begin{minipage}{0.4cm}
964 \begin{center}
965 $\Rightarrow$
966 \end{center}
967 \end{minipage}
968 \begin{minipage}{2.7cm}
969 $E_{\text{f}}=3.96\text{ eV}$\\
970 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
971 \end{minipage}
972 }
973 \begin{minipage}{5.5cm}
974 \begin{center}
975 {\tiny nearly T $\rightarrow$ T}\\
976 \end{center}
977 \includegraphics[width=6.0cm]{nhex_tet.ps}
978 \end{minipage}
979
980 \end{slide}
981
982 \begin{slide}
983
984 \footnotesize
985
986 \headphd
987 {\large\bf
988  C interstitial point defects in silicon\\
989 }
990
991 \begin{tabular}{l c c c c c c r}
992 \hline
993  $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
994  {\color{black} \cs{} \& \si}\\
995 \hline
996  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
997  Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
998 \hline
999 \end{tabular}\\[0.1cm]
1000
1001 \framebox{
1002 \begin{minipage}{2.8cm}
1003 \underline{Hexagonal} \hspace{2pt}
1004 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1005 $E_{\text{f}}^*=9.05\text{ eV}$\\
1006 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
1007 \end{minipage}
1008 \begin{minipage}{0.4cm}
1009 \begin{center}
1010 $\Rightarrow$
1011 \end{center}
1012 \end{minipage}
1013 \begin{minipage}{2.8cm}
1014 \underline{\hkl<1 0 0>}\\
1015 $E_{\text{f}}=3.88\text{ eV}$\\
1016 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
1017 \end{minipage}
1018 }
1019 \begin{minipage}{1.4cm}
1020 \hfill
1021 \end{minipage}
1022 \begin{minipage}{3.0cm}
1023 \begin{flushright}
1024 \underline{Tetrahedral}\\
1025 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
1026 \end{flushright}
1027 \end{minipage}
1028
1029 \framebox{
1030 \begin{minipage}{2.8cm}
1031 \underline{Bond-centered}\\
1032 $E_{\text{f}}^*=5.59\text{ eV}$\\
1033 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
1034 \end{minipage}
1035 \begin{minipage}{0.4cm}
1036 \begin{center}
1037 $\Rightarrow$
1038 \end{center}
1039 \end{minipage}
1040 \begin{minipage}{2.8cm}
1041 \underline{\hkl<1 1 0> dumbbell}\\
1042 $E_{\text{f}}=5.18\text{ eV}$\\
1043 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
1044 \end{minipage}
1045 }
1046 \begin{minipage}{1.4cm}
1047 \hfill
1048 \end{minipage}
1049 \begin{minipage}{3.0cm}
1050 \begin{flushright}
1051 \underline{Substitutional}\\
1052 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
1053 \end{flushright}
1054 \end{minipage}
1055
1056 \end{slide}
1057
1058 \begin{slide}
1059
1060 \headphd
1061 {\large\bf\boldmath
1062  C-Si dimer \& bond-centered interstitial configuration
1063 }
1064
1065 \footnotesize
1066
1067 \vspace{0.1cm}
1068
1069 \begin{minipage}[t]{4.1cm}
1070 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
1071 \begin{minipage}{2.0cm}
1072 \begin{center}
1073 \underline{Erhart/Albe}
1074 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
1075 \end{center}
1076 \end{minipage}
1077 \begin{minipage}{2.0cm}
1078 \begin{center}
1079 \underline{\textsc{vasp}}
1080 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
1081 \end{center}
1082 \end{minipage}\\[0.2cm]
1083 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
1084 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
1085 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
1086 $\Rightarrow$ $sp^2$ hybridization
1087 \begin{center}
1088 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
1089 {\tiny Charge density isosurface}
1090 \end{center}
1091 \end{minipage}
1092 \begin{minipage}{0.2cm}
1093 \hfill
1094 \end{minipage}
1095 \begin{minipage}[t]{8.1cm}
1096 \begin{flushright}
1097 {\bf Bond-centered interstitial}\\[0.1cm]
1098 \begin{minipage}{4.4cm}
1099 %\scriptsize
1100 \begin{itemize}
1101  \item Linear Si-C-Si bond
1102  \item Si: one C \& 3 Si neighbours
1103  \item Spin polarized calculations
1104  \item No saddle point!\\
1105        Real local minimum!
1106 \end{itemize}
1107 \end{minipage}
1108 \begin{minipage}{2.7cm}
1109 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1110 \vspace{0.2cm}
1111 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
1112 \end{minipage}
1113
1114 \framebox{
1115  \tiny
1116  \begin{minipage}[t]{6.5cm}
1117   \begin{minipage}[t]{1.2cm}
1118   {\color{red}Si}\\
1119   {\tiny sp$^3$}\\[0.8cm]
1120   \underline{${\color{black}\uparrow}$}
1121   \underline{${\color{black}\uparrow}$}
1122   \underline{${\color{black}\uparrow}$}
1123   \underline{${\color{red}\uparrow}$}\\
1124   sp$^3$
1125   \end{minipage}
1126   \begin{minipage}[t]{1.4cm}
1127   \begin{center}
1128   {\color{red}M}{\color{blue}O}\\[0.8cm]
1129   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1130   $\sigma_{\text{ab}}$\\[0.5cm]
1131   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1132   $\sigma_{\text{b}}$
1133   \end{center}
1134   \end{minipage}
1135   \begin{minipage}[t]{1.0cm}
1136   \begin{center}
1137   {\color{blue}C}\\
1138   {\tiny sp}\\[0.2cm]
1139   \underline{${\color{white}\uparrow\uparrow}$}
1140   \underline{${\color{white}\uparrow\uparrow}$}\\
1141   2p\\[0.4cm]
1142   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1143   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1144   sp
1145   \end{center}
1146   \end{minipage}
1147   \begin{minipage}[t]{1.4cm}
1148   \begin{center}
1149   {\color{blue}M}{\color{green}O}\\[0.8cm]
1150   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1151   $\sigma_{\text{ab}}$\\[0.5cm]
1152   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1153   $\sigma_{\text{b}}$
1154   \end{center}
1155   \end{minipage}
1156   \begin{minipage}[t]{1.2cm}
1157   \begin{flushright}
1158   {\color{green}Si}\\
1159   {\tiny sp$^3$}\\[0.8cm]
1160   \underline{${\color{green}\uparrow}$}
1161   \underline{${\color{black}\uparrow}$}
1162   \underline{${\color{black}\uparrow}$}
1163   \underline{${\color{black}\uparrow}$}\\
1164   sp$^3$
1165   \end{flushright}
1166   \end{minipage}
1167  \end{minipage}
1168 }\\[0.4cm]
1169
1170 %\framebox{
1171 \begin{minipage}{3.0cm}
1172 %\scriptsize
1173 \underline{Charge density}\\
1174 {\color{gray}$\bullet$} Spin up\\
1175 {\color{green}$\bullet$} Spin down\\
1176 {\color{blue}$\bullet$} Resulting spin up\\
1177 {\color{yellow}$\bullet$} Si atoms\\
1178 {\color{red}$\bullet$} C atom
1179 \end{minipage}
1180 \begin{minipage}{3.6cm}
1181 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
1182 \end{minipage}
1183 %}
1184
1185 \end{flushright}
1186
1187 \end{minipage}
1188 \begin{pspicture}(0,0)(0,0)
1189 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
1190 \end{pspicture}
1191
1192 \end{slide}
1193
1194 \begin{slide}
1195
1196 \headphd
1197 {\large\bf\boldmath
1198  C interstitial migration --- ab initio
1199 }
1200
1201 \scriptsize
1202
1203 \vspace{0.1cm}
1204
1205 \begin{minipage}{6.8cm}
1206 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
1207 \begin{minipage}{2.0cm}
1208 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1209 \end{minipage}
1210 \begin{minipage}{0.2cm}
1211 $\rightarrow$
1212 \end{minipage}
1213 \begin{minipage}{2.0cm}
1214 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
1215 \end{minipage}
1216 \begin{minipage}{0.2cm}
1217 $\rightarrow$
1218 \end{minipage}
1219 \begin{minipage}{2.0cm}
1220 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
1221 \end{minipage}\\[0.1cm]
1222 Spin polarization\\
1223 $\Rightarrow$ BC configuration constitutes local minimum\\
1224 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
1225 \end{minipage}
1226 \begin{minipage}{5.4cm}
1227 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
1228 \end{minipage}\\[0.2cm]
1229 %\hrule
1230 %
1231 \begin{minipage}{6.8cm}
1232 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
1233 \begin{minipage}{2.0cm}
1234 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
1235 \end{minipage}
1236 \begin{minipage}{0.2cm}
1237 $\rightarrow$
1238 \end{minipage}
1239 \begin{minipage}{2.0cm}
1240 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
1241 \end{minipage}
1242 \begin{minipage}{0.2cm}
1243 $\rightarrow$
1244 \end{minipage}
1245 \begin{minipage}{2.0cm}
1246 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
1247 \end{minipage}\\[0.1cm]
1248 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
1249 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
1250 Note: Change in orientation
1251 \end{minipage}
1252 \begin{minipage}{5.4cm}
1253 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
1254 \end{minipage}\\[0.1cm]
1255 %
1256 \begin{center}
1257 Reorientation pathway composed of two consecutive processes of the above type
1258 \end{center}
1259
1260 \end{slide}
1261
1262 \begin{slide}
1263
1264 \headphd
1265 {\large\bf\boldmath
1266  C interstitial migration --- analytical potential
1267 }
1268
1269 \scriptsize
1270
1271 \vspace{0.3cm}
1272
1273 \begin{minipage}[t]{6.0cm}
1274 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
1275 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
1276 \begin{itemize}
1277  \item Lowermost migration barrier
1278  \item $\Delta E \approx \unit[2.2]{eV}$
1279  \item 2.4 times higher than ab initio result
1280  \item Different pathway
1281 \end{itemize}
1282 \end{minipage}
1283 \begin{minipage}[t]{0.2cm}
1284 \hfill
1285 \end{minipage}
1286 \begin{minipage}[t]{6.0cm}
1287 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
1288 \vspace{0.1cm}
1289 \begin{itemize}
1290  \item Bond-centered configuration unstable\\
1291        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1292  \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
1293        $\rightarrow$ \ci{} \hkl<1 1 0> DB
1294 \end{itemize}
1295 \vspace{0.1cm}
1296 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
1297 \begin{itemize}
1298  \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
1299  \item 2.4 -- 3.4 times higher than ab initio result
1300  \item After all: Change of the DB orientation
1301 \end{itemize}
1302 \end{minipage}
1303
1304 \vspace{0.5cm}
1305 \begin{center}
1306 {\color{red}\bf Drastically overestimated diffusion barrier}
1307 \end{center}
1308
1309 \begin{pspicture}(0,0)(0,0)
1310 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
1311 \end{pspicture}
1312
1313 \end{slide}
1314
1315 \begin{slide}
1316
1317 \headphd
1318 {\large\bf\boldmath
1319  Defect combinations
1320 }
1321
1322 \footnotesize
1323
1324 \vspace{0.3cm}
1325
1326 \begin{minipage}{9cm}
1327 {\bf
1328  Summary of combinations}\\[0.1cm]
1329 {\scriptsize
1330 \begin{tabular}{l c c c c c c}
1331 \hline
1332  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1333  \hline
1334  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1335  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1336  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1337  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1338  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1339  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1340  \hline
1341  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1342  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1343 \hline
1344 \end{tabular}
1345 }
1346 \vspace{0.2cm}
1347 \begin{center}
1348 {\color{blue}
1349  $E_{\text{b}}$ explainable by stress compensation / increase
1350 }
1351 \end{center}
1352 \end{minipage}
1353 \begin{minipage}{3cm}
1354 \includegraphics[width=3.5cm]{comb_pos.eps}
1355 \end{minipage}
1356
1357 \vspace{0.2cm}
1358
1359 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1360 \begin{minipage}[t]{3.2cm}
1361 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1362 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1363 \end{minipage}
1364 \begin{minipage}[t]{3.0cm}
1365 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1366 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1367 \end{minipage}
1368 \begin{minipage}[t]{6.1cm}
1369 \vspace{0.7cm}
1370 \begin{itemize}
1371  \item \ci{} agglomeration energetically favorable
1372  \item Most favorable: C clustering\\
1373        {\color{red}However \ldots}\\
1374         \ldots high migration barrier ($>4\,\text{eV}$)\\
1375         \ldots entropy:
1376         $4\times{\color{cyan}[-2.25]}$ versus
1377         $2\times{\color{orange}[-2.39]}$
1378 \end{itemize}
1379 \begin{center}
1380 {\color{blue}\ci{} agglomeration / no C clustering}
1381 \end{center}
1382 \end{minipage}
1383
1384 \end{slide}
1385
1386 \begin{slide}
1387
1388 \headphd
1389 {\large\bf\boldmath
1390  Defect combinations
1391 }
1392
1393 \footnotesize
1394
1395 \vspace{0.3cm}
1396
1397 \begin{minipage}{9cm}
1398 {\bf
1399  Summary of combinations}\\[0.1cm]
1400 {\scriptsize
1401 \begin{tabular}{l c c c c c c}
1402 \hline
1403  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1404  \hline
1405  \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1406  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1407  \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1408  \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1409  \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1410  \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1411  \hline
1412  C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1413  Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1414 \hline
1415 \end{tabular}
1416 }
1417 \vspace{0.2cm}
1418 \begin{center}
1419 {\color{blue}
1420  $E_{\text{b}}$ explainable by stress compensation / increase
1421 }
1422 \end{center}
1423 \end{minipage}
1424 \begin{minipage}{3cm}
1425 \includegraphics[width=3.5cm]{comb_pos.eps}
1426 \end{minipage}
1427
1428 \vspace{0.2cm}
1429
1430 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1431 \begin{minipage}[t]{3.2cm}
1432 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1433 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1434 \end{minipage}
1435 \begin{minipage}[t]{3.0cm}
1436 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1437 \includegraphics[width=2.8cm]{00-1dc/2-39.eps}
1438 \end{minipage}
1439 \begin{minipage}[t]{6.1cm}
1440 \vspace{0.7cm}
1441 \begin{itemize}
1442  \item \ci{} agglomeration energetically favorable
1443  \item Most favorable: C clustering\\
1444        {\color{red}However \ldots}\\
1445         \ldots high migration barrier ($>4\,\text{eV}$)\\
1446         \ldots entropy:
1447         $4\times{\color{cyan}[-2.25]}$ versus
1448         $2\times{\color{orange}[-2.39]}$
1449 \end{itemize}
1450 \begin{center}
1451 {\color{blue}\ci{} agglomeration / no C clustering}
1452 \end{center}
1453 \end{minipage}
1454
1455 % insert graph ...
1456 \begin{pspicture}(0,0)(0,0)
1457 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1458 \begin{minipage}{14cm}
1459 \hfill
1460 \vspace{12cm}
1461 \end{minipage}
1462 }}
1463 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1464 \begin{minipage}{8cm}
1465 \begin{center}
1466 \vspace{0.2cm}
1467 \scriptsize
1468 Interaction along \hkl[1 1 0]
1469 \includegraphics[width=7cm]{db_along_110_cc.ps}
1470 \end{center}
1471 \end{minipage}
1472 }}}
1473 \end{pspicture}
1474
1475 \end{slide}
1476
1477 \begin{slide}
1478
1479 \headphd
1480 {\large\bf
1481  Defect combinations of C-Si dimers and vacancies
1482 }
1483 \footnotesize
1484
1485 \vspace{0.2cm}
1486
1487 \begin{minipage}[b]{2.6cm}
1488 \begin{flushleft}
1489 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1490 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1491 \end{flushleft}
1492 \end{minipage}
1493 \begin{minipage}[b]{7cm}
1494 \hfill
1495 \end{minipage}
1496 \begin{minipage}[b]{2.6cm}
1497 \begin{flushright}
1498 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1499 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1500 \end{flushright}
1501 \end{minipage}\\[0.2cm]
1502
1503 \begin{minipage}{6.5cm}
1504 \includegraphics[width=6.0cm]{059-539.ps}
1505 \end{minipage}
1506 \begin{minipage}{5.7cm}
1507 \includegraphics[width=6.0cm]{314-539.ps}
1508 \end{minipage}
1509
1510 \begin{pspicture}(0,0)(0,0)
1511 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1512
1513 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1514 \begin{minipage}{6.5cm}
1515 \begin{center}
1516 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1517 Low migration barrier towards C$_{\text{sub}}$\\
1518 \&\\
1519 High barrier for reverse process\\[0.3cm]
1520 {\color{blue}
1521 High probability of stable C$_{\text{sub}}$ configuration
1522 }
1523 \end{center}
1524 \end{minipage}
1525 }}}
1526 \end{pspicture}
1527
1528 \end{slide}
1529
1530 \begin{slide}
1531
1532 \headphd
1533 {\large\bf
1534  Combinations of substitutional C and Si self-interstitials
1535 }
1536
1537 \scriptsize
1538
1539 \vspace{0.3cm}
1540
1541 \begin{minipage}{6.2cm}
1542 \begin{center}
1543 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1544 \begin{itemize}
1545  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1546  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1547  \item Interaction drops quickly to zero\\
1548        $\rightarrow$ low capture radius
1549 \end{itemize}
1550 \end{center}
1551 \end{minipage}
1552 \begin{minipage}{0.2cm}
1553 \hfill
1554 \end{minipage}
1555 \begin{minipage}{6.0cm}
1556 \begin{center}
1557 {\bf Transition from the ground state}
1558 \begin{itemize}
1559  \item Low transition barrier
1560  \item Barrier smaller than \ci{} migration barrier
1561  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1562        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1563 \end{itemize}
1564 \end{center}
1565 \end{minipage}\\[0.3cm]
1566
1567 \begin{minipage}{6.0cm}
1568 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1569 \end{minipage}
1570 \begin{minipage}{0.4cm}
1571 \hfill
1572 \end{minipage}
1573 \begin{minipage}{6.0cm}
1574 \begin{flushright}
1575 \includegraphics[width=6.0cm]{162-097.ps}
1576 \end{flushright}
1577 \end{minipage}
1578
1579 \begin{pspicture}(0,0)(0,0)
1580 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1581 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1582 \begin{minipage}{8cm}
1583 \begin{center}
1584 \vspace{0.1cm}
1585 {\color{black}
1586 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1587 IBS --- process far from equilibrium\\
1588 }
1589 \end{center}
1590 \end{minipage}
1591 }}}
1592 \end{pspicture}
1593
1594 \end{slide}
1595
1596 \begin{slide}
1597
1598 \headphd
1599 {\large\bf
1600  Combinations of substitutional C and Si self-interstitials
1601 }
1602
1603 \scriptsize
1604
1605 \vspace{0.3cm}
1606
1607 \begin{minipage}{6.2cm}
1608 \begin{center}
1609 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1610 \begin{itemize}
1611  \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1612  \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1613  \item Interaction drops quickly to zero\\
1614        $\rightarrow$ low capture radius
1615 \end{itemize}
1616 \end{center}
1617 \end{minipage}
1618 \begin{minipage}{0.2cm}
1619 \hfill
1620 \end{minipage}
1621 \begin{minipage}{6.0cm}
1622 \begin{center}
1623 {\bf Transition from the ground state}
1624 \begin{itemize}
1625  \item Low transition barrier
1626  \item Barrier smaller than \ci{} migration barrier
1627  \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1628        $\rightarrow$ Separation of \cs{} \& \si{} most probable
1629 \end{itemize}
1630 \end{center}
1631 \end{minipage}\\[0.3cm]
1632
1633 \begin{minipage}{6.0cm}
1634 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1635 \end{minipage}
1636 \begin{minipage}{0.4cm}
1637 \hfill
1638 \end{minipage}
1639 \begin{minipage}{6.0cm}
1640 \begin{flushright}
1641 \includegraphics[width=6.0cm]{162-097.ps}
1642 \end{flushright}
1643 \end{minipage}
1644
1645 \begin{pspicture}(0,0)(0,0)
1646 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1647 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1648 \begin{minipage}{8cm}
1649 \begin{center}
1650 \vspace{0.1cm}
1651 {\color{black}
1652 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1653 IBS --- process far from equilibrium\\
1654 }
1655 \end{center}
1656 \end{minipage}
1657 }}}
1658 \end{pspicture}
1659
1660 % md support
1661 \begin{pspicture}(0,0)(0,0)
1662 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1663 \begin{minipage}{14cm}
1664 \hfill
1665 \vspace{14cm}
1666 \end{minipage}
1667 }}
1668 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1669 \begin{minipage}{11cm}
1670 \begin{center}
1671 \vspace{0.2cm}
1672 \scriptsize
1673 Ab initio MD at \degc{900}\\[0.4cm]
1674 \begin{minipage}{5.4cm}
1675 \centering
1676 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1677 $t=\unit[2230]{fs}$
1678 \end{minipage}
1679 \begin{minipage}{5.4cm}
1680 \centering
1681 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1682 $t=\unit[2900]{fs}$
1683 \end{minipage}\\[0.5cm]
1684 {\color{blue}
1685 Contribution of entropy to structural formation\\[0.1cm]
1686 }
1687 \end{center}
1688 \end{minipage}
1689 }}}
1690 \end{pspicture}
1691
1692 \end{slide}
1693
1694 \begin{slide}
1695
1696 \headphd
1697 {\large\bf
1698  Silicon carbide precipitation simulations
1699 }
1700
1701 \small
1702
1703 \vspace{0.2cm}
1704
1705 {\bf Procedure}
1706
1707 {\scriptsize
1708  \begin{pspicture}(0,0)(12,6.5)
1709   % nodes
1710   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1711    \parbox{7cm}{
1712    \begin{itemize}
1713     \item Create c-Si volume
1714     \item Periodc boundary conditions
1715     \item Set requested $T$ and $p=0\text{ bar}$
1716     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1717    \end{itemize}
1718   }}}}
1719   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1720    \parbox{7cm}{
1721    Insertion of C atoms at constant T
1722    \begin{itemize}
1723     \item total simulation volume {\pnode{in1}}
1724     \item volume of minimal SiC precipitate size {\pnode{in2}}
1725     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1726           precipitate
1727    \end{itemize} 
1728   }}}}
1729   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1730    \parbox{7.0cm}{
1731    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1732   }}}}
1733   \ncline[]{->}{init}{insert}
1734   \ncline[]{->}{insert}{cool}
1735   \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1736   \rput(7.6,6){\footnotesize $V_1$}
1737   \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1738   \rput(8.9,4.85){\tiny $V_2$}
1739   \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1740   \rput(9.25,4.45){\footnotesize $V_3$}
1741   \rput(7.9,3.2){\pnode{ins1}}
1742   \rput(8.92,2.8){\pnode{ins2}}
1743   \rput(10.8,2.4){\pnode{ins3}}
1744   \ncline[]{->}{in1}{ins1}
1745   \ncline[]{->}{in2}{ins2}
1746   \ncline[]{->}{in3}{ins3}
1747  \end{pspicture}
1748 }
1749
1750 \vspace{-0.5cm}
1751
1752 {\bf Note}
1753
1754 \footnotesize
1755
1756 \begin{minipage}{5.7cm}
1757 \begin{itemize}
1758  \item Amount of C atoms: 6000\\
1759        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1760  \item Simulation volume: $31^3$ Si unit cells\\
1761        (238328 Si atoms)
1762 \end{itemize}
1763 \end{minipage}
1764 \begin{minipage}{0.3cm}
1765 \hfill
1766 \end{minipage}
1767 \framebox{
1768 \begin{minipage}{6.0cm}
1769 Restricted to classical potential caclulations\\
1770 $\rightarrow$ Low C diffusion / overestimated barrier\\
1771 $\rightarrow$ Consider $V_2$ and $V_3$
1772 %\begin{itemize}
1773 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1774 %\end{itemize}
1775 \end{minipage}
1776 }
1777
1778 \end{slide}
1779
1780 \begin{slide}
1781
1782 \headphd
1783 {\large\bf\boldmath
1784  Silicon carbide precipitation simulations at \degc{450} as in IBS
1785 }
1786
1787 \small
1788
1789 \begin{minipage}{6.3cm}
1790 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1791 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1792 \hfill
1793 \end{minipage} 
1794 \begin{minipage}{6.1cm}
1795 \scriptsize
1796 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1797 \hkl<1 0 0> C-Si dumbbell dominated structure
1798 \begin{itemize}
1799  \item Si-C bumbs around \unit[0.19]{nm}
1800  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1801        concatenated differently oriented \ci{} DBs
1802  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1803 \end{itemize}
1804 \begin{pspicture}(0,0)(6.0,1.0)
1805 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1806 \begin{minipage}{6cm}
1807 \centering
1808 Formation of \ci{} dumbbells\\
1809 C atoms in proper 3C-SiC distance first
1810 \end{minipage}
1811 }}
1812 \end{pspicture}\\[0.1cm]
1813 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1814 \begin{itemize}
1815 \item High amount of strongly bound C-C bonds
1816 \item Increased defect \& damage density\\
1817       $\rightarrow$ Arrangements hard to categorize and trace
1818 \item Only short range order observable
1819 \end{itemize}
1820 \begin{pspicture}(0,0)(6.0,0.8)
1821 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1822 \begin{minipage}{6cm}
1823 \centering
1824 Amorphous SiC-like phase
1825 \end{minipage}
1826 }}
1827 \end{pspicture}\\[0.3cm]
1828 \begin{pspicture}(0,0)(6.0,2.0)
1829 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1830 \begin{minipage}{6cm}
1831 \hfill
1832 \vspace{2.5cm}
1833 \end{minipage}
1834 }}
1835 \end{pspicture}
1836 \end{minipage} 
1837
1838 \end{slide}
1839
1840 \begin{slide}
1841
1842 \headphd
1843 {\large\bf\boldmath
1844  Silicon carbide precipitation simulations at \degc{450} as in IBS
1845 }
1846
1847 \small
1848
1849 \begin{minipage}{6.3cm}
1850 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1851 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1852 \hfill
1853 \end{minipage} 
1854 \begin{minipage}{6.1cm}
1855 \scriptsize
1856 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1857 \hkl<1 0 0> C-Si dumbbell dominated structure
1858 \begin{itemize}
1859  \item Si-C bumbs around \unit[0.19]{nm}
1860  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1861        concatenated differently oriented \ci{} DBs
1862  \item Si-Si NN distance stretched to \unit[0.3]{nm}
1863 \end{itemize}
1864 \begin{pspicture}(0,0)(6.0,1.0)
1865 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1866 \begin{minipage}{6cm}
1867 \centering
1868 Formation of \ci{} dumbbells\\
1869 C atoms in proper 3C-SiC distance first
1870 \end{minipage}
1871 }}
1872 \end{pspicture}\\[0.1cm]
1873 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1874 \begin{itemize}
1875 \item High amount of strongly bound C-C bonds
1876 \item Increased defect \& damage density\\
1877       $\rightarrow$ Arrangements hard to categorize and trace
1878 \item Only short range order observable
1879 \end{itemize}
1880 \begin{pspicture}(0,0)(6.0,0.8)
1881 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1882 \begin{minipage}{6cm}
1883 \centering
1884 Amorphous SiC-like phase
1885 \end{minipage}
1886 }}
1887 \end{pspicture}\\[0.3cm]
1888 \begin{pspicture}(0,0)(6.0,2.0)
1889 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1890 \begin{minipage}{6cm}
1891 \vspace{0.1cm}
1892 \centering
1893 {\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
1894 \begin{minipage}{0.8cm}
1895 {\bf\boldmath $V_1$:}
1896 \end{minipage}
1897 \begin{minipage}{5.1cm}
1898 Formation of \ci{} indeed occurs\\
1899 Agllomeration not observed
1900 \end{minipage}\\[0.3cm]
1901 \begin{minipage}{0.8cm}
1902 {\bf\boldmath $V_{2,3}$:}
1903 \end{minipage}
1904 \begin{minipage}{5.1cm}
1905 Amorphous SiC-like structure\\
1906 (not expected at \degc{450})\\[0.05cm]
1907 No rearrangement/transition into 3C-SiC
1908 \end{minipage}\\[0.1cm]
1909 \end{minipage}
1910 }}
1911 \end{pspicture}
1912 \end{minipage} 
1913
1914 \end{slide}
1915
1916 \begin{slide}
1917
1918 \headphd
1919 {\large\bf
1920  Limitations of MD and short range potentials
1921 }
1922
1923 \small
1924
1925 \vspace{0.2cm}
1926
1927 {\bf Time scale problem of MD}\\[0.2cm]
1928 Precise integration \& thermodynamic sampling\\
1929 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1930               $\omega$: vibrational mode\\
1931 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1932 Several local minima separated by large energy barriers\\
1933 $\Rightarrow$ Transition event corresponds to a multiple
1934               of vibrational periods\\
1935 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1936               infrequent transition events\\[0.2cm]
1937 {\color{blue}Accelerated methods:}
1938 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1939
1940 \vspace{0.2cm}
1941
1942 {\bf Limitations related to the short range potential}\\[0.2cm]
1943 Cut-off function limits interaction to next neighbours\\
1944 $\Rightarrow$ Overestimated unphysical high forces of next neighbours
1945               (factor: 2.4--3.4)
1946
1947 \vspace{1.4cm}
1948
1949 {\bf Approach to the (twofold) problem}\\[0.2cm]
1950 Increased temperature simulations without TAD corrections\\
1951 Accelerated methods or higher time scales exclusively not sufficient!
1952
1953 \begin{pspicture}(0,0)(0,0)
1954 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1955 \begin{minipage}{7.5cm}
1956 \centering
1957 \vspace{0.05cm}
1958 Potential enhanced slow phase space propagation
1959 \end{minipage}
1960 }}
1961 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1962 \begin{minipage}{2.7cm}
1963 \tiny
1964 \centering
1965 retain proper\\
1966 thermodynamic sampling
1967 \end{minipage}
1968 }}
1969 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1970 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1971 \begin{minipage}{3.6cm}
1972 \tiny
1973 \centering
1974 \underline{IBS}\\[0.1cm]
1975 3C-SiC also observed for higher T\\[0.1cm]
1976 Higher T inside sample\\[0.1cm]
1977 Structural evolution vs.\\
1978 equilibrium properties
1979 \end{minipage}
1980 }}
1981 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1982 \end{pspicture}
1983
1984 \end{slide}
1985
1986 \begin{slide}
1987
1988 \headphd
1989 {\large\bf\boldmath
1990  Increased temperature simulations --- $V_1$
1991 }
1992
1993 \small
1994
1995 \begin{minipage}{6.2cm}
1996 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1997 \hfill
1998 \end{minipage}
1999 \begin{minipage}{6.2cm}
2000 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2001 \end{minipage}
2002
2003 \begin{minipage}{6.2cm}
2004 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2005 \hfill
2006 \end{minipage}
2007 \begin{minipage}{6.3cm}
2008 \scriptsize
2009  \underline{Si-C bonds:}
2010  \begin{itemize}
2011   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2012   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2013  \end{itemize}
2014  \underline{Si-Si bonds:}
2015  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2016  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2017  \underline{C-C bonds:}
2018  \begin{itemize}
2019   \item C-C next neighbour pairs reduced (mandatory)
2020   \item Peak at 0.3 nm slightly shifted
2021         \begin{itemize}
2022          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2023                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2024                combinations (|)\\
2025                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2026                ($\downarrow$)
2027          \item Range [|-$\downarrow$]:
2028                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2029                with nearby Si$_{\text{I}}$}
2030         \end{itemize}
2031  \end{itemize}
2032 \end{minipage}
2033
2034 \end{slide}
2035
2036 \begin{slide}
2037
2038 \headphd
2039 {\large\bf\boldmath
2040  Increased temperature simulations --- $V_1$
2041 }
2042
2043 \small
2044
2045 \begin{minipage}{6.2cm}
2046 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
2047 \hfill
2048 \end{minipage}
2049 \begin{minipage}{6.2cm}
2050 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
2051 \end{minipage}
2052
2053 \begin{minipage}{6.2cm}
2054 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
2055 \hfill
2056 \end{minipage}
2057 \begin{minipage}{6.3cm}
2058 \scriptsize
2059  \underline{Si-C bonds:}
2060  \begin{itemize}
2061   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2062   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2063  \end{itemize}
2064  \underline{Si-Si bonds:}
2065  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2066  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2067  \underline{C-C bonds:}
2068  \begin{itemize}
2069   \item C-C next neighbour pairs reduced (mandatory)
2070   \item Peak at 0.3 nm slightly shifted
2071         \begin{itemize}
2072          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2073                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2074                combinations (|)\\
2075                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2076                ($\downarrow$)
2077          \item Range [|-$\downarrow$]:
2078                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2079                with nearby Si$_{\text{I}}$}
2080         \end{itemize}
2081  \end{itemize}
2082 \end{minipage}
2083
2084 % conclusions
2085 \begin{pspicture}(0,0)(0,0)
2086 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
2087 \begin{minipage}{14cm}
2088 \hfill
2089 \vspace{14cm}
2090 \end{minipage}
2091 }}
2092 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
2093 \begin{minipage}{9cm}
2094 \vspace{0.2cm}
2095 \small
2096 \begin{center}
2097 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
2098 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
2099 \end{center}
2100 \begin{itemize}
2101 \item Stretched coherent SiC structures\\
2102 $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
2103 \item Explains annealing behavior of high/low T C implantations
2104       \begin{itemize}
2105        \item Low T: highly mobile {\color{red}\ci}
2106        \item High T: stable configurations of {\color{blue}\cs}
2107       \end{itemize}
2108 \item Role of \si{}
2109       \begin{itemize}
2110        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
2111        \item Building block for surrounding Si host \& further SiC
2112        \item Strain compensation \ldots\\
2113              \ldots Si/SiC interface\\
2114              \ldots within stretched coherent SiC structure
2115       \end{itemize}
2116 \end{itemize}
2117 \vspace{0.2cm}
2118 \centering
2119 \psframebox[linecolor=blue,linewidth=0.05cm]{
2120 \begin{minipage}{7cm}
2121 \centering
2122 Precipitation mechanism involving \cs\\
2123 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2124 \end{minipage}
2125 }
2126 \end{minipage}
2127 \vspace{0.2cm}
2128 }}
2129 \end{pspicture}
2130
2131 \end{slide}
2132
2133 % skip high T / C conc ... only here!
2134 \ifnum1=0
2135
2136 \begin{slide}
2137
2138  {\large\bf
2139   Increased temperature simulations at high C concentration
2140  }
2141
2142 \footnotesize
2143
2144 \begin{minipage}{6.5cm}
2145 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2146 \end{minipage}
2147 \begin{minipage}{6.5cm}
2148 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2149 \end{minipage}
2150
2151 \vspace{0.1cm}
2152
2153 \scriptsize
2154
2155 \framebox{
2156 \begin{minipage}[t]{6.0cm}
2157 0.186 nm: Si-C pairs $\uparrow$\\
2158 (as expected in 3C-SiC)\\[0.2cm]
2159 0.282 nm: Si-C-C\\[0.2cm]
2160 $\approx$0.35 nm: C-Si-Si
2161 \end{minipage}
2162 }
2163 \begin{minipage}{0.2cm}
2164 \hfill
2165 \end{minipage}
2166 \framebox{
2167 \begin{minipage}[t]{6.0cm}
2168 0.15 nm: C-C pairs $\uparrow$\\
2169 (as expected in graphite/diamond)\\[0.2cm]
2170 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2171 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2172 \end{minipage}
2173 }
2174
2175 \begin{itemize}
2176 \item Decreasing cut-off artifact
2177 \item {\color{red}Amorphous} SiC-like phase remains
2178 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2179 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2180 \end{itemize}
2181
2182 \vspace{-0.1cm}
2183
2184 \begin{center}
2185 {\color{blue}
2186 \framebox{
2187 {\color{black}
2188 High C \& small $V$ \& short $t$
2189 $\Rightarrow$
2190 }
2191 Slow restructuring due to strong C-C bonds
2192 {\color{black}
2193 $\Leftarrow$
2194 High C \& low T implants
2195 }
2196 }
2197 }
2198 \end{center}
2199
2200 \end{slide}
2201
2202 % skipped high T / C conc
2203 \fi
2204
2205 \begin{slide}
2206
2207 {\large\bf
2208  Summary / Outlook
2209 }
2210
2211 \small
2212
2213 \begin{pspicture}(0,0)(12,1.0)
2214 \psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
2215 \begin{minipage}{11cm}
2216 {\color{black}Diploma thesis}\\
2217  \underline{Monte Carlo} simulation modeling the selforganization process\\
2218  leading to periodic arrays of nanometric amorphous SiC precipitates
2219 \end{minipage}
2220 }
2221 \end{pspicture}\\[0.4cm]
2222 \begin{pspicture}(0,0)(12,2)
2223 \psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
2224 \begin{minipage}{11cm}
2225 {\color{black}Doctoral studies}\\
2226  Classical potential \underline{molecular dynamics} simulations \ldots\\
2227  \underline{Density functional theory} calculations \ldots\\[0.2cm]
2228  \ldots on defect formation and SiC precipitation in Si
2229 \end{minipage}
2230 }
2231 \end{pspicture}\\[0.5cm]
2232 \begin{pspicture}(0,0)(12,3)
2233 \psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
2234 \begin{minipage}{11cm}
2235 \vspace{0.2cm}
2236 {\color{black}\bf How to proceed \ldots}\\[0.1cm]
2237 MC $\rightarrow$ empirical potential MD $\rightarrow$ Ground-state DFT \ldots
2238 \begin{itemize}
2239  \renewcommand\labelitemi{$\ldots$}
2240  \item beyond LDA/GGA methods \& ground-state DFT
2241 \end{itemize}
2242 Investigation of structure \& structural evolution \ldots
2243 \begin{itemize}
2244  \renewcommand\labelitemi{$\ldots$}
2245  \item electronic/optical properties
2246  \item electronic correlations
2247  \item non-equilibrium systems
2248 \end{itemize}
2249 \end{minipage}
2250 }
2251 \end{pspicture}\\[0.5cm]
2252
2253 \end{slide}
2254
2255 \begin{slide}
2256
2257  {\large\bf
2258   Acknowledgements
2259  }
2260
2261  \vspace{0.1cm}
2262
2263  \small
2264
2265  Thanks to \ldots
2266
2267  \underline{Augsburg}
2268  \begin{itemize}
2269   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2270   \item Ralf Utermann (EDV)
2271  \end{itemize}
2272  
2273  \underline{Helsinki}
2274  \begin{itemize}
2275   \item Prof. K. Nordlund (MD)
2276  \end{itemize}
2277  
2278  \underline{Munich}
2279  \begin{itemize}
2280   \item Bayerische Forschungsstiftung (financial support)
2281  \end{itemize}
2282  
2283  \underline{Paderborn}
2284  \begin{itemize}
2285   \item Prof. J. Lindner (SiC)
2286   \item Prof. G. Schmidt (DFT + financial support)
2287   \item Dr. E. Rauls (DFT + SiC)
2288  \end{itemize}
2289
2290  \underline{Stuttgart}
2291 \begin{center}
2292 \framebox{
2293 \bf Thank you for your attention / invitation!
2294 }
2295 \end{center}
2296
2297 \end{slide}
2298
2299 \end{document}
2300
2301 \fi