safety checkin
[lectures/latex.git] / posic / talks / dpg_2008.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 \usepackage{epic}
24 \usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage[setpagesize=false]{hyperref}
30
31 \usepackage{semcolor}
32 \usepackage{semlayer}           % Seminar overlays
33 \usepackage{slidesec}           % Seminar sections and list of slides
34
35 \input{seminar.bug}             % Official bugs corrections
36 \input{seminar.bg2}             % Unofficial bugs corrections
37
38 \articlemag{1}
39
40 \special{landscape}
41
42 \begin{document}
43
44 \extraslideheight{10in}
45 \slideframe{none}
46
47 \pagestyle{empty}
48
49 % specify width and height
50 \slidewidth 27.7cm 
51 \slideheight 19.1cm 
52
53 % shift it into visual area properly
54 \def\slideleftmargin{3.3cm}
55 \def\slidetopmargin{0.6cm}
56
57 \newcommand{\ham}{\mathcal{H}}
58 \newcommand{\pot}{\mathcal{V}}
59 \newcommand{\foo}{\mathcal{U}}
60 \newcommand{\vir}{\mathcal{W}}
61
62 % itemize level ii
63 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
64
65 % topic
66
67 \begin{slide}
68 \begin{center}
69
70  \vspace{16pt}
71
72  {\LARGE\bf
73   Molecular dynamics simulation study\\
74   of the silicon carbide precipitation process
75  }
76
77  \vspace{24pt}
78
79  \textsc{\small \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$,
80          K. Nordlund$^2$, B. Stritzker$^1$}\\
81
82  \vspace{32pt}
83
84  \begin{minipage}{2.0cm}
85   \begin{center}
86   \includegraphics[height=1.6cm]{uni-logo.eps}
87   \end{center}
88  \end{minipage}
89  \begin{minipage}{8.0cm}
90   \begin{center}
91    {\footnotesize
92     $^1$ Experimentalphysik IV, Institut f"ur Physik,\\
93          Universit"at Augsburg, Universit"atsstr. 1,\\
94          D-86135 Augsburg, Germany
95    }
96   \end{center}
97  \end{minipage}
98  \begin{minipage}{2.3cm}
99   \begin{center}
100   \includegraphics[height=1.5cm]{Lehrstuhl-Logo.eps}
101   \end{center}
102  \end{minipage}
103
104  \vspace{16pt}
105
106  \begin{minipage}{4.0cm}
107   \begin{center}
108   \includegraphics[height=1.6cm]{logo_eng.eps}
109   \end{center}
110  \end{minipage}
111  \begin{minipage}{8.0cm}
112   \begin{center}
113   {\footnotesize
114    $^2$ Accelerator Laboratory, Department of Physical Sciences,\\
115    University of Helsinki, Pietari Kalmink. 2,\\
116    00014 Helsinki, Finland
117   }
118   \end{center}
119  \end{minipage}
120 \end{center}
121 \end{slide}
122
123 % contents
124
125 % no contents for such a short talk!
126
127 % start of contents
128
129 \begin{slide}
130
131  {\large\bf
132   Motivation / Introduction
133  }
134
135  \vspace{16pt}
136
137  Reasons for understanding the SiC precipitation process:
138
139  \begin{itemize}
140   \item 3C-SiC wide band gap semiconductor formation
141   \item Strained Si (no precipitation wanted!)
142  \end{itemize}
143
144  \vspace{16pt}
145
146  Si / 3C-SiC facts:
147
148  \begin{minipage}{8cm}
149  \begin{itemize}
150   \item Unit cell:
151         \begin{itemize}
152          \item {\color{orange}fcc} $+$
153          \item {\color{gray}fcc shifted $1/4$ of volume diagonal}
154         \end{itemize}
155   \item Lattice constants: $4a_{Si}\approx5a_{SiC}$
156   \item Silicon density: 
157         \[
158         \frac{n_{SiC}}{n_{Si}}=
159         \frac{4/a_{SiC}^3}{8/a_{Si}^3}=
160         \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\%
161         \]
162  \end{itemize}
163  \end{minipage}
164  \hspace{8pt}
165  \begin{minipage}{4cm}
166  \includegraphics[width=4cm]{sic_unit_cell.eps}
167  \end{minipage}
168
169 \end{slide}
170
171  \small
172 \begin{slide}
173
174  {\large\bf
175   Motivation / Introduction
176  }
177
178  \small
179  \vspace{6pt}
180
181  Supposed conversion mechanism of heavily carbon doped Si into SiC:
182
183  \vspace{8pt}
184
185  \begin{minipage}{3.8cm}
186  \includegraphics[width=3.7cm]{sic_prec_seq_01.eps}
187  \end{minipage}
188  \hspace{0.6cm}
189  \begin{minipage}{3.8cm}
190  \includegraphics[width=3.7cm]{sic_prec_seq_02.eps}
191  \end{minipage}
192  \hspace{0.6cm}
193  \begin{minipage}{3.8cm}
194  \includegraphics[width=3.7cm]{sic_prec_seq_03.eps}
195  \end{minipage}
196
197  \vspace{8pt}
198
199  \begin{minipage}{3.8cm}
200  Formation of C-Si dumbbells on regular c-Si lattice sites
201  \end{minipage}
202  \hspace{0.6cm}
203  \begin{minipage}{3.8cm}
204  Agglomeration into large clusters (embryos)\\
205  \end{minipage}
206  \hspace{0.6cm}
207  \begin{minipage}{3.8cm}
208  Precipitation of 3C-SiC + Creation of interstitials\\
209  \end{minipage}
210
211  \vspace{12pt}
212
213  Experimentally observed:
214  \begin{itemize}
215   \item Minimal diameter of precipitation: 4 - 5 nm
216   \item (hkl)-planes identical for Si and SiC
217  \end{itemize}
218
219 \end{slide}
220
221 \begin{slide}
222
223  {\large\bf
224   Simulation details
225  }
226
227  \vspace{12pt}
228
229  MD basics:
230  \begin{itemize}
231   \item Microscopic description of N particle system
232   \item Analytical interaction potential
233   \item Hamilton's equations of motion as propagation rule\\
234         in 6N-dimensional phase space
235   \item Observables obtained by time average
236  \end{itemize}
237
238  \vspace{12pt}
239
240  Application details:
241  \begin{itemize}
242   \item Integrator: Velocity Verlet, timestep: $1\, fs$
243   \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$
244   \item Potential: Tersoff-like bond order potential\\
245         \[
246         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
247         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
248         \]
249         \begin{center}
250         {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211}
251         \end{center}
252  \end{itemize}
253
254  \begin{picture}(0,0)(-240,-70)
255   \includegraphics[width=5cm]{tersoff_angle.eps} 
256  \end{picture}
257
258 \end{slide}
259
260 \begin{slide}
261
262  {\large\bf
263   Simulation details
264  }
265
266  \vspace{8pt}
267
268  Interstitial experiments:
269
270  \vspace{8pt}
271
272  \begin{pspicture}(0,0)(7,8)
273   \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
274    \parbox{7cm}{
275    \begin{itemize}
276     \item Initial configuration: $9\times9\times9$ unit cells Si
277     \item Periodic boundary conditions
278     \item $T=0 \, K$
279    \end{itemize}
280   }}}}
281 \rput(3.5,3.5){\rnode{insert}{\psframebox{
282  \parbox{7cm}{
283   Insertion of C / Si atom:
284   \begin{itemize}
285    \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
286    \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
287    \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
288          $\rightarrow$ {\color{magenta}110 dumbbell}
289    \item random positions (critical distance check)
290   \end{itemize}
291   }}}}
292   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
293    \parbox{3.5cm}{
294    Relaxation time: $2\, ps$
295   }}}}
296   \ncline[]{->}{init}{insert}
297   \ncline[]{->}{insert}{cool}
298  \end{pspicture}
299
300  \begin{picture}(0,0)(-210,-45)
301   \includegraphics[width=6cm]{unit_cell.eps}
302  \end{picture}
303
304 \end{slide}
305
306 \begin{slide}
307
308  {\large\bf
309   Results
310  } - Si self-interstitial experiments
311
312  \small
313
314  \begin{minipage}[t]{4.3cm}
315  \underline{Tetrahedral}\\
316  $E_f=3.41\, eV$\\
317  \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
318  \end{minipage}
319  \begin{minipage}[t]{4.3cm}
320  \underline{110 dumbbell}\\
321  $E_f=4.39\, eV$\\
322  \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
323  \end{minipage}
324  \begin{minipage}[t]{4.3cm}
325  \underline{Hexagonal} \hspace{4pt}
326  \href{../video/si_self_int_hexa.avi}{$\rhd$}\\
327  $E_f^{\star}\approx4.48\, eV$ (unstable!)\\
328  \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
329  \end{minipage}
330
331  \underline{Random insertion}
332
333  \begin{minipage}{4.3cm}
334  $E_f=3.97\, eV$\\
335  \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps}
336  \end{minipage}
337  \begin{minipage}{4.3cm}
338  $E_f=3.75\, eV$\\
339  \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps}
340  \end{minipage}
341  \begin{minipage}{4.3cm}
342  $E_f=3.56\, eV$\\
343  \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps}
344  \end{minipage}
345
346 \end{slide}
347
348 \begin{slide}
349
350  {\large\bf
351   Results
352  } - Carbon interstitial experiments
353
354  \small
355
356  \begin{minipage}[t]{4.3cm}
357  \underline{Tetrahedral}\\
358  $E_f=2.67\, eV$\\
359  \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
360  \end{minipage}
361  \begin{minipage}[t]{4.3cm}
362  \underline{110 dumbbell}\\
363  $E_f=1.76\, eV$\\
364  \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
365  \end{minipage}
366  \begin{minipage}[t]{4.3cm}
367  \underline{Hexagonal} \hspace{4pt}
368  \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
369  $E_f^{\star}\approx5.6\, eV$ (unstable!)\\
370  \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
371  \end{minipage}
372
373  \underline{Random insertion}
374
375  \footnotesize
376
377 \begin{minipage}[t]{3.3cm}
378    $E_f=0.47\, eV$\\
379    \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps}
380    \begin{picture}(0,0)(-15,-3)
381     001 dumbbell
382    \end{picture}
383 \end{minipage}
384 \begin{minipage}[t]{3.3cm}
385    $E_f=1.62\, eV$\\
386    \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps}
387 \end{minipage}
388 \begin{minipage}[t]{3.3cm}
389    $E_f=2.39\, eV$ \hspace{2pt}
390    \href{../video/c_in_si_int_rand_239.avi}{$\rhd$}\\
391    \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps}
392 \end{minipage}
393 \begin{minipage}[t]{3.0cm}
394    $E_f=3.41\, eV$ \hspace{2pt}
395    \href{../video/c_in_si_int_rand_341.avi}{$\rhd$}\\
396    \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps}
397 \end{minipage}
398
399 \end{slide}
400
401 \begin{slide}
402
403  {\large\bf
404   Simulation details
405  }
406
407  \small
408
409  \vspace{8pt}
410
411  SiC precipitation experiments:
412
413  \vspace{8pt}
414
415  \begin{pspicture}(0,0)(12,8)
416   % nodes
417   \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
418    \parbox{7cm}{
419    \begin{itemize}
420     \item Initial configuration: $31\times31\times31$ unit cells Si
421     \item Periodic boundary conditions
422     \item $T=450\, ^{\circ}C$
423     \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
424    \end{itemize}
425   }}}}
426   \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
427    \parbox{7cm}{
428    Insertion of $6000$ carbon atoms at constant\\
429    temperature into:
430    \begin{itemize}
431     \item Total simulation volume {\pnode{in1}}
432     \item Volume of minimal SiC precipitation {\pnode{in2}}
433     \item Volume of necessary amount of Si {\pnode{in3}}
434    \end{itemize} 
435   }}}}
436   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
437    \parbox{3.5cm}{
438    Cooling down to $20\, ^{\circ}C$
439   }}}}
440   \ncline[]{->}{init}{insert}
441   \ncline[]{->}{insert}{cool}
442   \psframe[fillstyle=solid,fillcolor=white](7.5,1.8)(13.5,7.8)
443   \psframe[fillstyle=solid,fillcolor=lightgray](9,3.3)(12,6.3)
444   \psframe[fillstyle=solid,fillcolor=gray](9.25,3.55)(11.75,6.05)
445   \rput(7.9,4.8){\pnode{ins1}}
446   \rput(9.22,4.4){\pnode{ins2}}
447   \rput(10.5,4.8){\pnode{ins3}}
448   \ncline[]{->}{in1}{ins1}
449   \ncline[]{->}{in2}{ins2}
450   \ncline[]{->}{in3}{ins3}
451  \end{pspicture}
452
453 \end{slide}
454
455 \begin{slide}
456
457  {\large\bf
458   Very first results of the SiC precipitation experiments
459  }
460
461  \begin{minipage}[t]{6.3cm}
462   \includegraphics[width=6.0cm]{../plot/sic_prec_energy.ps}
463   \includegraphics[width=6.0cm]{../plot/sic_prec_temp.ps}
464  \end{minipage}
465  \begin{minipage}[t]{6.3cm}
466   \includegraphics[width=6.0cm]{../plot/sic_prec_energy_zoom.ps}
467   %\includegraphics[width=6.0cm]{../plot/sic_prec_temp.ps}
468  \end{minipage}
469
470 \end{slide}
471
472 \begin{slide}
473
474  {\large\bf
475   Very first results of the SiC precipitation experiments
476  }
477
478  \begin{minipage}[c]{12cm}
479   \includegraphics[width=6.0cm]{../plot/sic_pc.ps}
480   \hspace{4pt}
481   \includegraphics[width=5.0cm]{sic_si-c-n.eps}
482  \end{minipage}
483
484 \end{slide}
485
486 \begin{slide}
487
488  {\large\bf
489   Summary / Outlook
490  }
491
492 \vspace{24pt}
493
494 \begin{itemize}
495  \item Importance of understanding C in Si
496  \item Interstitial configurations in silicon using the Albe potential
497  \item Indication of SiC precipitation
498 \end{itemize}
499
500 \vspace{16pt}
501
502 \begin{itemize}
503  \item Displacement and stress calculations
504  \item Diffusion dependence of temperature and carbon concentration
505  \item Analyzing results of the precipitation simulation runs
506  \item Analyzing self-designed Si/SiC interface
507 \end{itemize}
508
509 \end{slide}
510
511 \end{document}
512