added flow chart of prec simulation + other misc fixes
[lectures/latex.git] / posic / talks / dpg_2008.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{ae}
10
11 \usepackage{calc}               % Simple computations with LaTeX variables
12 \usepackage{caption}            % Improved captions
13 \usepackage{fancybox}           % To have several backgrounds
14
15 \usepackage{fancyhdr}           % Headers and footers definitions
16 \usepackage{fancyvrb}           % Fancy verbatim environments
17 \usepackage{pstricks}           % PSTricks with the standard color package
18
19 \usepackage{pstricks}
20 \usepackage{pst-node}
21
22 \usepackage{graphicx}
23 \graphicspath{{../img/}}
24
25 \usepackage{semcolor}
26 \usepackage{semlayer}           % Seminar overlays
27 \usepackage{slidesec}           % Seminar sections and list of slides
28
29 \input{seminar.bug}             % Official bugs corrections
30 \input{seminar.bg2}             % Unofficial bugs corrections
31
32 \articlemag{1}
33
34 \special{landscape}
35
36 \begin{document}
37
38 \extraslideheight{10in}
39 \slideframe{none}
40
41 \pagestyle{empty}
42
43 % specify width and height
44 \slidewidth 27.7cm 
45 \slideheight 19.1cm 
46
47 % shift it into visual area properly
48 \def\slideleftmargin{3.3cm}
49 \def\slidetopmargin{0.6cm}
50
51 \newcommand{\ham}{\mathcal{H}}
52 \newcommand{\pot}{\mathcal{V}}
53 \newcommand{\foo}{\mathcal{U}}
54 \newcommand{\vir}{\mathcal{W}}
55
56 % itemize level ii
57 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
58
59 % topic
60
61 \begin{slide}
62 \begin{center}
63
64  \vspace{16pt}
65
66  {\LARGE\bf
67   Molecular dynamics simulation study\\
68   of the silicon carbide precipitation process
69  }
70
71  \vspace{24pt}
72
73  \textsc{\small \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$,
74          K. Nordlund$^2$, B. Stritzker$^1$}\\
75
76  \vspace{32pt}
77
78  \begin{minipage}{2.0cm}
79   \begin{center}
80   \includegraphics[height=1.6cm]{uni-logo.eps}
81   \end{center}
82  \end{minipage}
83  \begin{minipage}{8.0cm}
84   \begin{center}
85    {\footnotesize
86     $^1$ Experimentalphysik IV, Institut f"ur Physik,\\
87          Universit"at Augsburg, Universit"atsstr. 1,\\
88          D-86135 Augsburg, Germany
89    }
90   \end{center}
91  \end{minipage}
92  \begin{minipage}{2.3cm}
93   \begin{center}
94   \includegraphics[height=1.5cm]{Lehrstuhl-Logo.eps}
95   \end{center}
96  \end{minipage}
97
98  \vspace{16pt}
99
100  \begin{minipage}{4.0cm}
101   \begin{center}
102   \includegraphics[height=1.6cm]{logo_eng.eps}
103   \end{center}
104  \end{minipage}
105  \begin{minipage}{8.0cm}
106   \begin{center}
107   {\footnotesize
108    $^2$ Accelerator Laboratory, Department of Physical Sciences,\\
109    University of Helsinki, Pietari Kalmink. 2,\\
110    00014 Helsinki, Finland
111   }
112   \end{center}
113  \end{minipage}
114 \end{center}
115 \end{slide}
116
117 % contents
118
119 \begin{slide}
120
121  \begin{center}
122  {\bf
123   Molecular dynamics simulation study\\
124   of the silicon carbide precipitation process
125  }
126  \end{center}
127
128  \vspace{16pt}
129
130  {\large\bf
131   Outline
132  }
133
134  \vspace{16pt}
135
136  \begin{itemize}
137   \item Motivation / Introduction
138   \item Molecular dynamics simulation details
139         \begin{itemize}
140          \item Integrator, potential, ensemble control
141          \item Simulation sequence
142         \end{itemize}
143   \item Simulation results
144         \begin{itemize}
145          \item Interstitials in silicon
146          \item SiC-precipitation experiments
147         \end{itemize}
148   \item Conclusion / Outlook
149  \end{itemize}
150 \end{slide}
151
152 % start of contents
153
154 \begin{slide}
155
156  {\large\bf
157   Motivation / Introduction
158  }
159
160  \vspace{16pt}
161
162  Reasons for investigating C in Si:
163
164  \begin{itemize}
165   \item 3C-SiC wide band gap semiconductor formation
166   \item Strained Si (no precipitation wanted!)
167  \end{itemize}
168
169  \vspace{16pt}
170
171  Si / 3C-SiC facts:
172
173  \begin{minipage}{8cm}
174  \begin{itemize}
175   \item Unit cell:
176         \begin{itemize}
177          \item {\color{yellow}fcc} $+$
178          \item {\color{gray}fcc shifted $1/4$ of volume diagonal}
179         \end{itemize}
180   \item Lattice constants: $4a_{Si}\approx5a_{SiC}$
181   \item Silicon density: 
182         \[
183         \frac{n_{SiC}}{n_{Si}}=
184         \frac{4/a_{SiC}^3}{8/a_{Si}^3}=
185         \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\%
186         \]
187  \end{itemize}
188  \end{minipage}
189  \hspace{8pt}
190  \begin{minipage}{4cm}
191  \includegraphics[width=4cm]{sic_unit_cell.eps}
192  \end{minipage}
193
194 \end{slide}
195
196  \small
197 \begin{slide}
198
199  {\large\bf
200   Motivation / Introduction
201  }
202
203  \small
204  \vspace{6pt}
205
206  Supposed conversion mechanism of heavily carbon doped Si into SiC:
207
208  \vspace{8pt}
209
210  \begin{minipage}{3.8cm}
211  \includegraphics[width=3.7cm]{sic_prec_seq_01.eps}
212  \end{minipage}
213  \hspace{0.6cm}
214  \begin{minipage}{3.8cm}
215  \includegraphics[width=3.7cm]{sic_prec_seq_02.eps}
216  \end{minipage}
217  \hspace{0.6cm}
218  \begin{minipage}{3.8cm}
219  \includegraphics[width=3.7cm]{sic_prec_seq_03.eps}
220  \end{minipage}
221
222  \vspace{8pt}
223
224  \begin{minipage}{3.8cm}
225  Formation of C-Si dumbbells on regular c-Si lattice sites
226  \end{minipage}
227  \hspace{0.6cm}
228  \begin{minipage}{3.8cm}
229  Agglomeration into large clusters (embryos)\\
230  \end{minipage}
231  \hspace{0.6cm}
232  \begin{minipage}{3.8cm}
233  Precipitation of 3C-SiC + Creation of interstitials\\
234  \end{minipage}
235
236  \vspace{12pt}
237
238  Experimentally observed:
239  \begin{itemize}
240   \item Minimal diameter of precipitation: 4 - 5 nm
241   \item (hkl)-planes identical for Si and SiC
242  \end{itemize}
243
244 \end{slide}
245
246 \begin{slide}
247
248  {\large\bf
249   Simulation details
250  }
251
252  \vspace{12pt}
253
254  MD basics:
255  \begin{itemize}
256   \item Microscopic description of N particle system
257   \item Analytical interaction potential
258   \item Hamilton's equations of motion as propagation rule\\
259         in 6N-dimensional phase space
260   \item Observables obtained by time average
261  \end{itemize}
262
263  \vspace{12pt}
264
265  Application details:
266  \begin{itemize}
267   \item Integrator: Velocity Verlet, timestep: $1\, fs$
268   \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$
269   \item Potential: Tersoff-like bond order potential\\
270         \[
271         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
272         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
273         \]
274         \begin{center}
275         {\scriptsize P. Erhart und K. Albe. Phys. Rev. B 71 (2005) 035211}
276         \end{center}
277  \end{itemize}
278
279  \begin{picture}(0,0)(-240,-70)
280   \includegraphics[width=5cm]{tersoff_angle.eps} 
281  \end{picture}
282
283 \end{slide}
284
285 \begin{slide}
286
287  {\large\bf
288   Simulation details
289  }
290
291  \vspace{20pt}
292
293  Interstitial experiments:
294
295  \vspace{12pt}
296
297  \begin{itemize}
298   \item Initial configuration: $9\times9\times9$ unit cells Si
299   \item Periodic boundary conditions
300   \item $T=0 \, K$
301   \item Insertion of Si / C atom at
302         \begin{itemize}
303          \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
304          \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
305          \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
306                $\rightarrow$ {\color{yellow}110 dumbbell}
307          \item random positions (critical distance check)
308         \end{itemize}
309   \item Relaxation time: $2\, ps$
310   \item Optional heating-up 
311  \end{itemize}
312
313  \begin{picture}(0,0)(-210,-45)
314   \includegraphics[width=6cm]{unit_cell.eps}
315  \end{picture}
316
317 \end{slide}
318
319 \begin{slide}
320
321  {\large\bf
322   Simulation details
323  }
324
325  \small
326
327  SiC precipitation experiments:
328
329  \begin{pspicture}(0,0)(12,8)
330   % nodes
331   \rput(4.5,6.5){\rnode{init}{\psframebox{\parbox{7cm}{
332    \begin{itemize}
333     \item Initial configuration: $31\times31\times31$ unit cells Si
334     \item Periodic boundary conditions
335     \item $T=450\, ^{\circ}C$
336     \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
337    \end{itemize}
338   }}}}
339   \rput(4.5,4.5){\rnode{tc1}{\psframebox[fillstyle=solid,fillcolor=red]{
340                              $T=450\pm 1\, ^{\circ}C$}}}
341   \rput(7,3.5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
342                               \parbox{3cm}{
343                               Insertion of 10 atoms\\
344                               at random positions}}}}
345   \rput(2,3.5){\rnode{adj1}{\psframebox[fillstyle=solid,fillcolor=red]{
346                             \parbox{3.5cm}{
347                             Adjusting temperature\\
348                             for another $100\, fs$}}}}
349   \rput(7,2.5){\rnode{nc}{\psframebox[fillstyle=solid,fillcolor=red]{
350                           $N_{atoms}=6000$}}}
351   \rput(4.5,2){\rnode{tc2}{\psframebox[fillstyle=solid,fillcolor=cyan]{
352                            $T=T_{set}$}}}
353   \rput(7,1){\rnode{td}{\psframebox[fillstyle=solid,fillcolor=cyan]{
354                         $T_{set}:=T_{set}-1\, ^{\circ}C$}}}
355   \rput(2,1){\rnode{adj2}{\psframebox[fillstyle=solid,fillcolor=cyan]{
356                           \parbox{3.5cm}{
357                           Adjusting temperature\\
358                           for another $50\, fs$}}}}
359   \rput(7,0){\rnode{tc3}{\psframebox[fillstyle=solid,fillcolor=cyan]{
360                          $T_{set}=20\, ^{\circ}C$}}}
361   \rput(10,0){\rnode{end}{\psframebox{End}}}
362   % help nodes
363   \rput(7,4.5){\pnode{tc1-h}}
364   \rput(2,4.5){\pnode{tc1-hh}}
365   \rput(4.5,2.5){\pnode{nc-h}}
366   \rput(9,2.5){\pnode{nc-hh}}
367   \rput(9,2){\pnode{tc2-h}}
368   \rput(2,2){\pnode{tc2-hh}}
369   \rput(4.5,0){\pnode{tc3-h}}
370   % direct lines
371   \ncline[]{->}{init}{tc1}
372   \ncline[]{->}{adj1}{tc1}
373   \ncline[]{->}{insert}{nc}
374   \ncline[]{->}{adj2}{tc2}
375   \ncline[]{->}{tc2}{td}
376   \lput*{0}{yes}
377   \ncline[]{->}{td}{tc3}
378   \ncline[]{->}{tc3}{end}
379   \lput*{0}{yes}
380   % lines using help nodes
381   \ncline[]{tc1}{tc1-h}
382   \lput*{0}{yes}
383   \ncline[]{->}{tc1-h}{insert}
384   \ncline[]{tc1}{tc1-hh}
385   \lput*{0}{no}
386   \ncline[]{->}{tc1-hh}{adj1}
387   \ncline[]{nc}{nc-h}
388   \lput*{0}{no}
389   \ncline[]{->}{nc-h}{tc1}
390   \ncline[]{nc}{nc-hh}
391   \ncline[]{-}{nc-hh}{tc2-h}
392   \ncline[]{->}{tc2-h}{tc2}
393   \lput*{0}{yes, {\footnotesize $T_{set}:=450\, ^{\circ}C$}}
394   \ncline[]{tc2}{tc2-hh}
395   \lput*{0}{no}
396   \ncline[]{->}{tc2-hh}{adj2}
397   \ncline[]{tc3}{tc3-h}
398   \lput*{0}{no}
399   \ncline[]{->}{tc3-h}{tc2}
400   % insertion volumes
401   \psframe[fillstyle=solid,fillcolor=white](9.5,1.3)(13.5,5.3)
402   \psframe[fillstyle=solid,fillcolor=lightgray](10,1.8)(13,4.8)
403   \psframe[fillstyle=solid,fillcolor=gray](10.5,2.3)(12.5,4.3)
404   \rput(9.75,3){\pnode{ins1}}
405   \rput(10.25,3.3){\pnode{ins2}}
406   \rput(10.75,3.6){\pnode{ins3}}
407   \ncline[]{-}{insert}{ins1}
408   \ncline[]{-}{insert}{ins2}
409   \ncline[]{-}{insert}{ins3}
410   \psframe[fillstyle=solid,fillcolor=white](9.5,7.6)(13.5,8.1)
411   \psframe[fillstyle=solid,fillcolor=lightgray](9.5,6.8)(13.5,7.3)
412   \psframe[fillstyle=solid,fillcolor=gray](9.5,6)(13.5,6.5)
413   \rput(11.5,7.85){{\tiny Simulation volume:
414                           $31\times31\times31\, a^3_{Si}$}}
415   \rput(11.5,7.05){{\tiny Volume of minimal SiC precipitation}}
416   \rput(11.5,6.25){{\tiny Volume of necessary amount of Si}}
417  \end{pspicture}
418
419 \end{slide}
420
421 \begin{slide}
422
423  {\large\bf
424   Results
425  }
426
427  Si self-interstitial experiments:
428
429  {\footnotesize
430  {\bf Note:}
431  \begin{itemize}
432   \item $r_{cutoff}^{Si-Si}=2.96>\frac{5.43}{2}$
433   \item Bond length near $r_{cutoff} \Rightarrow$ small bond strength
434  \end{itemize}
435  }
436
437  \vspace{8pt}
438
439  \small
440
441  \begin{minipage}[t]{4.0cm}
442  \underline{Tetrahedral}
443  \begin{itemize}
444   \item $E_f=3.41\, eV$
445   \item essentialy tetrahedral\\
446         bonds
447  \end{itemize}
448  \end{minipage}
449  \hspace{0.3cm}
450  \begin{minipage}[t]{4.0cm}
451  \underline{110 dumbbell}
452  \begin{itemize}
453   \item $E_f=4.39\, eV$
454   \item essentially 4 bonds
455  \end{itemize}
456  \end{minipage}
457  \hspace{0.3cm}
458  \begin{minipage}[t]{4.0cm}
459  \underline{Hexagonal}
460  \begin{itemize}
461   \item $E_f^{\star}\approx4.48\, eV$
462   \item unstable!
463  \end{itemize}
464  \end{minipage}
465
466  \vspace{8pt}
467
468  \begin{minipage}{4.3cm}
469  \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
470  \end{minipage}
471  \begin{minipage}{4.3cm}
472  \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
473  \end{minipage}
474  \begin{minipage}{4.3cm}
475  \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
476  \end{minipage}
477
478 \end{slide}
479
480 \begin{slide}
481
482  {\large\bf
483   Results
484  }
485
486  \vspace{8pt}
487
488  Si self-interstitial \underline{random insertion} experiments:
489
490  \vspace{8pt}
491
492  foo
493
494 \end{slide}
495
496 \begin{slide}
497
498  {\large\bf
499   Results
500  }
501
502  Carbon interstitial experiments:
503
504  \vspace{8pt}
505
506  \small
507
508  \begin{minipage}[t]{4.0cm}
509  \underline{Tetrahedral}
510  \begin{itemize}
511   \item $E_F=2.67\, eV$
512   \item tetrahedral bond
513  \end{itemize}
514  \end{minipage}
515  \hspace{0.3cm}
516  \begin{minipage}[t]{4.0cm}
517  \underline{110 dumbbell}
518  \begin{itemize}
519   \item $E_F=1.76\, eV$
520   \item C forms 3 bonds
521  \end{itemize}
522  \end{minipage}
523  \hspace{0.3cm}
524  \begin{minipage}[t]{4.0cm}
525  \underline{Hexagonal}
526  \begin{itemize}
527   \item $E_F^{\star}\approx5.6\, eV$
528   \item unstable!
529  \end{itemize}
530  \end{minipage}
531
532  \vspace{8pt}
533
534  \begin{minipage}{4.3cm}
535  \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
536  \end{minipage}
537  \begin{minipage}{4.3cm}
538  \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
539  \end{minipage}
540  \begin{minipage}{4.3cm}
541  \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
542  \end{minipage}
543
544 \end{slide}
545
546 \begin{slide}
547
548  {\large\bf
549   Results
550  }
551
552  \vspace{8pt}
553
554  Carbon \underline{random insertion} experiments:
555
556  \vspace{8pt}
557
558  bar
559
560 \end{slide}
561
562 \begin{slide}
563
564  {\large\bf
565   Results
566  }
567
568  SiC-precipitation experiments:
569
570 \end{slide}
571
572 \begin{slide}
573
574  {\large\bf
575   Conclusion / Outlook
576  }
577
578 \end{slide}
579
580 \end{document}
581