27a048cd7f010dc5bda01bdfa371e0c0b79e889a
[lectures/latex.git] / posic / talks / mpi_app.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23 \usepackage{pst-grad}
24
25 %\usepackage{epic}
26 %\usepackage{eepic}
27
28 \usepackage{layout}
29
30 \usepackage{graphicx}
31 \graphicspath{{../img/}}
32
33 \usepackage{miller}
34
35 \usepackage[setpagesize=false]{hyperref}
36
37 % units
38 \usepackage{units}
39
40 \usepackage{semcolor}
41 \usepackage{semlayer}           % Seminar overlays
42 \usepackage{slidesec}           % Seminar sections and list of slides
43
44 \input{seminar.bug}             % Official bugs corrections
45 \input{seminar.bg2}             % Unofficial bugs corrections
46
47 \articlemag{1}
48
49 \special{landscape}
50
51 % font
52 %\usepackage{cmbright}
53 %\renewcommand{\familydefault}{\sfdefault}
54 %\usepackage{mathptmx}
55
56 \usepackage{upgreek}
57
58 \newcommand{\headdiplom}{
59 \begin{pspicture}(0,0)(0,0)
60 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
61 \begin{minipage}{14cm}
62 \hfill
63 \vspace{0.7cm}
64 \end{minipage}
65 }}
66 \end{pspicture}
67 }
68
69 \newcommand{\headphd}{
70 \begin{pspicture}(0,0)(0,0)
71 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
72 \begin{minipage}{14cm}
73 \hfill
74 \vspace{0.7cm}
75 \end{minipage}
76 }}
77 \end{pspicture}
78 }
79
80 \begin{document}
81
82 \extraslideheight{10in}
83 \slideframe{plain}
84
85 \pagestyle{empty}
86
87 % specify width and height
88 \slidewidth 26.3cm 
89 \slideheight 19.9cm 
90
91 % margin
92 \def\slidetopmargin{-0.15cm}
93
94 \newcommand{\ham}{\mathcal{H}}
95 \newcommand{\pot}{\mathcal{V}}
96 \newcommand{\foo}{\mathcal{U}}
97 \newcommand{\vir}{\mathcal{W}}
98
99 % itemize level ii
100 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
101
102 % nice phi
103 \renewcommand{\phi}{\varphi}
104
105 % roman letters
106 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
107
108 % colors
109 \newrgbcolor{si-yellow}{.6 .6 0}
110 \newrgbcolor{hb}{0.75 0.77 0.89}
111 \newrgbcolor{lbb}{0.75 0.8 0.88}
112 \newrgbcolor{hlbb}{0.825 0.88 0.968}
113 \newrgbcolor{lachs}{1.0 .93 .81}
114
115 % shortcuts
116 \newcommand{\si}{Si$_{\text{i}}${}}
117 \newcommand{\ci}{C$_{\text{i}}${}}
118 \newcommand{\cs}{C$_{\text{sub}}${}}
119 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
120 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
121 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
122 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
123
124 % no vertical centering
125 %\centerslidesfalse
126
127 % layout check
128 %\layout
129 \begin{slide}
130 \center
131 {\Huge
132 E\\
133 F\\
134 G\\
135 A B C D E F G H G F E D C B A
136 G\\
137 F\\
138 E\\
139 }
140 \end{slide}
141
142 % topic
143
144 \begin{slide}
145 \begin{center}
146
147  \vspace{16pt}
148
149  {\LARGE\bf
150   Atomistic simulation studies\\[0.2cm]
151   in the C/Si system
152  }
153
154  \vspace{48pt}
155
156  \textsc{Frank Zirkelbach}
157
158  \vspace{48pt}
159
160  Application talk at the Max Planck Institute for Solid State Research
161
162  \vspace{08pt}
163
164  Stuttgart, November 2011
165
166 \end{center}
167 \end{slide}
168
169 % no vertical centering
170 \centerslidesfalse
171
172 \ifnum1=0
173
174 % intro
175
176 \begin{slide}
177
178 %{\large\bf
179 % Phase diagram of the C/Si system\\
180 %}
181
182 \vspace*{0.2cm}
183
184 \begin{minipage}{6.5cm}
185 \includegraphics[width=6.5cm]{si-c_phase.eps}
186 \begin{center}
187 {\tiny
188 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
189 }
190 \end{center}
191 \begin{pspicture}(0,0)(0,0)
192 \psellipse[linecolor=blue,linewidth=0.1cm](3.55,4.0)(0.5,2.9)
193 \end{pspicture}
194 \end{minipage}
195 \begin{minipage}{6cm}
196 {\bf Phase diagram of the C/Si system}\\[0.2cm]
197 {\color{blue}Stoichiometric composition}
198 \begin{itemize}
199 \item only chemical stable compound
200 \item wide band gap semiconductor\\
201       \underline{silicon carbide}, SiC
202 \end{itemize}
203 \end{minipage}
204
205 \end{slide}
206
207 % motivation / properties / applications of silicon carbide
208
209 \begin{slide}
210
211 \vspace*{1.8cm}
212
213 \small
214
215 \begin{pspicture}(0,0)(13.5,5)
216
217  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
218
219  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
220  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
221
222  \rput[lt](0,4.6){\color{gray}PROPERTIES}
223
224  \rput[lt](0.3,4){wide band gap}
225  \rput[lt](0.3,3.5){high electric breakdown field}
226  \rput[lt](0.3,3){good electron mobility}
227  \rput[lt](0.3,2.5){high electron saturation drift velocity}
228  \rput[lt](0.3,2){high thermal conductivity}
229
230  \rput[lt](0.3,1.5){hard and mechanically stable}
231  \rput[lt](0.3,1){chemically inert}
232
233  \rput[lt](0.3,0.5){radiation hardness}
234
235  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
236
237  \rput[rt](12.5,3.85){high-temperature, high power}
238  \rput[rt](12.5,3.5){and high-frequency}
239  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
240
241  \rput[rt](12.5,2.35){material suitable for extreme conditions}
242  \rput[rt](12.5,2){microelectromechanical systems}
243  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
244
245  \rput[rt](12.5,0.85){first wall reactor material, detectors}
246  \rput[rt](12.5,0.5){and electronic devices for space}
247
248 \end{pspicture}
249
250 \begin{picture}(0,0)(5,-162)
251 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
252 \end{picture}
253 \begin{picture}(0,0)(-120,-162)
254 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
255 \end{picture}
256 \begin{picture}(0,0)(-270,-162)
257 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
258 \end{picture}
259 %%%%
260 \begin{picture}(0,0)(10,65)
261 \includegraphics[height=2.8cm]{sic_switch.eps}
262 \end{picture}
263 %\begin{picture}(0,0)(-243,65)
264 \begin{picture}(0,0)(-110,65)
265 \includegraphics[height=2.8cm]{ise_99.eps}
266 \end{picture}
267 %\begin{picture}(0,0)(-135,65)
268 \begin{picture}(0,0)(-100,65)
269 \includegraphics[height=1.2cm]{infineon_schottky.eps}
270 \end{picture}
271 \begin{picture}(0,0)(-233,65)
272 \includegraphics[height=2.8cm]{solar_car.eps}
273 \end{picture}
274
275 \end{slide}
276
277 % motivation
278
279 \begin{slide}
280
281  {\large\bf
282   Polytypes of SiC\\[0.4cm]
283  }
284
285 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
286 \begin{minipage}{1.9cm}
287 {\tiny cubic (twist)}
288 \end{minipage}
289 \begin{minipage}{2.9cm}
290 {\tiny hexagonal (no twist)}
291 \end{minipage}
292
293 \begin{picture}(0,0)(-150,0)
294  \includegraphics[width=7cm]{polytypes.eps}
295 \end{picture}
296
297 \vspace{0.6cm}
298
299 \footnotesize
300
301 \begin{tabular}{l c c c c c c}
302 \hline
303  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
304 \hline
305 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
306 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
307 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
308 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
309 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
310 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
311 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
312 \hline
313 \end{tabular}
314
315 \begin{pspicture}(0,0)(0,0)
316 \psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
317 \end{pspicture}
318 \begin{pspicture}(0,0)(0,0)
319 \psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
320 \end{pspicture}
321 \begin{pspicture}(0,0)(0,0)
322 \psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
323 \end{pspicture}
324
325 \end{slide}
326
327 % fabrication
328
329 \begin{slide}
330
331  {\large\bf
332   Fabrication of silicon carbide
333  }
334
335  \small
336  
337  \vspace{2pt}
338
339 \begin{center}
340  {\color{gray}
341  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
342  }
343 \end{center}
344
345 \vspace{2pt}
346
347 SiC thin films by MBE \& CVD
348 \begin{itemize}
349  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
350  \item \underline{Commercially available} semiconductor power devices based on
351        \underline{\foreignlanguage{greek}{a}-SiC}
352  \item Production of favored \underline{3C-SiC} material
353        \underline{less advanced}
354  \item Quality and size not yet sufficient
355 \end{itemize}
356 \begin{picture}(0,0)(-310,-20)
357   \includegraphics[width=2.0cm]{cree.eps}
358 \end{picture}
359
360 \vspace{-0.2cm}
361
362 Alternative approach:
363 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
364
365 \vspace{0.2cm}
366
367 \scriptsize
368
369 \framebox{
370 \begin{minipage}{3.15cm}
371  \begin{center}
372 \includegraphics[width=3cm]{imp.eps}\\
373  {\tiny
374   Carbon implantation
375  }
376  \end{center}
377 \end{minipage}
378 \begin{minipage}{3.15cm}
379  \begin{center}
380 \includegraphics[width=3cm]{annealing.eps}\\
381  {\tiny
382   \unit[12]{h} annealing at \degc{1200}
383  }
384  \end{center}
385 \end{minipage}
386 }
387 \begin{minipage}{5.5cm}
388  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
389  \begin{center}
390  {\tiny
391   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
392  }
393  \end{center}
394 \end{minipage}
395
396 \end{slide}
397
398 % contents
399
400 \begin{slide}
401
402 {\large\bf
403  Systematic investigation of C implantations into Si
404 }
405
406 \vspace{1.7cm}
407 \begin{center}
408 \hspace{-1.0cm}
409 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
410 \end{center}
411
412 \end{slide}
413
414 % outline
415
416 \begin{slide}
417
418 {\large\bf
419  Outline
420 }
421
422 \vspace{1.7cm}
423 \begin{center}
424 \hspace{-1.0cm}
425 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
426 \end{center}
427
428 \begin{pspicture}(0,0)(0,0)
429 \rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
430 \begin{minipage}{11cm}
431 {\color{black}Diploma thesis}\\
432  \underline{Monte Carlo} simulation modeling the selforganization process\\
433  leading to periodic arrays of nanometric amorphous SiC precipitates
434 \end{minipage}
435 }}}
436 \end{pspicture}
437 \begin{pspicture}(0,0)(0,0)
438 \rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
439 \begin{minipage}{11cm}
440 {\color{black}Doctoral studies}\\
441  Classical potential \underline{molecular dynamics} simulations \ldots\\
442  \underline{Density functional theory} calculations \ldots\\[0.2cm]
443  \ldots on defect formation and SiC precipitation in Si
444 \end{minipage}
445 }}}
446 \end{pspicture}
447 \begin{pspicture}(0,0)(0,0)
448 \psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0)
449 \end{pspicture}
450 \begin{pspicture}(0,0)(0,0)
451 \psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6)
452 \end{pspicture}
453
454 \end{slide}
455
456 \begin{slide}
457
458 \headdiplom
459 {\large\bf
460  Selforganization of nanometric amorphous SiC lamellae
461 }
462
463 \small
464
465 \vspace{0.2cm}
466
467 \begin{itemize}
468  \item Regularly spaced, nanometric spherical\\
469        and lamellar amorphous inclusions\\
470        at the upper a/c interface
471  \item Carbon accumulation\\
472        in amorphous volumes
473 \end{itemize}
474
475 \vspace{0.4cm}
476
477 \begin{minipage}{12cm}
478 \includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
479 {\scriptsize
480 XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si,
481 {\color{red}\underline{\degc{150}}},
482 Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
483 }
484 \end{minipage}
485
486 \begin{picture}(0,0)(-182,-215)
487 \begin{minipage}{6.5cm}
488 \begin{center}
489 \includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm]
490 {\scriptsize
491 XTEM bright-field and respective EFTEM C map
492 }
493 \end{center}
494 \end{minipage}
495 \end{picture}
496
497 \end{slide}
498
499 \begin{slide}
500
501 \headdiplom
502 {\large\bf
503  Model displaying the formation of ordered lamellae
504 }
505
506 \vspace{0.1cm}
507
508 \begin{center}
509  \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps}
510 \end{center}
511
512 \footnotesize
513
514 \begin{itemize}
515 \item Supersaturation of C in c-Si\\
516       $\rightarrow$ {\bf Carbon induced} nucleation of spherical
517       SiC$_x$-precipitates
518 \item High interfacial energy between 3C-SiC and c-Si\\
519       $\rightarrow$ {\bf Amorphous} precipitates
520 \item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\
521       $\rightarrow$ {\bf Lateral strain} (black arrows)
522 \item Implantation range near surface\\
523       $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
524 \item Reduction of the carbon supersaturation in c-Si\\
525       $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
526       (white arrows)
527 \item Remaining lateral strain\\
528       $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
529 \item Absence of crystalline neighbours (structural information)\\
530       $\rightarrow$ {\bf Stabilization} of amorphous inclusions 
531       {\bf against recrystallization}
532 \end{itemize}
533
534 \end{slide}
535
536 \begin{slide}
537
538 \headdiplom
539 {\large\bf
540  Implementation of the Monte Carlo code
541 }
542
543 \small
544
545 \begin{enumerate}
546  \item \underline{Amorphization / Recrystallization}\\
547        Ion collision in discretized target determined by random numbers
548        distributed according to nuclear energy loss.
549        Amorphization/recrystallization probability:
550 \[
551 p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
552 \]
553 \begin{itemize}
554  \item {\color{green} $p_b$} normal `ballistic' amorphization
555  \item {\color{blue} $p_c$} carbon induced amorphization
556  \item {\color{red} $p_s$} stress enhanced amorphization
557 \end{itemize}
558 \[
559 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
560 \]
561 \[
562 \delta (\vec r) = \left\{
563 \begin{array}{ll}
564         1 & \textrm{if volume at position $\vec r$ is amorphous} \\
565         0 & \textrm{otherwise} \\
566 \end{array}
567 \right.
568 \]
569  \item \underline{Carbon incorporation}\\
570        Incorporation volume determined according to implantation profile
571  \item \underline{Diffusion / Sputtering}
572        \begin{itemize}
573         \item Transfer fraction of C atoms
574               of crystalline into neighbored amorphous volumes
575         \item Remove surface layer
576        \end{itemize}
577 \end{enumerate}
578
579 \end{slide}
580
581 \begin{slide}
582
583 \begin{minipage}{3.7cm}
584 \begin{pspicture}(0,0)(0,0)
585 \rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
586 \begin{minipage}{3.7cm}
587 \hfill
588 \vspace{0.7cm}
589 \end{minipage}
590 }}
591 \end{pspicture}
592 {\large\bf
593  Results
594 }
595
596 \footnotesize
597
598 \vspace{1.2cm}
599
600 Evolution of the \ldots
601 \begin{itemize}
602  \item continuous\\
603        amorphous layer
604  \item a/c interface
605  \item lamellar precipitates
606 \end{itemize}
607 \ldots reproduced!\\[1.4cm]
608
609 {\color{blue}
610 \begin{center}
611 Experiment \& simulation\\
612 in good agreement\\[1.0cm]
613
614 Simulation is able to model the whole depth region\\[1.2cm]
615 \end{center}
616 }
617
618 \end{minipage}
619 \begin{minipage}{0.5cm}
620 \vfill
621 \end{minipage}
622 \begin{minipage}{8.0cm}
623  \vspace{-0.3cm}
624  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
625  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
626 \end{minipage}
627
628 \end{slide}
629
630 \begin{slide}
631
632 \headdiplom
633 {\large\bf
634  Structural \& compositional details
635 }
636
637 \begin{minipage}[t]{7.5cm}
638 \includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\
639 \end{minipage}
640 \begin{minipage}[t]{5.0cm}
641 \includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps}
642 \end{minipage}
643
644 \footnotesize
645
646 \vspace{-0.1cm}
647
648 \begin{itemize}
649  \item Fluctuation of C concentration in lamellae region
650  \item \unit[8--10]{at.\%} C saturation limit
651        within the respective conditions
652  \item Complementarily arranged and alternating sequence of layers\\
653        with a high and low amount of amorphous regions
654  \item C accumulation in the amorphous phase / Origin of stress
655 \end{itemize}
656
657 \begin{picture}(0,0)(-260,-50)
658 \framebox{
659 \begin{minipage}{3cm}
660 \begin{center}
661 {\color{blue}
662 Precipitation process\\
663 gets traceable\\
664 by simulation!
665 }
666 \end{center}
667 \end{minipage}
668 }
669 \end{picture}
670
671 \end{slide}
672
673 \fi
674
675 \begin{slide}
676
677 \headphd
678 {\large\bf
679  Formation of epitaxial single crystalline 3C-SiC
680 }
681
682 \footnotesize
683
684 \vspace{0.2cm}
685
686 \begin{center}
687 \begin{itemize}
688  \item \underline{Implantation step 1}\\[0.1cm]
689         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
690         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
691         {\color{blue}precipitates}
692  \item \underline{Implantation step 2}\\[0.1cm]
693         Little remaining dose | \unit[180]{keV} | \degc{250}\\
694         $\Rightarrow$
695         Destruction/Amorphization of precipitates at layer interface
696  \item \underline{Annealing}\\[0.1cm]
697        \unit[10]{h} at \degc{1250}\\
698        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
699 \end{itemize}
700 \end{center}
701
702 \begin{minipage}{7cm}
703 \includegraphics[width=7cm]{ibs_3c-sic.eps}
704 \end{minipage}
705 \begin{minipage}{5cm}
706 \begin{pspicture}(0,0)(0,0)
707 \rnode{box}{
708 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
709 \begin{minipage}{5.3cm}
710  \begin{center}
711  {\color{blue}
712   3C-SiC precipitation\\
713   not yet fully understood
714  }
715  \end{center}
716  \vspace*{0.1cm}
717  \renewcommand\labelitemi{$\Rightarrow$}
718  Details of the SiC precipitation
719  \begin{itemize}
720   \item significant technological progress\\
721         in SiC thin film formation
722   \item perspectives for processes relying\\
723         upon prevention of SiC precipitation
724  \end{itemize}
725 \end{minipage}
726 }}
727 \rput(-6.8,5.4){\pnode{h0}}
728 \rput(-3.0,5.4){\pnode{h1}}
729 \ncline[linecolor=blue]{-}{h0}{h1}
730 \ncline[linecolor=blue]{->}{h1}{box}
731 \end{pspicture}
732 \end{minipage}
733
734 \end{slide}
735
736
737 \end{document}
738
739 \ifnum1=0
740
741 % continue here
742 %\fi
743
744 \begin{slide}
745
746 {\large\bf
747  Model displaying the formation of ordered lamellae
748 }
749
750
751 \end{slide}
752
753 \begin{slide}
754
755  {\large\bf
756   Supposed precipitation mechanism of SiC in Si
757  }
758
759  \scriptsize
760
761  \vspace{0.1cm}
762
763  \begin{minipage}{3.8cm}
764  Si \& SiC lattice structure\\[0.2cm]
765  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
766  \hrule
767  \end{minipage}
768  \hspace{0.6cm}
769  \begin{minipage}{3.8cm}
770  \begin{center}
771  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
772  \end{center}
773  \end{minipage}
774  \hspace{0.6cm}
775  \begin{minipage}{3.8cm}
776  \begin{center}
777  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
778  \end{center}
779  \end{minipage}
780
781  \begin{minipage}{4cm}
782  \begin{center}
783  C-Si dimers (dumbbells)\\[-0.1cm]
784  on Si interstitial sites
785  \end{center}
786  \end{minipage}
787  \hspace{0.2cm}
788  \begin{minipage}{4.2cm}
789  \begin{center}
790  Agglomeration of C-Si dumbbells\\[-0.1cm]
791  $\Rightarrow$ dark contrasts
792  \end{center}
793  \end{minipage}
794  \hspace{0.2cm}
795  \begin{minipage}{4cm}
796  \begin{center}
797  Precipitation of 3C-SiC in Si\\[-0.1cm]
798  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
799  \& release of Si self-interstitials
800  \end{center}
801  \end{minipage}
802
803  \begin{minipage}{3.8cm}
804  \begin{center}
805  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
806  \end{center}
807  \end{minipage}
808  \hspace{0.6cm}
809  \begin{minipage}{3.8cm}
810  \begin{center}
811  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
812  \end{center}
813  \end{minipage}
814  \hspace{0.6cm}
815  \begin{minipage}{3.8cm}
816  \begin{center}
817  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
818  \end{center}
819  \end{minipage}
820
821 \begin{pspicture}(0,0)(0,0)
822 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
823 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
824 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
825 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
826 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
827  $4a_{\text{Si}}=5a_{\text{SiC}}$
828  }}}
829 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
830 \hkl(h k l) planes match
831  }}}
832 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
833 r = 2 - 4 nm
834  }}}
835 \end{pspicture}
836
837 \end{slide}
838
839 \begin{slide}
840
841  {\large\bf
842   Supposed precipitation mechanism of SiC in Si
843  }
844
845  \scriptsize
846
847  \vspace{0.1cm}
848
849  \begin{minipage}{3.8cm}
850  Si \& SiC lattice structure\\[0.2cm]
851  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
852  \hrule
853  \end{minipage}
854  \hspace{0.6cm}
855  \begin{minipage}{3.8cm}
856  \begin{center}
857  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
858  \end{center}
859  \end{minipage}
860  \hspace{0.6cm}
861  \begin{minipage}{3.8cm}
862  \begin{center}
863  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
864  \end{center}
865  \end{minipage}
866
867  \begin{minipage}{4cm}
868  \begin{center}
869  C-Si dimers (dumbbells)\\[-0.1cm]
870  on Si interstitial sites
871  \end{center}
872  \end{minipage}
873  \hspace{0.2cm}
874  \begin{minipage}{4.2cm}
875  \begin{center}
876  Agglomeration of C-Si dumbbells\\[-0.1cm]
877  $\Rightarrow$ dark contrasts
878  \end{center}
879  \end{minipage}
880  \hspace{0.2cm}
881  \begin{minipage}{4cm}
882  \begin{center}
883  Precipitation of 3C-SiC in Si\\[-0.1cm]
884  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
885  \& release of Si self-interstitials
886  \end{center}
887  \end{minipage}
888
889  \begin{minipage}{3.8cm}
890  \begin{center}
891  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
892  \end{center}
893  \end{minipage}
894  \hspace{0.6cm}
895  \begin{minipage}{3.8cm}
896  \begin{center}
897  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
898  \end{center}
899  \end{minipage}
900  \hspace{0.6cm}
901  \begin{minipage}{3.8cm}
902  \begin{center}
903  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
904  \end{center}
905  \end{minipage}
906
907 \begin{pspicture}(0,0)(0,0)
908 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
909 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
910 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
911 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
912 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
913  $4a_{\text{Si}}=5a_{\text{SiC}}$
914  }}}
915 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
916 \hkl(h k l) planes match
917  }}}
918 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
919 r = 2 - 4 nm
920  }}}
921 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
922 \begin{minipage}{10cm}
923 \small
924 {\color{red}\bf Controversial views}
925 \begin{itemize}
926 \item Implantations at high T (Nejim et al.)
927  \begin{itemize}
928   \item Topotactic transformation based on \cs
929   \item \si{} as supply reacting with further C in cleared volume
930  \end{itemize}
931 \item Annealing behavior (Serre et al.)
932  \begin{itemize}
933   \item Room temperature implants $\rightarrow$ highly mobile C
934   \item Elevated T implants $\rightarrow$ no/low C redistribution/migration\\
935         (indicate stable \cs{} configurations)
936  \end{itemize}
937 \item Strained silicon \& Si/SiC heterostructures
938  \begin{itemize}
939   \item Coherent SiC precipitates (tensile strain)
940   \item Incoherent SiC (strain relaxation)
941  \end{itemize}
942 \end{itemize}
943 \end{minipage}
944  }}}
945 \end{pspicture}
946
947 \end{slide}
948
949 \begin{slide}
950
951  {\large\bf
952   Molecular dynamics (MD) simulations
953  }
954
955  \vspace{12pt}
956
957  \small
958
959  {\bf MD basics:}
960  \begin{itemize}
961   \item Microscopic description of N particle system
962   \item Analytical interaction potential
963   \item Numerical integration using Newtons equation of motion\\
964         as a propagation rule in 6N-dimensional phase space
965   \item Observables obtained by time and/or ensemble averages
966  \end{itemize}
967  {\bf Details of the simulation:}
968  \begin{itemize}
969   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
970   \item Ensemble: NpT (isothermal-isobaric)
971         \begin{itemize}
972          \item Berendsen thermostat:
973                $\tau_{\text{T}}=100\text{ fs}$
974          \item Berendsen barostat:\\
975                $\tau_{\text{P}}=100\text{ fs}$,
976                $\beta^{-1}=100\text{ GPa}$
977         \end{itemize}
978   \item Erhart/Albe potential: Tersoff-like bond order potential
979   \vspace*{12pt}
980         \[
981         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
982         \pot_{ij} = {\color{red}f_C(r_{ij})}
983         \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
984         \]
985  \end{itemize}
986
987  \begin{picture}(0,0)(-230,-30)
988   \includegraphics[width=5cm]{tersoff_angle.eps} 
989  \end{picture}
990  
991 \end{slide}
992
993 \begin{slide}
994
995  {\large\bf
996   Density functional theory (DFT) calculations
997  }
998
999  \small
1000
1001  Basic ingredients necessary for DFT
1002
1003  \begin{itemize}
1004   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
1005         \begin{itemize}
1006          \item ... uniquely determines the ground state potential
1007                / wavefunctions
1008          \item ... minimizes the systems total energy
1009         \end{itemize}
1010   \item \underline{Born-Oppenheimer}
1011         - $N$ moving electrons in an external potential of static nuclei
1012 \[
1013 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
1014               +\sum_i^N V_{\text{ext}}(r_i)
1015               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
1016 \]
1017   \item \underline{Effective potential}
1018         - averaged electrostatic potential \& exchange and correlation
1019 \[
1020 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
1021                  +V_{\text{XC}}[n(r)]
1022 \]
1023   \item \underline{Kohn-Sham system}
1024         - Schr\"odinger equation of N non-interacting particles
1025 \[
1026 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
1027 =\epsilon_i\Phi_i(r)
1028 \quad
1029 \Rightarrow
1030 \quad
1031 n(r)=\sum_i^N|\Phi_i(r)|^2
1032 \]
1033   \item \underline{Self-consistent solution}\\
1034 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
1035 which in turn depends on $n(r)$
1036   \item \underline{Variational principle}
1037         - minimize total energy with respect to $n(r)$
1038  \end{itemize}
1039
1040 \end{slide}
1041
1042 \begin{slide}
1043
1044  {\large\bf
1045   Density functional theory (DFT) calculations
1046  }
1047
1048  \small
1049
1050  \vspace*{0.2cm}
1051
1052  Details of applied DFT calculations in this work
1053
1054  \begin{itemize}
1055   \item \underline{Exchange correlation functional}
1056         - approximations for the inhomogeneous electron gas
1057         \begin{itemize}
1058          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
1059          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
1060         \end{itemize}
1061   \item \underline{Plane wave basis set}
1062         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
1063 \[
1064 \rightarrow
1065 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
1066 \qquad ({\color{blue}300\text{ eV}})
1067 \]
1068   \item \underline{Brillouin zone sampling} -
1069         {\color{blue}$\Gamma$-point only} calculations
1070   \item \underline{Pseudo potential} 
1071         - consider only the valence electrons
1072   \item \underline{Code} - VASP 4.6
1073  \end{itemize}
1074
1075  \vspace*{0.2cm}
1076
1077  MD and structural optimization
1078
1079  \begin{itemize}
1080   \item MD integration: Gear predictor corrector algorithm
1081   \item Pressure control: Parrinello-Rahman pressure control
1082   \item Structural optimization: Conjugate gradient method
1083  \end{itemize}
1084
1085 \begin{pspicture}(0,0)(0,0)
1086 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
1087 \end{pspicture}
1088
1089 \end{slide}
1090
1091 \begin{slide}
1092
1093  {\large\bf
1094   C and Si self-interstitial point defects in silicon
1095  }
1096
1097  \small
1098
1099  \vspace*{0.3cm}
1100
1101 \begin{minipage}{8cm}
1102 Procedure:\\[0.3cm]
1103   \begin{pspicture}(0,0)(7,5)
1104   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1105    \parbox{7cm}{
1106    \begin{itemize}
1107     \item Creation of c-Si simulation volume
1108     \item Periodic boundary conditions
1109     \item $T=0\text{ K}$, $p=0\text{ bar}$
1110    \end{itemize}
1111   }}}}
1112 \rput(3.5,2.1){\rnode{insert}{\psframebox{
1113  \parbox{7cm}{
1114   \begin{center}
1115   Insertion of interstitial C/Si atoms
1116   \end{center}
1117   }}}}
1118   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1119    \parbox{7cm}{
1120    \begin{center}
1121    Relaxation / structural energy minimization
1122    \end{center}
1123   }}}}
1124   \ncline[]{->}{init}{insert}
1125   \ncline[]{->}{insert}{cool}
1126  \end{pspicture}
1127 \end{minipage}
1128 \begin{minipage}{5cm}
1129   \includegraphics[width=5cm]{unit_cell_e.eps}\\
1130 \end{minipage}
1131
1132 \begin{minipage}{9cm}
1133  \begin{tabular}{l c c}
1134  \hline
1135  & size [unit cells] & \# atoms\\
1136 \hline
1137 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
1138 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
1139 \hline
1140  \end{tabular}
1141 \end{minipage}
1142 \begin{minipage}{4cm}
1143 {\color{red}$\bullet$} Tetrahedral\\
1144 {\color{green}$\bullet$} Hexagonal\\
1145 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
1146 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
1147 {\color{cyan}$\bullet$} Bond-centered\\
1148 {\color{black}$\bullet$} Vacancy / Substitutional
1149 \end{minipage}
1150
1151 \end{slide}
1152
1153 \begin{slide}
1154
1155  \footnotesize
1156
1157 \begin{minipage}{9.5cm}
1158
1159  {\large\bf
1160   Si self-interstitial point defects in silicon\\
1161  }
1162
1163 \begin{tabular}{l c c c c c}
1164 \hline
1165  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
1166 \hline
1167  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
1168  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
1169 \hline
1170 \end{tabular}\\[0.2cm]
1171
1172 \begin{minipage}{4.7cm}
1173 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
1174 \end{minipage}
1175 \begin{minipage}{4.7cm}
1176 \begin{center}
1177 {\tiny nearly T $\rightarrow$ T}\\
1178 \end{center}
1179 \includegraphics[width=4.7cm]{nhex_tet.ps}
1180 \end{minipage}\\
1181
1182 \underline{Hexagonal} \hspace{2pt}
1183 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
1184 \framebox{
1185 \begin{minipage}{2.7cm}
1186 $E_{\text{f}}^*=4.48\text{ eV}$\\
1187 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
1188 \end{minipage}
1189 \begin{minipage}{0.4cm}
1190 \begin{center}
1191 $\Rightarrow$
1192 \end{center}
1193 \end{minipage}
1194 \begin{minipage}{2.7cm}
1195 $E_{\text{f}}=3.96\text{ eV}$\\
1196 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
1197 \end{minipage}
1198 }
1199 \begin{minipage}{2.9cm}
1200 \begin{flushright}
1201 \underline{Vacancy}\\
1202 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
1203 \end{flushright}
1204 \end{minipage}
1205
1206 \end{minipage}
1207 \begin{minipage}{3.5cm}
1208
1209 \begin{flushright}
1210 \underline{\hkl<1 1 0> dumbbell}\\
1211 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
1212 \underline{Tetrahedral}\\
1213 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
1214 \underline{\hkl<1 0 0> dumbbell}\\
1215 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
1216 \end{flushright}
1217
1218 \end{minipage}
1219
1220 \end{slide}
1221
1222 \begin{slide}
1223
1224 \footnotesize
1225
1226  {\large\bf
1227   C interstitial point defects in silicon\\[-0.1cm]
1228  }
1229
1230 \begin{tabular}{l c c c c c c r}
1231 \hline
1232  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
1233 \hline
1234  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1235  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1236 \hline
1237 \end{tabular}\\[0.1cm]
1238
1239 \framebox{
1240 \begin{minipage}{2.7cm}
1241 \underline{Hexagonal} \hspace{2pt}
1242 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1243 $E_{\text{f}}^*=9.05\text{ eV}$\\
1244 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
1245 \end{minipage}
1246 \begin{minipage}{0.4cm}
1247 \begin{center}
1248 $\Rightarrow$
1249 \end{center}
1250 \end{minipage}
1251 \begin{minipage}{2.7cm}
1252 \underline{\hkl<1 0 0>}\\
1253 $E_{\text{f}}=3.88\text{ eV}$\\
1254 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
1255 \end{minipage}
1256 }
1257 \begin{minipage}{2cm}
1258 \hfill
1259 \end{minipage}
1260 \begin{minipage}{3cm}
1261 \begin{flushright}
1262 \underline{Tetrahedral}\\
1263 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
1264 \end{flushright}
1265 \end{minipage}
1266
1267 \framebox{
1268 \begin{minipage}{2.7cm}
1269 \underline{Bond-centered}\\
1270 $E_{\text{f}}^*=5.59\text{ eV}$\\
1271 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
1272 \end{minipage}
1273 \begin{minipage}{0.4cm}
1274 \begin{center}
1275 $\Rightarrow$
1276 \end{center}
1277 \end{minipage}
1278 \begin{minipage}{2.7cm}
1279 \underline{\hkl<1 1 0> dumbbell}\\
1280 $E_{\text{f}}=5.18\text{ eV}$\\
1281 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
1282 \end{minipage}
1283 }
1284 \begin{minipage}{2cm}
1285 \hfill
1286 \end{minipage}
1287 \begin{minipage}{3cm}
1288 \begin{flushright}
1289 \underline{Substitutional}\\
1290 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
1291 \end{flushright}
1292 \end{minipage}
1293
1294 \end{slide}
1295
1296 \begin{slide}
1297
1298 \footnotesize
1299
1300  {\large\bf\boldmath
1301   C \hkl<1 0 0> dumbbell interstitial configuration\\
1302  }
1303
1304 {\tiny
1305 \begin{tabular}{l c c c c c c c c}
1306 \hline
1307  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
1308 \hline
1309 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
1310 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
1311 \hline
1312 \end{tabular}\\[0.2cm]
1313 \begin{tabular}{l c c c c }
1314 \hline
1315  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
1316 \hline
1317 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
1318 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
1319 \hline
1320 \end{tabular}\\[0.2cm]
1321 \begin{tabular}{l c c c}
1322 \hline
1323  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
1324 \hline
1325 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
1326 VASP & 0.109 & -0.065 & 0.174 \\
1327 \hline
1328 \end{tabular}\\[0.6cm]
1329 }
1330
1331 \begin{minipage}{3.0cm}
1332 \begin{center}
1333 \underline{Erhart/Albe}
1334 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
1335 \end{center}
1336 \end{minipage}
1337 \begin{minipage}{3.0cm}
1338 \begin{center}
1339 \underline{VASP}
1340 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
1341 \end{center}
1342 \end{minipage}\\
1343
1344 \begin{picture}(0,0)(-185,10)
1345 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
1346 \end{picture}
1347 \begin{picture}(0,0)(-280,-150)
1348 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
1349 \end{picture}
1350
1351 \begin{pspicture}(0,0)(0,0)
1352 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
1353 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
1354 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
1355 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
1356 \end{pspicture}
1357
1358 \end{slide}
1359
1360 \begin{slide}
1361
1362 \small
1363
1364 \begin{minipage}{8.5cm}
1365
1366  {\large\bf
1367   Bond-centered interstitial configuration\\[-0.1cm]
1368  }
1369
1370 \begin{minipage}{3.0cm}
1371 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1372 \end{minipage}
1373 \begin{minipage}{5.2cm}
1374 \begin{itemize}
1375  \item Linear Si-C-Si bond
1376  \item Si: one C \& 3 Si neighbours
1377  \item Spin polarized calculations
1378  \item No saddle point!\\
1379        Real local minimum!
1380 \end{itemize}
1381 \end{minipage}
1382
1383 \framebox{
1384  \tiny
1385  \begin{minipage}[t]{6.5cm}
1386   \begin{minipage}[t]{1.2cm}
1387   {\color{red}Si}\\
1388   {\tiny sp$^3$}\\[0.8cm]
1389   \underline{${\color{black}\uparrow}$}
1390   \underline{${\color{black}\uparrow}$}
1391   \underline{${\color{black}\uparrow}$}
1392   \underline{${\color{red}\uparrow}$}\\
1393   sp$^3$
1394   \end{minipage}
1395   \begin{minipage}[t]{1.4cm}
1396   \begin{center}
1397   {\color{red}M}{\color{blue}O}\\[0.8cm]
1398   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1399   $\sigma_{\text{ab}}$\\[0.5cm]
1400   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1401   $\sigma_{\text{b}}$
1402   \end{center}
1403   \end{minipage}
1404   \begin{minipage}[t]{1.0cm}
1405   \begin{center}
1406   {\color{blue}C}\\
1407   {\tiny sp}\\[0.2cm]
1408   \underline{${\color{white}\uparrow\uparrow}$}
1409   \underline{${\color{white}\uparrow\uparrow}$}\\
1410   2p\\[0.4cm]
1411   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1412   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1413   sp
1414   \end{center}
1415   \end{minipage}
1416   \begin{minipage}[t]{1.4cm}
1417   \begin{center}
1418   {\color{blue}M}{\color{green}O}\\[0.8cm]
1419   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1420   $\sigma_{\text{ab}}$\\[0.5cm]
1421   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1422   $\sigma_{\text{b}}$
1423   \end{center}
1424   \end{minipage}
1425   \begin{minipage}[t]{1.2cm}
1426   \begin{flushright}
1427   {\color{green}Si}\\
1428   {\tiny sp$^3$}\\[0.8cm]
1429   \underline{${\color{green}\uparrow}$}
1430   \underline{${\color{black}\uparrow}$}
1431   \underline{${\color{black}\uparrow}$}
1432   \underline{${\color{black}\uparrow}$}\\
1433   sp$^3$
1434   \end{flushright}
1435   \end{minipage}
1436  \end{minipage}
1437 }\\[0.1cm]
1438
1439 \framebox{
1440 \begin{minipage}{4.5cm}
1441 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1442 \end{minipage}
1443 \begin{minipage}{3.5cm}
1444 {\color{gray}$\bullet$} Spin up\\
1445 {\color{green}$\bullet$} Spin down\\
1446 {\color{blue}$\bullet$} Resulting spin up\\
1447 {\color{yellow}$\bullet$} Si atoms\\
1448 {\color{red}$\bullet$} C atom
1449 \end{minipage}
1450 }
1451
1452 \end{minipage}
1453 \begin{minipage}{4.2cm}
1454 \begin{flushright}
1455 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1456 {\color{green}$\Box$} {\tiny unoccupied}\\
1457 {\color{red}$\bullet$} {\tiny occupied}
1458 \end{flushright}
1459 \end{minipage}
1460
1461 \end{slide}
1462
1463 \begin{slide}
1464
1465  {\large\bf\boldmath
1466   Migration of the C \hkl<1 0 0> dumbbell interstitial
1467  }
1468
1469 \scriptsize
1470
1471  {\small Investigated pathways}
1472
1473 \begin{minipage}{8.5cm}
1474 \begin{minipage}{8.3cm}
1475 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1476 \begin{minipage}{2.4cm}
1477 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1478 \end{minipage}
1479 \begin{minipage}{0.4cm}
1480 $\rightarrow$
1481 \end{minipage}
1482 \begin{minipage}{2.4cm}
1483 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1484 \end{minipage}
1485 \begin{minipage}{0.4cm}
1486 $\rightarrow$
1487 \end{minipage}
1488 \begin{minipage}{2.4cm}
1489 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1490 \end{minipage}
1491 \end{minipage}\\
1492 \begin{minipage}{8.3cm}
1493 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1494 \begin{minipage}{2.4cm}
1495 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1496 \end{minipage}
1497 \begin{minipage}{0.4cm}
1498 $\rightarrow$
1499 \end{minipage}
1500 \begin{minipage}{2.4cm}
1501 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1502 \end{minipage}
1503 \begin{minipage}{0.4cm}
1504 $\rightarrow$
1505 \end{minipage}
1506 \begin{minipage}{2.4cm}
1507 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1508 \end{minipage}
1509 \end{minipage}\\
1510 \begin{minipage}{8.3cm}
1511 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1512 \begin{minipage}{2.4cm}
1513 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1514 \end{minipage}
1515 \begin{minipage}{0.4cm}
1516 $\rightarrow$
1517 \end{minipage}
1518 \begin{minipage}{2.4cm}
1519 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1520 \end{minipage}
1521 \begin{minipage}{0.4cm}
1522 $\rightarrow$
1523 \end{minipage}
1524 \begin{minipage}{2.4cm}
1525 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1526 \end{minipage}
1527 \end{minipage}
1528 \end{minipage}
1529 \framebox{
1530 \begin{minipage}{4.2cm}
1531  {\small Constrained relaxation\\
1532          technique (CRT) method}\\
1533 \includegraphics[width=4cm]{crt_orig.eps}
1534 \begin{itemize}
1535  \item Constrain diffusing atom
1536  \item Static constraints 
1537 \end{itemize}
1538 \vspace*{0.3cm}
1539  {\small Modifications}\\
1540 \includegraphics[width=4cm]{crt_mod.eps}
1541 \begin{itemize}
1542  \item Constrain all atoms
1543  \item Update individual\\
1544        constraints
1545 \end{itemize}
1546 \end{minipage}
1547 }
1548
1549 \end{slide}
1550
1551 \begin{slide}
1552
1553  {\large\bf\boldmath
1554   Migration of the C \hkl<1 0 0> dumbbell interstitial
1555  }
1556
1557 \scriptsize
1558
1559 \framebox{
1560 \begin{minipage}{5.9cm}
1561 \begin{flushleft}
1562 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1563 \end{flushleft}
1564 \begin{center}
1565 \begin{picture}(0,0)(60,0)
1566 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1567 \end{picture}
1568 \begin{picture}(0,0)(-5,0)
1569 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1570 \end{picture}
1571 \begin{picture}(0,0)(-55,0)
1572 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1573 \end{picture}
1574 \begin{picture}(0,0)(12.5,10)
1575 \includegraphics[width=1cm]{110_arrow.eps}
1576 \end{picture}
1577 \begin{picture}(0,0)(90,0)
1578 \includegraphics[height=0.9cm]{001_arrow.eps}
1579 \end{picture}
1580 \end{center}
1581 \vspace*{0.35cm}
1582 \end{minipage}
1583 }
1584 \begin{minipage}{0.3cm}
1585 \hfill
1586 \end{minipage}
1587 \framebox{
1588 \begin{minipage}{5.9cm}
1589 \begin{flushright}
1590 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1591 \end{flushright}
1592 \begin{center}
1593 \begin{picture}(0,0)(60,0)
1594 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1595 \end{picture}
1596 \begin{picture}(0,0)(5,0)
1597 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1598 \end{picture}
1599 \begin{picture}(0,0)(-55,0)
1600 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1601 \end{picture}
1602 \begin{picture}(0,0)(12.5,10)
1603 \includegraphics[width=1cm]{100_arrow.eps}
1604 \end{picture}
1605 \begin{picture}(0,0)(90,0)
1606 \includegraphics[height=0.9cm]{001_arrow.eps}
1607 \end{picture}
1608 \end{center}
1609 \vspace*{0.3cm}
1610 \end{minipage}\\
1611 }
1612
1613 \vspace*{0.05cm}
1614
1615 \framebox{
1616 \begin{minipage}{5.9cm}
1617 \begin{flushleft}
1618 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1619 \end{flushleft}
1620 \begin{center}
1621 \begin{picture}(0,0)(60,0)
1622 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1623 \end{picture}
1624 \begin{picture}(0,0)(10,0)
1625 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1626 \end{picture}
1627 \begin{picture}(0,0)(-60,0)
1628 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1629 \end{picture}
1630 \begin{picture}(0,0)(12.5,10)
1631 \includegraphics[width=1cm]{100_arrow.eps}
1632 \end{picture}
1633 \begin{picture}(0,0)(90,0)
1634 \includegraphics[height=0.9cm]{001_arrow.eps}
1635 \end{picture}
1636 \end{center}
1637 \vspace*{0.3cm}
1638 \end{minipage}
1639 }
1640 \begin{minipage}{0.3cm}
1641 \hfill
1642 \end{minipage}
1643 \begin{minipage}{6.5cm}
1644 VASP results
1645 \begin{itemize}
1646  \item Energetically most favorable path
1647        \begin{itemize}
1648         \item Path 2
1649         \item Activation energy: $\approx$ 0.9 eV 
1650         \item Experimental values: 0.73 ... 0.87 eV
1651        \end{itemize}
1652        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1653  \item Reorientation (path 3)
1654        \begin{itemize}
1655         \item More likely composed of two consecutive steps of type 2
1656         \item Experimental values: 0.77 ... 0.88 eV
1657        \end{itemize}
1658        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1659 \end{itemize}
1660 \end{minipage}
1661
1662 \end{slide}
1663
1664 \begin{slide}
1665
1666  {\large\bf\boldmath
1667   Migration of the C \hkl<1 0 0> dumbbell interstitial
1668  }
1669
1670 \scriptsize
1671
1672  \vspace{0.1cm}
1673
1674 \begin{minipage}{6.5cm}
1675
1676 \framebox{
1677 \begin{minipage}[t]{5.9cm}
1678 \begin{flushleft}
1679 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1680 \end{flushleft}
1681 \begin{center}
1682 \begin{pspicture}(0,0)(0,0)
1683 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1684 \end{pspicture}
1685 \begin{picture}(0,0)(60,-50)
1686 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1687 \end{picture}
1688 \begin{picture}(0,0)(5,-50)
1689 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1690 \end{picture}
1691 \begin{picture}(0,0)(-55,-50)
1692 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1693 \end{picture}
1694 \begin{picture}(0,0)(12.5,-40)
1695 \includegraphics[width=1cm]{110_arrow.eps}
1696 \end{picture}
1697 \begin{picture}(0,0)(90,-45)
1698 \includegraphics[height=0.9cm]{001_arrow.eps}
1699 \end{picture}\\
1700 \begin{pspicture}(0,0)(0,0)
1701 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1702 \end{pspicture}
1703 \begin{picture}(0,0)(60,-15)
1704 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1705 \end{picture}
1706 \begin{picture}(0,0)(35,-15)
1707 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1708 \end{picture}
1709 \begin{picture}(0,0)(-5,-15)
1710 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1711 \end{picture}
1712 \begin{picture}(0,0)(-55,-15)
1713 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1714 \end{picture}
1715 \begin{picture}(0,0)(12.5,-5)
1716 \includegraphics[width=1cm]{100_arrow.eps}
1717 \end{picture}
1718 \begin{picture}(0,0)(90,-15)
1719 \includegraphics[height=0.9cm]{010_arrow.eps}
1720 \end{picture}
1721 \end{center}
1722 \end{minipage}
1723 }\\[0.1cm]
1724
1725 \begin{minipage}{5.9cm}
1726 Erhart/Albe results
1727 \begin{itemize}
1728  \item Lowest activation energy: $\approx$ 2.2 eV
1729  \item 2.4 times higher than VASP
1730  \item Different pathway
1731 \end{itemize}
1732 \end{minipage}
1733
1734 \end{minipage}
1735 \begin{minipage}{6.5cm}
1736
1737 \framebox{
1738 \begin{minipage}{5.9cm}
1739 %\begin{flushright}
1740 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1741 %\end{flushright}
1742 %\begin{center}
1743 %\begin{pspicture}(0,0)(0,0)
1744 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1745 %\end{pspicture}
1746 %\begin{picture}(0,0)(60,-5)
1747 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1748 %\end{picture}
1749 %\begin{picture}(0,0)(0,-5)
1750 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1751 %\end{picture}
1752 %\begin{picture}(0,0)(-55,-5)
1753 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1754 %\end{picture}
1755 %\begin{picture}(0,0)(12.5,5)
1756 %\includegraphics[width=1cm]{100_arrow.eps}
1757 %\end{picture}
1758 %\begin{picture}(0,0)(90,0)
1759 %\includegraphics[height=0.9cm]{001_arrow.eps}
1760 %\end{picture}
1761 %\end{center}
1762 %\vspace{0.2cm}
1763 %\end{minipage}
1764 %}\\[0.2cm]
1765 %
1766 %\framebox{
1767 %\begin{minipage}{5.9cm}
1768 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1769 \end{minipage}
1770 }\\[0.1cm]
1771
1772 \begin{minipage}{5.9cm}
1773 Transition involving \ci{} \hkl<1 1 0>
1774 \begin{itemize}
1775  \item Bond-centered configuration unstable\\
1776        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1777  \item Transition minima of path 2 \& 3\\
1778        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1779  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1780  \item 2.4 - 3.4 times higher than VASP
1781  \item Rotation of dumbbell orientation
1782 \end{itemize}
1783 \vspace{0.1cm}
1784 \begin{center}
1785 {\color{blue}Overestimated diffusion barrier}
1786 \end{center}
1787 \end{minipage}
1788
1789 \end{minipage}
1790
1791 \end{slide}
1792
1793 \begin{slide}
1794
1795  {\large\bf\boldmath
1796   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1797  }
1798
1799 \small
1800
1801 \vspace*{0.1cm}
1802
1803 Binding energy: 
1804 $
1805 E_{\text{b}}=
1806 E_{\text{f}}^{\text{defect combination}}-
1807 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1808 E_{\text{f}}^{\text{2nd defect}}
1809 $
1810
1811 \vspace*{0.1cm}
1812
1813 {\scriptsize
1814 \begin{tabular}{l c c c c c c}
1815 \hline
1816  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1817  \hline
1818  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1819  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1820  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1821  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1822  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1823  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1824  \hline
1825  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1826  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1827 \hline
1828 \end{tabular}
1829 }
1830
1831 \vspace*{0.3cm}
1832
1833 \footnotesize
1834
1835 \begin{minipage}[t]{3.8cm}
1836 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1837 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1838 \end{minipage}
1839 \begin{minipage}[t]{3.5cm}
1840 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1841 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1842 \end{minipage}
1843 \begin{minipage}[t]{5.5cm}
1844 \begin{itemize}
1845  \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
1846        $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1847  \item Stress compensation / increase
1848  \item Unfavored: antiparallel orientations
1849  \item Indication of energetically favored\\
1850        agglomeration
1851  \item Most favorable: C clustering
1852  \item However: High barrier ($>4\,\text{eV}$)
1853  \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
1854        (Entropy)
1855 \end{itemize}
1856 \end{minipage}
1857
1858 \begin{picture}(0,0)(-295,-130)
1859 \includegraphics[width=3.5cm]{comb_pos.eps}
1860 \end{picture}
1861
1862 \end{slide}
1863
1864 \begin{slide}
1865
1866  {\large\bf\boldmath
1867   Combinations of C-Si \hkl<1 0 0>-type interstitials
1868  }
1869
1870 \small
1871
1872 \vspace*{0.1cm}
1873
1874 Energetically most favorable combinations along \hkl<1 1 0>
1875
1876 \vspace*{0.1cm}
1877
1878 {\scriptsize
1879 \begin{tabular}{l c c c c c c}
1880 \hline
1881  & 1 & 2 & 3 & 4 & 5 & 6\\
1882 \hline
1883 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1884 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1885 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1886 \hline
1887 \end{tabular}
1888 }
1889
1890 \vspace*{0.3cm}
1891
1892 \begin{minipage}{7.0cm}
1893 \includegraphics[width=7cm]{db_along_110_cc.ps}
1894 \end{minipage}
1895 \begin{minipage}{6.0cm}
1896 \begin{itemize}
1897  \item Interaction proportional to reciprocal cube of C-C distance
1898  \item Saturation in the immediate vicinity
1899  \renewcommand\labelitemi{$\Rightarrow$}
1900  \item Agglomeration of \ci{} expected
1901  \item Absence of C clustering
1902 \end{itemize}
1903 \begin{center}
1904 {\color{blue}
1905  Consisten with initial precipitation model
1906 }
1907 \end{center}
1908 \end{minipage}
1909
1910 \vspace{0.2cm}
1911
1912 \end{slide}
1913
1914 \begin{slide}
1915
1916  {\large\bf\boldmath
1917   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1918  }
1919
1920  \scriptsize
1921
1922 %\begin{center}
1923 %\begin{minipage}{3.2cm}
1924 %\includegraphics[width=3cm]{sub_110_combo.eps}
1925 %\end{minipage}
1926 %\begin{minipage}{7.8cm}
1927 %\begin{tabular}{l c c c c c c}
1928 %\hline
1929 %C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1930 %                   \hkl<1 0 1> & \hkl<-1 0 1> \\
1931 %\hline
1932 %1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1933 %2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1934 %3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1935 %4 & \RM{4} & B & D & E & E & D \\
1936 %5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1937 %\hline
1938 %\end{tabular}
1939 %\end{minipage}
1940 %\end{center}
1941
1942 %\begin{center}
1943 %\begin{tabular}{l c c c c c c c c c c}
1944 %\hline
1945 %Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1946 %\hline
1947 %$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1948 %$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1949 %$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1950 %\hline
1951 %\end{tabular}
1952 %\end{center}
1953
1954 \begin{minipage}{6.0cm}
1955 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1956 \end{minipage}
1957 \begin{minipage}{7cm}
1958 \scriptsize
1959 \begin{itemize}
1960  \item IBS: C may displace Si\\
1961        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1962  \item Assumption:\\
1963        \hkl<1 1 0>-type $\rightarrow$ favored combination
1964  \renewcommand\labelitemi{$\Rightarrow$}
1965  \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
1966  \item Less favorable than C-Si \hkl<1 0 0> dumbbell
1967  \item Interaction drops quickly to zero\\
1968        $\rightarrow$ low capture radius
1969 \end{itemize}
1970 \begin{center}
1971  {\color{blue}
1972  IBS process far from equilibrium\\
1973  \cs{} \& \si{} instead of thermodynamic ground state
1974  }
1975 \end{center}
1976 \end{minipage}
1977
1978 \begin{minipage}{6.5cm}
1979 \includegraphics[width=6.0cm]{162-097.ps}
1980 \begin{itemize}
1981  \item Low migration barrier
1982 \end{itemize}
1983 \end{minipage}
1984 \begin{minipage}{6.5cm}
1985 \begin{center}
1986 Ab initio MD at \degc{900}\\
1987 \includegraphics[width=3.3cm]{md_vasp_01.eps}
1988 $t=\unit[2230]{fs}$\\
1989 \includegraphics[width=3.3cm]{md_vasp_02.eps}
1990 $t=\unit[2900]{fs}$
1991 \end{center}
1992 {\color{blue}
1993 Contribution of entropy to structural formation
1994 }
1995 \end{minipage}
1996
1997 \end{slide}
1998
1999 \begin{slide}
2000
2001  {\large\bf\boldmath
2002   Migration in C-Si \hkl<1 0 0> and vacancy combinations
2003  }
2004
2005  \footnotesize
2006
2007 \vspace{0.1cm}
2008
2009 \begin{minipage}[t]{3cm}
2010 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
2011 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
2012 \end{minipage}
2013 \begin{minipage}[t]{7cm}
2014 \vspace{0.2cm}
2015 \begin{center}
2016  Low activation energies\\
2017  High activation energies for reverse processes\\
2018  $\Downarrow$\\
2019  {\color{blue}C$_{\text{sub}}$ very stable}\\
2020 \vspace*{0.1cm}
2021  \hrule
2022 \vspace*{0.1cm}
2023  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
2024  $\Downarrow$\\
2025  {\color{blue}Formation of SiC by successive substitution by C}
2026
2027 \end{center}
2028 \end{minipage}
2029 \begin{minipage}[t]{3cm}
2030 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
2031 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
2032 \end{minipage}
2033
2034
2035 \framebox{
2036 \begin{minipage}{5.9cm}
2037 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
2038 \begin{center}
2039 \begin{picture}(0,0)(70,0)
2040 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
2041 \end{picture}
2042 \begin{picture}(0,0)(30,0)
2043 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
2044 \end{picture}
2045 \begin{picture}(0,0)(-10,0)
2046 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
2047 \end{picture}
2048 \begin{picture}(0,0)(-48,0)
2049 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
2050 \end{picture}
2051 \begin{picture}(0,0)(12.5,5)
2052 \includegraphics[width=1cm]{100_arrow.eps}
2053 \end{picture}
2054 \begin{picture}(0,0)(97,-10)
2055 \includegraphics[height=0.9cm]{001_arrow.eps}
2056 \end{picture}
2057 \end{center}
2058 \vspace{0.1cm}
2059 \end{minipage}
2060 }
2061 \begin{minipage}{0.3cm}
2062 \hfill
2063 \end{minipage}
2064 \framebox{
2065 \begin{minipage}{5.9cm}
2066 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
2067 \begin{center}
2068 \begin{picture}(0,0)(60,0)
2069 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
2070 \end{picture}
2071 \begin{picture}(0,0)(25,0)
2072 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
2073 \end{picture}
2074 \begin{picture}(0,0)(-20,0)
2075 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
2076 \end{picture}
2077 \begin{picture}(0,0)(-55,0)
2078 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
2079 \end{picture}
2080 \begin{picture}(0,0)(12.5,5)
2081 \includegraphics[width=1cm]{100_arrow.eps}
2082 \end{picture}
2083 \begin{picture}(0,0)(95,0)
2084 \includegraphics[height=0.9cm]{001_arrow.eps}
2085 \end{picture}
2086 \end{center}
2087 \vspace{0.1cm}
2088 \end{minipage}
2089 }
2090
2091 \end{slide}
2092
2093 \begin{slide}
2094
2095  {\large\bf
2096   Conclusion of defect / migration / combined defect simulations
2097  }
2098
2099  \footnotesize
2100
2101 \vspace*{0.1cm}
2102
2103 Defect structures
2104 \begin{itemize}
2105  \item Accurately described by quantum-mechanical simulations
2106  \item Less accurate description by classical potential simulations
2107  \item Underestimated formation energy of \cs{} by classical approach
2108  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
2109 \end{itemize}
2110
2111 Migration
2112 \begin{itemize}
2113  \item C migration pathway in Si identified
2114  \item Consistent with reorientation and diffusion experiments
2115 \end{itemize} 
2116 \begin{itemize}
2117  \item Different path and ...
2118  \item overestimated barrier by classical potential calculations
2119 \end{itemize} 
2120
2121 Concerning the precipitation mechanism
2122 \begin{itemize}
2123  \item Agglomeration of C-Si dumbbells energetically favorable
2124        (stress compensation)
2125  \item C-Si indeed favored compared to
2126        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2127  \item Possible low interaction capture radius of
2128        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2129  \item Low barrier for
2130        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
2131  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
2132        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
2133 \end{itemize} 
2134 \begin{center}
2135 {\color{blue}Results suggest increased participation of \cs}
2136 \end{center}
2137
2138 \end{slide}
2139
2140 \begin{slide}
2141
2142  {\large\bf
2143   Silicon carbide precipitation simulations
2144  }
2145
2146  \small
2147
2148 {\scriptsize
2149  \begin{pspicture}(0,0)(12,6.5)
2150   % nodes
2151   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
2152    \parbox{7cm}{
2153    \begin{itemize}
2154     \item Create c-Si volume
2155     \item Periodc boundary conditions
2156     \item Set requested $T$ and $p=0\text{ bar}$
2157     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
2158    \end{itemize}
2159   }}}}
2160   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
2161    \parbox{7cm}{
2162    Insertion of C atoms at constant T
2163    \begin{itemize}
2164     \item total simulation volume {\pnode{in1}}
2165     \item volume of minimal SiC precipitate {\pnode{in2}}
2166     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
2167           precipitate
2168    \end{itemize} 
2169   }}}}
2170   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
2171    \parbox{7.0cm}{
2172    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
2173   }}}}
2174   \ncline[]{->}{init}{insert}
2175   \ncline[]{->}{insert}{cool}
2176   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
2177   \rput(7.8,6){\footnotesize $V_1$}
2178   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
2179   \rput(9.2,4.85){\tiny $V_2$}
2180   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
2181   \rput(9.55,4.45){\footnotesize $V_3$}
2182   \rput(7.9,3.2){\pnode{ins1}}
2183   \rput(9.22,2.8){\pnode{ins2}}
2184   \rput(11.0,2.4){\pnode{ins3}}
2185   \ncline[]{->}{in1}{ins1}
2186   \ncline[]{->}{in2}{ins2}
2187   \ncline[]{->}{in3}{ins3}
2188  \end{pspicture}
2189 }
2190
2191 \begin{itemize}
2192  \item Restricted to classical potential simulations
2193  \item $V_2$ and $V_3$ considered due to low diffusion
2194  \item Amount of C atoms: 6000
2195        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
2196  \item Simulation volume: $31\times 31\times 31$ unit cells
2197        (238328 Si atoms)
2198 \end{itemize}
2199
2200 \end{slide}
2201
2202 \begin{slide}
2203
2204  {\large\bf\boldmath
2205   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2206  }
2207
2208  \small
2209
2210 \begin{minipage}{6.5cm}
2211 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2212 \end{minipage} 
2213 \begin{minipage}{6.5cm}
2214 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2215 \end{minipage} 
2216
2217 \begin{minipage}{6.5cm}
2218 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2219 \end{minipage} 
2220 \begin{minipage}{6.5cm}
2221 \scriptsize
2222 \underline{Low C concentration ($V_1$)}\\
2223 \hkl<1 0 0> C-Si dumbbell dominated structure
2224 \begin{itemize}
2225  \item Si-C bumbs around 0.19 nm
2226  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2227        concatenated dumbbells of various orientation
2228  \item Si-Si NN distance stretched to 0.3 nm
2229 \end{itemize}
2230 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2231 \underline{High C concentration ($V_2$, $V_3$)}\\
2232 High amount of strongly bound C-C bonds\\
2233 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2234 Only short range order observable\\
2235 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2236 \end{minipage} 
2237
2238 \end{slide}
2239
2240 \begin{slide}
2241
2242  {\large\bf\boldmath
2243   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2244  }
2245
2246  \small
2247
2248 \begin{minipage}{6.5cm}
2249 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2250 \end{minipage} 
2251 \begin{minipage}{6.5cm}
2252 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2253 \end{minipage} 
2254
2255 \begin{minipage}{6.5cm}
2256 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2257 \end{minipage} 
2258 \begin{minipage}{6.5cm}
2259 \scriptsize
2260 \underline{Low C concentration ($V_1$)}\\
2261 \hkl<1 0 0> C-Si dumbbell dominated structure
2262 \begin{itemize}
2263  \item Si-C bumbs around 0.19 nm
2264  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2265        concatenated dumbbells of various orientation
2266  \item Si-Si NN distance stretched to 0.3 nm
2267 \end{itemize}
2268 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2269 \underline{High C concentration ($V_2$, $V_3$)}\\
2270 High amount of strongly bound C-C bonds\\
2271 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2272 Only short range order observable\\
2273 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2274 \end{minipage} 
2275
2276 \begin{pspicture}(0,0)(0,0)
2277 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2278 \begin{minipage}{10cm}
2279 \small
2280 {\color{red}\bf 3C-SiC formation fails to appear}
2281 \begin{itemize}
2282 \item Low C concentration simulations
2283  \begin{itemize}
2284   \item Formation of \ci{} indeed occurs
2285   \item Agllomeration not observed
2286  \end{itemize}
2287 \item High C concentration simulations
2288  \begin{itemize}
2289   \item Amorphous SiC-like structure\\
2290         (not expected at prevailing temperatures)
2291   \item Rearrangement and transition into 3C-SiC structure missing
2292  \end{itemize}
2293 \end{itemize}
2294 \end{minipage}
2295  }}}
2296 \end{pspicture}
2297
2298 \end{slide}
2299
2300 \begin{slide}
2301
2302  {\large\bf
2303   Limitations of molecular dynamics and short range potentials
2304  }
2305
2306 \footnotesize
2307
2308 \vspace{0.2cm}
2309
2310 \underline{Time scale problem of MD}\\[0.2cm]
2311 Minimize integration error\\
2312 $\Rightarrow$ discretization considerably smaller than
2313               reciprocal of fastest vibrational mode\\[0.1cm]
2314 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
2315 $\Rightarrow$ suitable choice of time step:
2316               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
2317 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
2318 Several local minima in energy surface separated by large energy barriers\\
2319 $\Rightarrow$ transition event corresponds to a multiple
2320               of vibrational periods\\
2321 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
2322               infrequent transition events\\[0.1cm]
2323 {\color{blue}Accelerated methods:}
2324 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
2325
2326 \vspace{0.3cm}
2327
2328 \underline{Limitations related to the short range potential}\\[0.2cm]
2329 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
2330 and 2$^{\text{nd}}$ next neighbours\\
2331 $\Rightarrow$ overestimated unphysical high forces of next neighbours
2332
2333 \vspace{0.3cm}
2334
2335 \framebox{
2336 \color{red}
2337 Potential enhanced problem of slow phase space propagation
2338 }
2339
2340 \vspace{0.3cm}
2341
2342 \underline{Approach to the (twofold) problem}\\[0.2cm]
2343 Increased temperature simulations without TAD corrections\\
2344 (accelerated methods or higher time scales exclusively not sufficient)
2345
2346 \begin{picture}(0,0)(-260,-30)
2347 \framebox{
2348 \begin{minipage}{4.2cm}
2349 \tiny
2350 \begin{center}
2351 \vspace{0.03cm}
2352 \underline{IBS}
2353 \end{center}
2354 \begin{itemize}
2355 \item 3C-SiC also observed for higher T
2356 \item higher T inside sample
2357 \item structural evolution vs.\\
2358       equilibrium properties
2359 \end{itemize}
2360 \end{minipage}
2361 }
2362 \end{picture}
2363
2364 \begin{picture}(0,0)(-305,-155)
2365 \framebox{
2366 \begin{minipage}{2.5cm}
2367 \tiny
2368 \begin{center}
2369 retain proper\\
2370 thermodynmic sampling
2371 \end{center}
2372 \end{minipage}
2373 }
2374 \end{picture}
2375
2376 \end{slide}
2377
2378 \begin{slide}
2379
2380  {\large\bf
2381   Increased temperature simulations at low C concentration
2382  }
2383
2384 \small
2385
2386 \begin{minipage}{6.5cm}
2387 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2388 \end{minipage}
2389 \begin{minipage}{6.5cm}
2390 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2391 \end{minipage}
2392
2393 \begin{minipage}{6.5cm}
2394 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2395 \end{minipage}
2396 \begin{minipage}{6.5cm}
2397 \scriptsize
2398  \underline{Si-C bonds:}
2399  \begin{itemize}
2400   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2401   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2402  \end{itemize}
2403  \underline{Si-Si bonds:}
2404  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2405  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2406  \underline{C-C bonds:}
2407  \begin{itemize}
2408   \item C-C next neighbour pairs reduced (mandatory)
2409   \item Peak at 0.3 nm slightly shifted
2410         \begin{itemize}
2411          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2412                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2413                combinations (|)\\
2414                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2415                ($\downarrow$)
2416          \item Range [|-$\downarrow$]:
2417                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2418                with nearby Si$_{\text{I}}$}
2419         \end{itemize}
2420  \end{itemize}
2421 \end{minipage}
2422
2423 \begin{picture}(0,0)(-330,-74)
2424 \color{blue}
2425 \framebox{
2426 \begin{minipage}{1.6cm}
2427 \tiny
2428 \begin{center}
2429 stretched SiC\\[-0.1cm]
2430 in c-Si
2431 \end{center}
2432 \end{minipage}
2433 }
2434 \end{picture}
2435
2436 \end{slide}
2437
2438 \begin{slide}
2439
2440  {\large\bf
2441   Increased temperature simulations at low C concentration
2442  }
2443
2444 \small
2445
2446 \begin{minipage}{6.5cm}
2447 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2448 \end{minipage}
2449 \begin{minipage}{6.5cm}
2450 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2451 \end{minipage}
2452
2453 \begin{minipage}{6.5cm}
2454 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2455 \end{minipage}
2456 \begin{minipage}{6.5cm}
2457 \scriptsize
2458  \underline{Si-C bonds:}
2459  \begin{itemize}
2460   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2461   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2462  \end{itemize}
2463  \underline{Si-Si bonds:}
2464  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2465  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2466  \underline{C-C bonds:}
2467  \begin{itemize}
2468   \item C-C next neighbour pairs reduced (mandatory)
2469   \item Peak at 0.3 nm slightly shifted
2470         \begin{itemize}
2471          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2472                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2473                combinations (|)\\
2474                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2475                ($\downarrow$)
2476          \item Range [|-$\downarrow$]:
2477                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2478                with nearby Si$_{\text{I}}$}
2479         \end{itemize}
2480  \end{itemize}
2481 \end{minipage}
2482
2483 %\begin{picture}(0,0)(-330,-74)
2484 %\color{blue}
2485 %\framebox{
2486 %\begin{minipage}{1.6cm}
2487 %\tiny
2488 %\begin{center}
2489 %stretched SiC\\[-0.1cm]
2490 %in c-Si
2491 %\end{center}
2492 %\end{minipage}
2493 %}
2494 %\end{picture}
2495
2496 \begin{pspicture}(0,0)(0,0)
2497 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2498 \begin{minipage}{10cm}
2499 \small
2500 {\color{blue}\bf Stretched SiC in c-Si}
2501 \begin{itemize}
2502 \item Consistent to precipitation model involving \cs{}
2503 \item Explains annealing behavior of high/low T C implants
2504       \begin{itemize}
2505        \item Low T: highly mobiel \ci{}
2506        \item High T: stable configurations of \cs{}
2507       \end{itemize}
2508 \end{itemize}
2509 $\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2510 $\Rightarrow$ Precipitation mechanism involving \cs{}
2511 \end{minipage}
2512  }}}
2513 \end{pspicture}
2514
2515 \end{slide}
2516
2517 \begin{slide}
2518
2519  {\large\bf
2520   Increased temperature simulations at high C concentration
2521  }
2522
2523 \footnotesize
2524
2525 \begin{minipage}{6.5cm}
2526 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2527 \end{minipage}
2528 \begin{minipage}{6.5cm}
2529 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2530 \end{minipage}
2531
2532 \vspace{0.1cm}
2533
2534 \scriptsize
2535
2536 \framebox{
2537 \begin{minipage}[t]{6.0cm}
2538 0.186 nm: Si-C pairs $\uparrow$\\
2539 (as expected in 3C-SiC)\\[0.2cm]
2540 0.282 nm: Si-C-C\\[0.2cm]
2541 $\approx$0.35 nm: C-Si-Si
2542 \end{minipage}
2543 }
2544 \begin{minipage}{0.2cm}
2545 \hfill
2546 \end{minipage}
2547 \framebox{
2548 \begin{minipage}[t]{6.0cm}
2549 0.15 nm: C-C pairs $\uparrow$\\
2550 (as expected in graphite/diamond)\\[0.2cm]
2551 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2552 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2553 \end{minipage}
2554 }
2555
2556 \begin{itemize}
2557 \item Decreasing cut-off artifact
2558 \item {\color{red}Amorphous} SiC-like phase remains
2559 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2560 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2561 \end{itemize}
2562
2563 \vspace{-0.1cm}
2564
2565 \begin{center}
2566 {\color{blue}
2567 \framebox{
2568 {\color{black}
2569 High C \& small $V$ \& short $t$
2570 $\Rightarrow$
2571 }
2572 Slow restructuring due to strong C-C bonds
2573 {\color{black}
2574 $\Leftarrow$
2575 High C \& low T implants
2576 }
2577 }
2578 }
2579 \end{center}
2580
2581 \end{slide}
2582
2583 \begin{slide}
2584
2585  {\large\bf
2586   Summary and Conclusions
2587  }
2588
2589  \scriptsize
2590
2591 %\vspace{0.1cm}
2592
2593 \framebox{
2594 \begin{minipage}[t]{12.9cm}
2595  \underline{Pecipitation simulations}
2596  \begin{itemize}
2597   \item High C concentration $\rightarrow$ amorphous SiC like phase
2598   \item Problem of potential enhanced slow phase space propagation
2599   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2600   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2601   \item High T necessary to simulate IBS conditions (far from equilibrium)
2602   \item Precipitation by successive agglomeration of \cs (epitaxy)
2603   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2604         (stretched SiC, interface)
2605  \end{itemize}
2606 \end{minipage}
2607 }
2608
2609 %\vspace{0.1cm}
2610
2611 \framebox{
2612 \begin{minipage}{12.9cm}
2613  \underline{Defects}
2614  \begin{itemize}
2615    \item DFT / EA
2616         \begin{itemize}
2617          \item Point defects excellently / fairly well described
2618                by DFT / EA
2619          \item C$_{\text{sub}}$ drastically underestimated by EA
2620          \item EA predicts correct ground state:
2621                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2622          \item Identified migration path explaining
2623                diffusion and reorientation experiments by DFT
2624          \item EA fails to describe \ci{} migration:
2625                Wrong path \& overestimated barrier
2626         \end{itemize}
2627    \item Combinations of defects
2628          \begin{itemize}
2629           \item Agglomeration of point defects energetically favorable
2630                 by compensation of stress
2631           \item Formation of C-C unlikely
2632           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2633           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2634                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2635         \end{itemize}
2636  \end{itemize}
2637 \end{minipage}
2638 }
2639
2640 \begin{center}
2641 {\color{blue}
2642 \framebox{Precipitation by successive agglomeration of \cs{}}
2643 }
2644 \end{center}
2645
2646 \end{slide}
2647
2648 \begin{slide}
2649
2650  {\large\bf
2651   Acknowledgements
2652  }
2653
2654  \vspace{0.1cm}
2655
2656  \small
2657
2658  Thanks to \ldots
2659
2660  \underline{Augsburg}
2661  \begin{itemize}
2662   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2663   \item Ralf Utermann (EDV)
2664  \end{itemize}
2665  
2666  \underline{Helsinki}
2667  \begin{itemize}
2668   \item Prof. K. Nordlund (MD)
2669  \end{itemize}
2670  
2671  \underline{Munich}
2672  \begin{itemize}
2673   \item Bayerische Forschungsstiftung (financial support)
2674  \end{itemize}
2675  
2676  \underline{Paderborn}
2677  \begin{itemize}
2678   \item Prof. J. Lindner (SiC)
2679   \item Prof. G. Schmidt (DFT + financial support)
2680   \item Dr. E. Rauls (DFT + SiC)
2681   \item Dr. S. Sanna (VASP)
2682  \end{itemize}
2683
2684 \vspace{0.2cm}
2685
2686 \begin{center}
2687 \framebox{
2688 \bf Thank you for your attention!
2689 }
2690 \end{center}
2691
2692 \end{slide}
2693
2694 \end{document}
2695
2696 \fi