fe006e21aeb697277e3fec49775e386e4eb0dbeb
[lectures/latex.git] / posic / talks / mpi_app.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 % units
35 \usepackage{units}
36
37 \usepackage{semcolor}
38 \usepackage{semlayer}           % Seminar overlays
39 \usepackage{slidesec}           % Seminar sections and list of slides
40
41 \input{seminar.bug}             % Official bugs corrections
42 \input{seminar.bg2}             % Unofficial bugs corrections
43
44 \articlemag{1}
45
46 \special{landscape}
47
48 % font
49 %\usepackage{cmbright}
50 %\renewcommand{\familydefault}{\sfdefault}
51 %\usepackage{mathptmx}
52
53 \usepackage{upgreek}
54
55 \begin{document}
56
57 \extraslideheight{10in}
58 \slideframe{none}
59
60 \pagestyle{empty}
61
62 % specify width and height
63 \slidewidth 27.7cm 
64 \slideheight 19.1cm 
65
66 % shift it into visual area properly
67 \def\slideleftmargin{3.3cm}
68 \def\slidetopmargin{0.6cm}
69
70 \newcommand{\ham}{\mathcal{H}}
71 \newcommand{\pot}{\mathcal{V}}
72 \newcommand{\foo}{\mathcal{U}}
73 \newcommand{\vir}{\mathcal{W}}
74
75 % itemize level ii
76 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
77
78 % nice phi
79 \renewcommand{\phi}{\varphi}
80
81 % roman letters
82 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
83
84 % colors
85 \newrgbcolor{si-yellow}{.6 .6 0}
86 \newrgbcolor{hb}{0.75 0.77 0.89}
87 \newrgbcolor{lbb}{0.75 0.8 0.88}
88 \newrgbcolor{hlbb}{0.825 0.88 0.968}
89 \newrgbcolor{lachs}{1.0 .93 .81}
90
91 % shortcuts
92 \newcommand{\si}{Si$_{\text{i}}${}}
93 \newcommand{\ci}{C$_{\text{i}}${}}
94 \newcommand{\cs}{C$_{\text{sub}}${}}
95 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
96 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
97 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
98 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
99
100 % topic
101
102 \begin{slide}
103 \begin{center}
104
105  \vspace{16pt}
106
107  {\LARGE\bf
108   Atomistic simulation studies\\[0.2cm]
109   in the C/Si system
110  }
111
112  \vspace{48pt}
113
114  \textsc{Frank Zirkelbach}
115
116  \vspace{48pt}
117
118  Application talk at the Max Planck Institute for Solid State Research
119
120  \vspace{08pt}
121
122  Stuttgart, November 2011
123
124 \end{center}
125 \end{slide}
126
127 % intro
128
129 \begin{slide}
130
131 %{\large\bf
132 % Phase diagram of the C/Si system\\
133 %}
134
135 \vspace*{0.2cm}
136
137 \begin{minipage}{7cm}
138 \includegraphics[width=6.5cm]{si-c_phase.eps}
139 \begin{center}
140 {\tiny
141 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
142 }
143 \end{center}
144 \begin{pspicture}(0,0)(0,0)
145 \psellipse[linecolor=blue,linewidth=0.1cm](3.55,4.0)(0.5,2.9)
146 \end{pspicture}
147 \end{minipage}
148 \begin{minipage}{6cm}
149 {\bf Phase diagram of the C/Si system}\\[0.2cm]
150 {\color{blue}Stoichiometric composition}
151 \begin{itemize}
152 \item only chemical stable compound
153 \item wide band gap semiconductor\\
154       \underline{silicon carbide}, SiC
155 \end{itemize}
156 \end{minipage}
157
158 \end{slide}
159
160 % motivation / properties / applications of silicon carbide
161
162 \begin{slide}
163
164 \small
165
166 \begin{pspicture}(0,0)(13.5,5)
167
168  \psframe*[linecolor=hb](0,0)(13.5,5)
169
170  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
171  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
172
173  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
174
175  \rput[lt](0.5,4){wide band gap}
176  \rput[lt](0.5,3.5){high electric breakdown field}
177  \rput[lt](0.5,3){good electron mobility}
178  \rput[lt](0.5,2.5){high electron saturation drift velocity}
179  \rput[lt](0.5,2){high thermal conductivity}
180
181  \rput[lt](0.5,1.5){hard and mechanically stable}
182  \rput[lt](0.5,1){chemically inert}
183
184  \rput[lt](0.5,0.5){radiation hardness}
185
186  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
187
188  \rput[rt](13,3.85){high-temperature, high power}
189  \rput[rt](13,3.5){and high-frequency}
190  \rput[rt](13,3.15){electronic and optoelectronic devices}
191
192  \rput[rt](13,2.35){material suitable for extreme conditions}
193  \rput[rt](13,2){microelectromechanical systems}
194  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
195
196  \rput[rt](13,0.85){first wall reactor material, detectors}
197  \rput[rt](13,0.5){and electronic devices for space}
198
199 \end{pspicture}
200
201 \begin{picture}(0,0)(0,-162)
202 \includegraphics[height=2.0cm]{3C_SiC_bs.eps}
203 \end{picture}
204 \begin{picture}(0,0)(-130,-162)
205 \includegraphics[height=2.0cm]{nasa_600c_led.eps}
206 \end{picture}
207 \begin{picture}(0,0)(-295,-162)
208 \includegraphics[height=2.0cm]{6h-sic_3c-sic.eps}
209 \end{picture}
210 %%%%
211 \begin{picture}(0,0)(5,65)
212 \includegraphics[height=2.8cm]{sic_switch.eps}
213 \end{picture}
214 \begin{picture}(0,0)(-145,65)
215 \includegraphics[height=2.8cm]{infineon_schottky.eps}
216 \end{picture}
217 \begin{picture}(0,0)(-260,65)
218 \includegraphics[height=2.8cm]{ise_99.eps}
219 \end{picture}
220
221 \end{slide}
222
223 % motivation
224
225 \begin{slide}
226
227  {\large\bf
228   Polytypes of SiC
229  }
230
231  \vspace{4cm}
232
233  \small
234
235 \begin{tabular}{l c c c c c c}
236 \hline
237  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
238 \hline
239 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
240 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
241 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
242 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
243 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
244 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
245 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
246 \hline
247 \end{tabular}
248
249 {\tiny
250  Values for $T=300$ K
251 }
252
253 \begin{picture}(0,0)(-160,-155)
254  \includegraphics[width=7cm]{polytypes.eps}
255 \end{picture}
256 \begin{picture}(0,0)(-10,-185)
257  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
258 \end{picture}
259 \begin{picture}(0,0)(-10,-175)
260  {\tiny cubic (twist)}
261 \end{picture}
262 \begin{picture}(0,0)(-60,-175)
263  {\tiny hexagonal (no twist)}
264 \end{picture}
265 \begin{pspicture}(0,0)(0,0)
266 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
267 \end{pspicture}
268 \begin{pspicture}(0,0)(0,0)
269 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
270 \end{pspicture}
271 \begin{pspicture}(0,0)(0,0)
272 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
273 \end{pspicture}
274
275 \end{slide}
276
277 % fabrication
278
279 \begin{slide}
280
281  {\large\bf
282   Fabrication of silicon carbide
283  }
284
285  \small
286  
287  \vspace{4pt}
288
289  SiC - \emph{Born from the stars, perfected on earth.}
290
291  IBS also here!
292  
293  \vspace{4pt}
294
295  Conventional thin film SiC growth:
296  \begin{itemize}
297   \item \underline{Sublimation growth using the modified Lely method}
298         \begin{itemize}
299          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
300          \item Surrounded by polycrystalline SiC in a graphite crucible\\
301                at $T=2100-2400 \, ^{\circ} \text{C}$
302          \item Deposition of supersaturated vapor on cooler seed crystal
303         \end{itemize}
304   \item \underline{Homoepitaxial growth using CVD}
305         \begin{itemize}
306          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
307          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
308          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
309         \end{itemize}
310   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
311         \begin{itemize}
312          \item Two steps: carbonization and growth
313          \item $T=650-1050 \, ^{\circ} \text{C}$
314          \item SiC/Si lattice mismatch $\approx$ 20 \%
315          \item Quality and size not yet sufficient
316         \end{itemize}
317  \end{itemize}
318
319  \begin{picture}(0,0)(-280,-65)
320   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
321  \end{picture}
322  \begin{picture}(0,0)(-280,-55)
323   \begin{minipage}{5cm}
324   {\tiny
325    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
326    on 6H-SiC substrate
327   }
328   \end{minipage}
329  \end{picture}
330  \begin{picture}(0,0)(-265,-150)
331   \includegraphics[width=2.4cm]{m_lely.eps}
332  \end{picture}
333  \begin{picture}(0,0)(-333,-175)
334   \begin{minipage}{5cm}
335   {\tiny
336    1. Lid\\[-7pt]
337    2. Heating\\[-7pt]
338    3. Source\\[-7pt]
339    4. Crucible\\[-7pt]
340    5. Insulation\\[-7pt]
341    6. Seed crystal
342   }
343   \end{minipage}
344  \end{picture}
345  \begin{picture}(0,0)(-230,-35)
346  \framebox{
347  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
348  }
349  \end{picture}
350  \begin{picture}(0,0)(-230,-10)
351  \framebox{
352  \begin{minipage}{3cm}
353  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
354                                less advanced}
355  \end{minipage}
356  }
357  \end{picture}
358
359 \end{slide}
360
361 % contents
362
363 \begin{slide}
364
365 {\large\bf
366  Outline
367 }
368
369  \begin{itemize}
370   \item Implantation of C in Si --- Overview of experimental observations
371   \item Utilized simulation techniques and modeled problems
372         \begin{itemize}
373          \item {\color{blue}Diploma thesis}\\
374                \underline{Monte Carlo} simulations
375                modeling the selforganization process
376                leading to periodic arrays of nanometric amorphous SiC
377                precipitates
378          \item {\color{blue}Doctoral studies}\\
379                Classical potential \underline{molecular dynamics} simulations
380                \ldots\\
381                \underline{Density functional theory} calculations
382                \ldots\\[0.2cm]
383                \ldots on defects and SiC precipitation in Si
384         \end{itemize}
385   \item Summary / Conclusion / Outlook
386  \end{itemize}
387
388 \end{slide}
389
390
391
392 \end{document}
393
394 \begin{slide}
395
396  {\large\bf
397   Fabrication of silicon carbide
398  }
399
400  \small
401
402  Alternative approach:
403  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
404  \begin{itemize}
405   \item \underline{Implantation step 1}\\
406         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
407         $\Rightarrow$ box-like distribution of equally sized
408                        and epitactically oriented SiC precipitates
409                        
410   \item \underline{Implantation step 2}\\
411         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
412         $\Rightarrow$ destruction of SiC nanocrystals
413                       in growing amorphous interface layers
414   \item \underline{Annealing}\\
415         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
416         $\Rightarrow$ homogeneous, stoichiometric SiC layer
417                       with sharp interfaces
418  \end{itemize}
419
420  \begin{minipage}{6.3cm}
421  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
422  {\tiny
423   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
424  }
425  \end{minipage}
426 \framebox{
427  \begin{minipage}{6.3cm}
428  \begin{center}
429  {\color{blue}
430   Precipitation mechanism not yet fully understood!
431  }
432  \renewcommand\labelitemi{$\Rightarrow$}
433  \small
434  \underline{Understanding the SiC precipitation}
435  \begin{itemize}
436   \item significant technological progress in SiC thin film formation
437   \item perspectives for processes relying upon prevention of SiC precipitation
438  \end{itemize}
439  \end{center}
440  \end{minipage}
441 }
442  
443 \end{slide}
444
445
446 \begin{slide}
447
448  {\large\bf
449   Supposed precipitation mechanism of SiC in Si
450  }
451
452  \scriptsize
453
454  \vspace{0.1cm}
455
456  \begin{minipage}{3.8cm}
457  Si \& SiC lattice structure\\[0.2cm]
458  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
459  \hrule
460  \end{minipage}
461  \hspace{0.6cm}
462  \begin{minipage}{3.8cm}
463  \begin{center}
464  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
465  \end{center}
466  \end{minipage}
467  \hspace{0.6cm}
468  \begin{minipage}{3.8cm}
469  \begin{center}
470  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
471  \end{center}
472  \end{minipage}
473
474  \begin{minipage}{4cm}
475  \begin{center}
476  C-Si dimers (dumbbells)\\[-0.1cm]
477  on Si interstitial sites
478  \end{center}
479  \end{minipage}
480  \hspace{0.2cm}
481  \begin{minipage}{4.2cm}
482  \begin{center}
483  Agglomeration of C-Si dumbbells\\[-0.1cm]
484  $\Rightarrow$ dark contrasts
485  \end{center}
486  \end{minipage}
487  \hspace{0.2cm}
488  \begin{minipage}{4cm}
489  \begin{center}
490  Precipitation of 3C-SiC in Si\\[-0.1cm]
491  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
492  \& release of Si self-interstitials
493  \end{center}
494  \end{minipage}
495
496  \begin{minipage}{3.8cm}
497  \begin{center}
498  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
499  \end{center}
500  \end{minipage}
501  \hspace{0.6cm}
502  \begin{minipage}{3.8cm}
503  \begin{center}
504  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
505  \end{center}
506  \end{minipage}
507  \hspace{0.6cm}
508  \begin{minipage}{3.8cm}
509  \begin{center}
510  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
511  \end{center}
512  \end{minipage}
513
514 \begin{pspicture}(0,0)(0,0)
515 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
516 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
517 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
518 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
519 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
520  $4a_{\text{Si}}=5a_{\text{SiC}}$
521  }}}
522 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
523 \hkl(h k l) planes match
524  }}}
525 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
526 r = 2 - 4 nm
527  }}}
528 \end{pspicture}
529
530 \end{slide}
531
532 \begin{slide}
533
534  {\large\bf
535   Supposed precipitation mechanism of SiC in Si
536  }
537
538  \scriptsize
539
540  \vspace{0.1cm}
541
542  \begin{minipage}{3.8cm}
543  Si \& SiC lattice structure\\[0.2cm]
544  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
545  \hrule
546  \end{minipage}
547  \hspace{0.6cm}
548  \begin{minipage}{3.8cm}
549  \begin{center}
550  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
551  \end{center}
552  \end{minipage}
553  \hspace{0.6cm}
554  \begin{minipage}{3.8cm}
555  \begin{center}
556  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
557  \end{center}
558  \end{minipage}
559
560  \begin{minipage}{4cm}
561  \begin{center}
562  C-Si dimers (dumbbells)\\[-0.1cm]
563  on Si interstitial sites
564  \end{center}
565  \end{minipage}
566  \hspace{0.2cm}
567  \begin{minipage}{4.2cm}
568  \begin{center}
569  Agglomeration of C-Si dumbbells\\[-0.1cm]
570  $\Rightarrow$ dark contrasts
571  \end{center}
572  \end{minipage}
573  \hspace{0.2cm}
574  \begin{minipage}{4cm}
575  \begin{center}
576  Precipitation of 3C-SiC in Si\\[-0.1cm]
577  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
578  \& release of Si self-interstitials
579  \end{center}
580  \end{minipage}
581
582  \begin{minipage}{3.8cm}
583  \begin{center}
584  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
585  \end{center}
586  \end{minipage}
587  \hspace{0.6cm}
588  \begin{minipage}{3.8cm}
589  \begin{center}
590  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
591  \end{center}
592  \end{minipage}
593  \hspace{0.6cm}
594  \begin{minipage}{3.8cm}
595  \begin{center}
596  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
597  \end{center}
598  \end{minipage}
599
600 \begin{pspicture}(0,0)(0,0)
601 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
602 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
603 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
604 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
605 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
606  $4a_{\text{Si}}=5a_{\text{SiC}}$
607  }}}
608 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
609 \hkl(h k l) planes match
610  }}}
611 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
612 r = 2 - 4 nm
613  }}}
614 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
615 \begin{minipage}{10cm}
616 \small
617 {\color{red}\bf Controversial views}
618 \begin{itemize}
619 \item Implantations at high T (Nejim et al.)
620  \begin{itemize}
621   \item Topotactic transformation based on \cs
622   \item \si{} as supply reacting with further C in cleared volume
623  \end{itemize}
624 \item Annealing behavior (Serre et al.)
625  \begin{itemize}
626   \item Room temperature implants $\rightarrow$ highly mobile C
627   \item Elevated T implants $\rightarrow$ no/low C redistribution/migration\\
628         (indicate stable \cs{} configurations)
629  \end{itemize}
630 \item Strained silicon \& Si/SiC heterostructures
631  \begin{itemize}
632   \item Coherent SiC precipitates (tensile strain)
633   \item Incoherent SiC (strain relaxation)
634  \end{itemize}
635 \end{itemize}
636 \end{minipage}
637  }}}
638 \end{pspicture}
639
640 \end{slide}
641
642 \begin{slide}
643
644  {\large\bf
645   Molecular dynamics (MD) simulations
646  }
647
648  \vspace{12pt}
649
650  \small
651
652  {\bf MD basics:}
653  \begin{itemize}
654   \item Microscopic description of N particle system
655   \item Analytical interaction potential
656   \item Numerical integration using Newtons equation of motion\\
657         as a propagation rule in 6N-dimensional phase space
658   \item Observables obtained by time and/or ensemble averages
659  \end{itemize}
660  {\bf Details of the simulation:}
661  \begin{itemize}
662   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
663   \item Ensemble: NpT (isothermal-isobaric)
664         \begin{itemize}
665          \item Berendsen thermostat:
666                $\tau_{\text{T}}=100\text{ fs}$
667          \item Berendsen barostat:\\
668                $\tau_{\text{P}}=100\text{ fs}$,
669                $\beta^{-1}=100\text{ GPa}$
670         \end{itemize}
671   \item Erhart/Albe potential: Tersoff-like bond order potential
672   \vspace*{12pt}
673         \[
674         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
675         \pot_{ij} = {\color{red}f_C(r_{ij})}
676         \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
677         \]
678  \end{itemize}
679
680  \begin{picture}(0,0)(-230,-30)
681   \includegraphics[width=5cm]{tersoff_angle.eps} 
682  \end{picture}
683  
684 \end{slide}
685
686 \begin{slide}
687
688  {\large\bf
689   Density functional theory (DFT) calculations
690  }
691
692  \small
693
694  Basic ingredients necessary for DFT
695
696  \begin{itemize}
697   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
698         \begin{itemize}
699          \item ... uniquely determines the ground state potential
700                / wavefunctions
701          \item ... minimizes the systems total energy
702         \end{itemize}
703   \item \underline{Born-Oppenheimer}
704         - $N$ moving electrons in an external potential of static nuclei
705 \[
706 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
707               +\sum_i^N V_{\text{ext}}(r_i)
708               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
709 \]
710   \item \underline{Effective potential}
711         - averaged electrostatic potential \& exchange and correlation
712 \[
713 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
714                  +V_{\text{XC}}[n(r)]
715 \]
716   \item \underline{Kohn-Sham system}
717         - Schr\"odinger equation of N non-interacting particles
718 \[
719 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
720 =\epsilon_i\Phi_i(r)
721 \quad
722 \Rightarrow
723 \quad
724 n(r)=\sum_i^N|\Phi_i(r)|^2
725 \]
726   \item \underline{Self-consistent solution}\\
727 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
728 which in turn depends on $n(r)$
729   \item \underline{Variational principle}
730         - minimize total energy with respect to $n(r)$
731  \end{itemize}
732
733 \end{slide}
734
735 \begin{slide}
736
737  {\large\bf
738   Density functional theory (DFT) calculations
739  }
740
741  \small
742
743  \vspace*{0.2cm}
744
745  Details of applied DFT calculations in this work
746
747  \begin{itemize}
748   \item \underline{Exchange correlation functional}
749         - approximations for the inhomogeneous electron gas
750         \begin{itemize}
751          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
752          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
753         \end{itemize}
754   \item \underline{Plane wave basis set}
755         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
756 \[
757 \rightarrow
758 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
759 \qquad ({\color{blue}300\text{ eV}})
760 \]
761   \item \underline{Brillouin zone sampling} -
762         {\color{blue}$\Gamma$-point only} calculations
763   \item \underline{Pseudo potential} 
764         - consider only the valence electrons
765   \item \underline{Code} - VASP 4.6
766  \end{itemize}
767
768  \vspace*{0.2cm}
769
770  MD and structural optimization
771
772  \begin{itemize}
773   \item MD integration: Gear predictor corrector algorithm
774   \item Pressure control: Parrinello-Rahman pressure control
775   \item Structural optimization: Conjugate gradient method
776  \end{itemize}
777
778 \begin{pspicture}(0,0)(0,0)
779 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
780 \end{pspicture}
781
782 \end{slide}
783
784 \begin{slide}
785
786  {\large\bf
787   C and Si self-interstitial point defects in silicon
788  }
789
790  \small
791
792  \vspace*{0.3cm}
793
794 \begin{minipage}{8cm}
795 Procedure:\\[0.3cm]
796   \begin{pspicture}(0,0)(7,5)
797   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
798    \parbox{7cm}{
799    \begin{itemize}
800     \item Creation of c-Si simulation volume
801     \item Periodic boundary conditions
802     \item $T=0\text{ K}$, $p=0\text{ bar}$
803    \end{itemize}
804   }}}}
805 \rput(3.5,2.1){\rnode{insert}{\psframebox{
806  \parbox{7cm}{
807   \begin{center}
808   Insertion of interstitial C/Si atoms
809   \end{center}
810   }}}}
811   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
812    \parbox{7cm}{
813    \begin{center}
814    Relaxation / structural energy minimization
815    \end{center}
816   }}}}
817   \ncline[]{->}{init}{insert}
818   \ncline[]{->}{insert}{cool}
819  \end{pspicture}
820 \end{minipage}
821 \begin{minipage}{5cm}
822   \includegraphics[width=5cm]{unit_cell_e.eps}\\
823 \end{minipage}
824
825 \begin{minipage}{9cm}
826  \begin{tabular}{l c c}
827  \hline
828  & size [unit cells] & \# atoms\\
829 \hline
830 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
831 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
832 \hline
833  \end{tabular}
834 \end{minipage}
835 \begin{minipage}{4cm}
836 {\color{red}$\bullet$} Tetrahedral\\
837 {\color{green}$\bullet$} Hexagonal\\
838 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
839 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
840 {\color{cyan}$\bullet$} Bond-centered\\
841 {\color{black}$\bullet$} Vacancy / Substitutional
842 \end{minipage}
843
844 \end{slide}
845
846 \begin{slide}
847
848  \footnotesize
849
850 \begin{minipage}{9.5cm}
851
852  {\large\bf
853   Si self-interstitial point defects in silicon\\
854  }
855
856 \begin{tabular}{l c c c c c}
857 \hline
858  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
859 \hline
860  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
861  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
862 \hline
863 \end{tabular}\\[0.2cm]
864
865 \begin{minipage}{4.7cm}
866 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
867 \end{minipage}
868 \begin{minipage}{4.7cm}
869 \begin{center}
870 {\tiny nearly T $\rightarrow$ T}\\
871 \end{center}
872 \includegraphics[width=4.7cm]{nhex_tet.ps}
873 \end{minipage}\\
874
875 \underline{Hexagonal} \hspace{2pt}
876 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
877 \framebox{
878 \begin{minipage}{2.7cm}
879 $E_{\text{f}}^*=4.48\text{ eV}$\\
880 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
881 \end{minipage}
882 \begin{minipage}{0.4cm}
883 \begin{center}
884 $\Rightarrow$
885 \end{center}
886 \end{minipage}
887 \begin{minipage}{2.7cm}
888 $E_{\text{f}}=3.96\text{ eV}$\\
889 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
890 \end{minipage}
891 }
892 \begin{minipage}{2.9cm}
893 \begin{flushright}
894 \underline{Vacancy}\\
895 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
896 \end{flushright}
897 \end{minipage}
898
899 \end{minipage}
900 \begin{minipage}{3.5cm}
901
902 \begin{flushright}
903 \underline{\hkl<1 1 0> dumbbell}\\
904 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
905 \underline{Tetrahedral}\\
906 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
907 \underline{\hkl<1 0 0> dumbbell}\\
908 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
909 \end{flushright}
910
911 \end{minipage}
912
913 \end{slide}
914
915 \begin{slide}
916
917 \footnotesize
918
919  {\large\bf
920   C interstitial point defects in silicon\\[-0.1cm]
921  }
922
923 \begin{tabular}{l c c c c c c r}
924 \hline
925  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
926 \hline
927  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
928  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
929 \hline
930 \end{tabular}\\[0.1cm]
931
932 \framebox{
933 \begin{minipage}{2.7cm}
934 \underline{Hexagonal} \hspace{2pt}
935 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
936 $E_{\text{f}}^*=9.05\text{ eV}$\\
937 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
938 \end{minipage}
939 \begin{minipage}{0.4cm}
940 \begin{center}
941 $\Rightarrow$
942 \end{center}
943 \end{minipage}
944 \begin{minipage}{2.7cm}
945 \underline{\hkl<1 0 0>}\\
946 $E_{\text{f}}=3.88\text{ eV}$\\
947 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
948 \end{minipage}
949 }
950 \begin{minipage}{2cm}
951 \hfill
952 \end{minipage}
953 \begin{minipage}{3cm}
954 \begin{flushright}
955 \underline{Tetrahedral}\\
956 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
957 \end{flushright}
958 \end{minipage}
959
960 \framebox{
961 \begin{minipage}{2.7cm}
962 \underline{Bond-centered}\\
963 $E_{\text{f}}^*=5.59\text{ eV}$\\
964 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
965 \end{minipage}
966 \begin{minipage}{0.4cm}
967 \begin{center}
968 $\Rightarrow$
969 \end{center}
970 \end{minipage}
971 \begin{minipage}{2.7cm}
972 \underline{\hkl<1 1 0> dumbbell}\\
973 $E_{\text{f}}=5.18\text{ eV}$\\
974 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
975 \end{minipage}
976 }
977 \begin{minipage}{2cm}
978 \hfill
979 \end{minipage}
980 \begin{minipage}{3cm}
981 \begin{flushright}
982 \underline{Substitutional}\\
983 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
984 \end{flushright}
985 \end{minipage}
986
987 \end{slide}
988
989 \begin{slide}
990
991 \footnotesize
992
993  {\large\bf\boldmath
994   C \hkl<1 0 0> dumbbell interstitial configuration\\
995  }
996
997 {\tiny
998 \begin{tabular}{l c c c c c c c c}
999 \hline
1000  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
1001 \hline
1002 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
1003 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
1004 \hline
1005 \end{tabular}\\[0.2cm]
1006 \begin{tabular}{l c c c c }
1007 \hline
1008  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
1009 \hline
1010 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
1011 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
1012 \hline
1013 \end{tabular}\\[0.2cm]
1014 \begin{tabular}{l c c c}
1015 \hline
1016  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
1017 \hline
1018 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
1019 VASP & 0.109 & -0.065 & 0.174 \\
1020 \hline
1021 \end{tabular}\\[0.6cm]
1022 }
1023
1024 \begin{minipage}{3.0cm}
1025 \begin{center}
1026 \underline{Erhart/Albe}
1027 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
1028 \end{center}
1029 \end{minipage}
1030 \begin{minipage}{3.0cm}
1031 \begin{center}
1032 \underline{VASP}
1033 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
1034 \end{center}
1035 \end{minipage}\\
1036
1037 \begin{picture}(0,0)(-185,10)
1038 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
1039 \end{picture}
1040 \begin{picture}(0,0)(-280,-150)
1041 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
1042 \end{picture}
1043
1044 \begin{pspicture}(0,0)(0,0)
1045 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
1046 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
1047 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
1048 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
1049 \end{pspicture}
1050
1051 \end{slide}
1052
1053 \begin{slide}
1054
1055 \small
1056
1057 \begin{minipage}{8.5cm}
1058
1059  {\large\bf
1060   Bond-centered interstitial configuration\\[-0.1cm]
1061  }
1062
1063 \begin{minipage}{3.0cm}
1064 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1065 \end{minipage}
1066 \begin{minipage}{5.2cm}
1067 \begin{itemize}
1068  \item Linear Si-C-Si bond
1069  \item Si: one C \& 3 Si neighbours
1070  \item Spin polarized calculations
1071  \item No saddle point!\\
1072        Real local minimum!
1073 \end{itemize}
1074 \end{minipage}
1075
1076 \framebox{
1077  \tiny
1078  \begin{minipage}[t]{6.5cm}
1079   \begin{minipage}[t]{1.2cm}
1080   {\color{red}Si}\\
1081   {\tiny sp$^3$}\\[0.8cm]
1082   \underline{${\color{black}\uparrow}$}
1083   \underline{${\color{black}\uparrow}$}
1084   \underline{${\color{black}\uparrow}$}
1085   \underline{${\color{red}\uparrow}$}\\
1086   sp$^3$
1087   \end{minipage}
1088   \begin{minipage}[t]{1.4cm}
1089   \begin{center}
1090   {\color{red}M}{\color{blue}O}\\[0.8cm]
1091   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1092   $\sigma_{\text{ab}}$\\[0.5cm]
1093   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1094   $\sigma_{\text{b}}$
1095   \end{center}
1096   \end{minipage}
1097   \begin{minipage}[t]{1.0cm}
1098   \begin{center}
1099   {\color{blue}C}\\
1100   {\tiny sp}\\[0.2cm]
1101   \underline{${\color{white}\uparrow\uparrow}$}
1102   \underline{${\color{white}\uparrow\uparrow}$}\\
1103   2p\\[0.4cm]
1104   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1105   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1106   sp
1107   \end{center}
1108   \end{minipage}
1109   \begin{minipage}[t]{1.4cm}
1110   \begin{center}
1111   {\color{blue}M}{\color{green}O}\\[0.8cm]
1112   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1113   $\sigma_{\text{ab}}$\\[0.5cm]
1114   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1115   $\sigma_{\text{b}}$
1116   \end{center}
1117   \end{minipage}
1118   \begin{minipage}[t]{1.2cm}
1119   \begin{flushright}
1120   {\color{green}Si}\\
1121   {\tiny sp$^3$}\\[0.8cm]
1122   \underline{${\color{green}\uparrow}$}
1123   \underline{${\color{black}\uparrow}$}
1124   \underline{${\color{black}\uparrow}$}
1125   \underline{${\color{black}\uparrow}$}\\
1126   sp$^3$
1127   \end{flushright}
1128   \end{minipage}
1129  \end{minipage}
1130 }\\[0.1cm]
1131
1132 \framebox{
1133 \begin{minipage}{4.5cm}
1134 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1135 \end{minipage}
1136 \begin{minipage}{3.5cm}
1137 {\color{gray}$\bullet$} Spin up\\
1138 {\color{green}$\bullet$} Spin down\\
1139 {\color{blue}$\bullet$} Resulting spin up\\
1140 {\color{yellow}$\bullet$} Si atoms\\
1141 {\color{red}$\bullet$} C atom
1142 \end{minipage}
1143 }
1144
1145 \end{minipage}
1146 \begin{minipage}{4.2cm}
1147 \begin{flushright}
1148 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1149 {\color{green}$\Box$} {\tiny unoccupied}\\
1150 {\color{red}$\bullet$} {\tiny occupied}
1151 \end{flushright}
1152 \end{minipage}
1153
1154 \end{slide}
1155
1156 \begin{slide}
1157
1158  {\large\bf\boldmath
1159   Migration of the C \hkl<1 0 0> dumbbell interstitial
1160  }
1161
1162 \scriptsize
1163
1164  {\small Investigated pathways}
1165
1166 \begin{minipage}{8.5cm}
1167 \begin{minipage}{8.3cm}
1168 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1169 \begin{minipage}{2.4cm}
1170 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1171 \end{minipage}
1172 \begin{minipage}{0.4cm}
1173 $\rightarrow$
1174 \end{minipage}
1175 \begin{minipage}{2.4cm}
1176 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1177 \end{minipage}
1178 \begin{minipage}{0.4cm}
1179 $\rightarrow$
1180 \end{minipage}
1181 \begin{minipage}{2.4cm}
1182 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1183 \end{minipage}
1184 \end{minipage}\\
1185 \begin{minipage}{8.3cm}
1186 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1187 \begin{minipage}{2.4cm}
1188 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1189 \end{minipage}
1190 \begin{minipage}{0.4cm}
1191 $\rightarrow$
1192 \end{minipage}
1193 \begin{minipage}{2.4cm}
1194 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1195 \end{minipage}
1196 \begin{minipage}{0.4cm}
1197 $\rightarrow$
1198 \end{minipage}
1199 \begin{minipage}{2.4cm}
1200 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1201 \end{minipage}
1202 \end{minipage}\\
1203 \begin{minipage}{8.3cm}
1204 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1205 \begin{minipage}{2.4cm}
1206 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1207 \end{minipage}
1208 \begin{minipage}{0.4cm}
1209 $\rightarrow$
1210 \end{minipage}
1211 \begin{minipage}{2.4cm}
1212 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1213 \end{minipage}
1214 \begin{minipage}{0.4cm}
1215 $\rightarrow$
1216 \end{minipage}
1217 \begin{minipage}{2.4cm}
1218 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1219 \end{minipage}
1220 \end{minipage}
1221 \end{minipage}
1222 \framebox{
1223 \begin{minipage}{4.2cm}
1224  {\small Constrained relaxation\\
1225          technique (CRT) method}\\
1226 \includegraphics[width=4cm]{crt_orig.eps}
1227 \begin{itemize}
1228  \item Constrain diffusing atom
1229  \item Static constraints 
1230 \end{itemize}
1231 \vspace*{0.3cm}
1232  {\small Modifications}\\
1233 \includegraphics[width=4cm]{crt_mod.eps}
1234 \begin{itemize}
1235  \item Constrain all atoms
1236  \item Update individual\\
1237        constraints
1238 \end{itemize}
1239 \end{minipage}
1240 }
1241
1242 \end{slide}
1243
1244 \begin{slide}
1245
1246  {\large\bf\boldmath
1247   Migration of the C \hkl<1 0 0> dumbbell interstitial
1248  }
1249
1250 \scriptsize
1251
1252 \framebox{
1253 \begin{minipage}{5.9cm}
1254 \begin{flushleft}
1255 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1256 \end{flushleft}
1257 \begin{center}
1258 \begin{picture}(0,0)(60,0)
1259 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1260 \end{picture}
1261 \begin{picture}(0,0)(-5,0)
1262 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1263 \end{picture}
1264 \begin{picture}(0,0)(-55,0)
1265 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1266 \end{picture}
1267 \begin{picture}(0,0)(12.5,10)
1268 \includegraphics[width=1cm]{110_arrow.eps}
1269 \end{picture}
1270 \begin{picture}(0,0)(90,0)
1271 \includegraphics[height=0.9cm]{001_arrow.eps}
1272 \end{picture}
1273 \end{center}
1274 \vspace*{0.35cm}
1275 \end{minipage}
1276 }
1277 \begin{minipage}{0.3cm}
1278 \hfill
1279 \end{minipage}
1280 \framebox{
1281 \begin{minipage}{5.9cm}
1282 \begin{flushright}
1283 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1284 \end{flushright}
1285 \begin{center}
1286 \begin{picture}(0,0)(60,0)
1287 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1288 \end{picture}
1289 \begin{picture}(0,0)(5,0)
1290 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1291 \end{picture}
1292 \begin{picture}(0,0)(-55,0)
1293 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1294 \end{picture}
1295 \begin{picture}(0,0)(12.5,10)
1296 \includegraphics[width=1cm]{100_arrow.eps}
1297 \end{picture}
1298 \begin{picture}(0,0)(90,0)
1299 \includegraphics[height=0.9cm]{001_arrow.eps}
1300 \end{picture}
1301 \end{center}
1302 \vspace*{0.3cm}
1303 \end{minipage}\\
1304 }
1305
1306 \vspace*{0.05cm}
1307
1308 \framebox{
1309 \begin{minipage}{5.9cm}
1310 \begin{flushleft}
1311 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1312 \end{flushleft}
1313 \begin{center}
1314 \begin{picture}(0,0)(60,0)
1315 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1316 \end{picture}
1317 \begin{picture}(0,0)(10,0)
1318 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1319 \end{picture}
1320 \begin{picture}(0,0)(-60,0)
1321 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1322 \end{picture}
1323 \begin{picture}(0,0)(12.5,10)
1324 \includegraphics[width=1cm]{100_arrow.eps}
1325 \end{picture}
1326 \begin{picture}(0,0)(90,0)
1327 \includegraphics[height=0.9cm]{001_arrow.eps}
1328 \end{picture}
1329 \end{center}
1330 \vspace*{0.3cm}
1331 \end{minipage}
1332 }
1333 \begin{minipage}{0.3cm}
1334 \hfill
1335 \end{minipage}
1336 \begin{minipage}{6.5cm}
1337 VASP results
1338 \begin{itemize}
1339  \item Energetically most favorable path
1340        \begin{itemize}
1341         \item Path 2
1342         \item Activation energy: $\approx$ 0.9 eV 
1343         \item Experimental values: 0.73 ... 0.87 eV
1344        \end{itemize}
1345        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1346  \item Reorientation (path 3)
1347        \begin{itemize}
1348         \item More likely composed of two consecutive steps of type 2
1349         \item Experimental values: 0.77 ... 0.88 eV
1350        \end{itemize}
1351        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1352 \end{itemize}
1353 \end{minipage}
1354
1355 \end{slide}
1356
1357 \begin{slide}
1358
1359  {\large\bf\boldmath
1360   Migration of the C \hkl<1 0 0> dumbbell interstitial
1361  }
1362
1363 \scriptsize
1364
1365  \vspace{0.1cm}
1366
1367 \begin{minipage}{6.5cm}
1368
1369 \framebox{
1370 \begin{minipage}[t]{5.9cm}
1371 \begin{flushleft}
1372 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1373 \end{flushleft}
1374 \begin{center}
1375 \begin{pspicture}(0,0)(0,0)
1376 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1377 \end{pspicture}
1378 \begin{picture}(0,0)(60,-50)
1379 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1380 \end{picture}
1381 \begin{picture}(0,0)(5,-50)
1382 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1383 \end{picture}
1384 \begin{picture}(0,0)(-55,-50)
1385 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1386 \end{picture}
1387 \begin{picture}(0,0)(12.5,-40)
1388 \includegraphics[width=1cm]{110_arrow.eps}
1389 \end{picture}
1390 \begin{picture}(0,0)(90,-45)
1391 \includegraphics[height=0.9cm]{001_arrow.eps}
1392 \end{picture}\\
1393 \begin{pspicture}(0,0)(0,0)
1394 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1395 \end{pspicture}
1396 \begin{picture}(0,0)(60,-15)
1397 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1398 \end{picture}
1399 \begin{picture}(0,0)(35,-15)
1400 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1401 \end{picture}
1402 \begin{picture}(0,0)(-5,-15)
1403 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1404 \end{picture}
1405 \begin{picture}(0,0)(-55,-15)
1406 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1407 \end{picture}
1408 \begin{picture}(0,0)(12.5,-5)
1409 \includegraphics[width=1cm]{100_arrow.eps}
1410 \end{picture}
1411 \begin{picture}(0,0)(90,-15)
1412 \includegraphics[height=0.9cm]{010_arrow.eps}
1413 \end{picture}
1414 \end{center}
1415 \end{minipage}
1416 }\\[0.1cm]
1417
1418 \begin{minipage}{5.9cm}
1419 Erhart/Albe results
1420 \begin{itemize}
1421  \item Lowest activation energy: $\approx$ 2.2 eV
1422  \item 2.4 times higher than VASP
1423  \item Different pathway
1424 \end{itemize}
1425 \end{minipage}
1426
1427 \end{minipage}
1428 \begin{minipage}{6.5cm}
1429
1430 \framebox{
1431 \begin{minipage}{5.9cm}
1432 %\begin{flushright}
1433 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1434 %\end{flushright}
1435 %\begin{center}
1436 %\begin{pspicture}(0,0)(0,0)
1437 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1438 %\end{pspicture}
1439 %\begin{picture}(0,0)(60,-5)
1440 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1441 %\end{picture}
1442 %\begin{picture}(0,0)(0,-5)
1443 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1444 %\end{picture}
1445 %\begin{picture}(0,0)(-55,-5)
1446 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1447 %\end{picture}
1448 %\begin{picture}(0,0)(12.5,5)
1449 %\includegraphics[width=1cm]{100_arrow.eps}
1450 %\end{picture}
1451 %\begin{picture}(0,0)(90,0)
1452 %\includegraphics[height=0.9cm]{001_arrow.eps}
1453 %\end{picture}
1454 %\end{center}
1455 %\vspace{0.2cm}
1456 %\end{minipage}
1457 %}\\[0.2cm]
1458 %
1459 %\framebox{
1460 %\begin{minipage}{5.9cm}
1461 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1462 \end{minipage}
1463 }\\[0.1cm]
1464
1465 \begin{minipage}{5.9cm}
1466 Transition involving \ci{} \hkl<1 1 0>
1467 \begin{itemize}
1468  \item Bond-centered configuration unstable\\
1469        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1470  \item Transition minima of path 2 \& 3\\
1471        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1472  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1473  \item 2.4 - 3.4 times higher than VASP
1474  \item Rotation of dumbbell orientation
1475 \end{itemize}
1476 \vspace{0.1cm}
1477 \begin{center}
1478 {\color{blue}Overestimated diffusion barrier}
1479 \end{center}
1480 \end{minipage}
1481
1482 \end{minipage}
1483
1484 \end{slide}
1485
1486 \begin{slide}
1487
1488  {\large\bf\boldmath
1489   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1490  }
1491
1492 \small
1493
1494 \vspace*{0.1cm}
1495
1496 Binding energy: 
1497 $
1498 E_{\text{b}}=
1499 E_{\text{f}}^{\text{defect combination}}-
1500 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1501 E_{\text{f}}^{\text{2nd defect}}
1502 $
1503
1504 \vspace*{0.1cm}
1505
1506 {\scriptsize
1507 \begin{tabular}{l c c c c c c}
1508 \hline
1509  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1510  \hline
1511  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1512  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1513  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1514  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1515  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1516  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1517  \hline
1518  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1519  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1520 \hline
1521 \end{tabular}
1522 }
1523
1524 \vspace*{0.3cm}
1525
1526 \footnotesize
1527
1528 \begin{minipage}[t]{3.8cm}
1529 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1530 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1531 \end{minipage}
1532 \begin{minipage}[t]{3.5cm}
1533 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1534 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1535 \end{minipage}
1536 \begin{minipage}[t]{5.5cm}
1537 \begin{itemize}
1538  \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
1539        $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1540  \item Stress compensation / increase
1541  \item Unfavored: antiparallel orientations
1542  \item Indication of energetically favored\\
1543        agglomeration
1544  \item Most favorable: C clustering
1545  \item However: High barrier ($>4\,\text{eV}$)
1546  \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
1547        (Entropy)
1548 \end{itemize}
1549 \end{minipage}
1550
1551 \begin{picture}(0,0)(-295,-130)
1552 \includegraphics[width=3.5cm]{comb_pos.eps}
1553 \end{picture}
1554
1555 \end{slide}
1556
1557 \begin{slide}
1558
1559  {\large\bf\boldmath
1560   Combinations of C-Si \hkl<1 0 0>-type interstitials
1561  }
1562
1563 \small
1564
1565 \vspace*{0.1cm}
1566
1567 Energetically most favorable combinations along \hkl<1 1 0>
1568
1569 \vspace*{0.1cm}
1570
1571 {\scriptsize
1572 \begin{tabular}{l c c c c c c}
1573 \hline
1574  & 1 & 2 & 3 & 4 & 5 & 6\\
1575 \hline
1576 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1577 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1578 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1579 \hline
1580 \end{tabular}
1581 }
1582
1583 \vspace*{0.3cm}
1584
1585 \begin{minipage}{7.0cm}
1586 \includegraphics[width=7cm]{db_along_110_cc.ps}
1587 \end{minipage}
1588 \begin{minipage}{6.0cm}
1589 \begin{itemize}
1590  \item Interaction proportional to reciprocal cube of C-C distance
1591  \item Saturation in the immediate vicinity
1592  \renewcommand\labelitemi{$\Rightarrow$}
1593  \item Agglomeration of \ci{} expected
1594  \item Absence of C clustering
1595 \end{itemize}
1596 \begin{center}
1597 {\color{blue}
1598  Consisten with initial precipitation model
1599 }
1600 \end{center}
1601 \end{minipage}
1602
1603 \vspace{0.2cm}
1604
1605 \end{slide}
1606
1607 \begin{slide}
1608
1609  {\large\bf\boldmath
1610   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1611  }
1612
1613  \scriptsize
1614
1615 %\begin{center}
1616 %\begin{minipage}{3.2cm}
1617 %\includegraphics[width=3cm]{sub_110_combo.eps}
1618 %\end{minipage}
1619 %\begin{minipage}{7.8cm}
1620 %\begin{tabular}{l c c c c c c}
1621 %\hline
1622 %C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1623 %                   \hkl<1 0 1> & \hkl<-1 0 1> \\
1624 %\hline
1625 %1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1626 %2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1627 %3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1628 %4 & \RM{4} & B & D & E & E & D \\
1629 %5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1630 %\hline
1631 %\end{tabular}
1632 %\end{minipage}
1633 %\end{center}
1634
1635 %\begin{center}
1636 %\begin{tabular}{l c c c c c c c c c c}
1637 %\hline
1638 %Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1639 %\hline
1640 %$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1641 %$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1642 %$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1643 %\hline
1644 %\end{tabular}
1645 %\end{center}
1646
1647 \begin{minipage}{6.0cm}
1648 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1649 \end{minipage}
1650 \begin{minipage}{7cm}
1651 \scriptsize
1652 \begin{itemize}
1653  \item IBS: C may displace Si\\
1654        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1655  \item Assumption:\\
1656        \hkl<1 1 0>-type $\rightarrow$ favored combination
1657  \renewcommand\labelitemi{$\Rightarrow$}
1658  \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
1659  \item Less favorable than C-Si \hkl<1 0 0> dumbbell
1660  \item Interaction drops quickly to zero\\
1661        $\rightarrow$ low capture radius
1662 \end{itemize}
1663 \begin{center}
1664  {\color{blue}
1665  IBS process far from equilibrium\\
1666  \cs{} \& \si{} instead of thermodynamic ground state
1667  }
1668 \end{center}
1669 \end{minipage}
1670
1671 \begin{minipage}{6.5cm}
1672 \includegraphics[width=6.0cm]{162-097.ps}
1673 \begin{itemize}
1674  \item Low migration barrier
1675 \end{itemize}
1676 \end{minipage}
1677 \begin{minipage}{6.5cm}
1678 \begin{center}
1679 Ab initio MD at \degc{900}\\
1680 \includegraphics[width=3.3cm]{md_vasp_01.eps}
1681 $t=\unit[2230]{fs}$\\
1682 \includegraphics[width=3.3cm]{md_vasp_02.eps}
1683 $t=\unit[2900]{fs}$
1684 \end{center}
1685 {\color{blue}
1686 Contribution of entropy to structural formation
1687 }
1688 \end{minipage}
1689
1690 \end{slide}
1691
1692 \begin{slide}
1693
1694  {\large\bf\boldmath
1695   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1696  }
1697
1698  \footnotesize
1699
1700 \vspace{0.1cm}
1701
1702 \begin{minipage}[t]{3cm}
1703 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1704 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1705 \end{minipage}
1706 \begin{minipage}[t]{7cm}
1707 \vspace{0.2cm}
1708 \begin{center}
1709  Low activation energies\\
1710  High activation energies for reverse processes\\
1711  $\Downarrow$\\
1712  {\color{blue}C$_{\text{sub}}$ very stable}\\
1713 \vspace*{0.1cm}
1714  \hrule
1715 \vspace*{0.1cm}
1716  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1717  $\Downarrow$\\
1718  {\color{blue}Formation of SiC by successive substitution by C}
1719
1720 \end{center}
1721 \end{minipage}
1722 \begin{minipage}[t]{3cm}
1723 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1724 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1725 \end{minipage}
1726
1727
1728 \framebox{
1729 \begin{minipage}{5.9cm}
1730 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1731 \begin{center}
1732 \begin{picture}(0,0)(70,0)
1733 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1734 \end{picture}
1735 \begin{picture}(0,0)(30,0)
1736 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1737 \end{picture}
1738 \begin{picture}(0,0)(-10,0)
1739 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1740 \end{picture}
1741 \begin{picture}(0,0)(-48,0)
1742 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1743 \end{picture}
1744 \begin{picture}(0,0)(12.5,5)
1745 \includegraphics[width=1cm]{100_arrow.eps}
1746 \end{picture}
1747 \begin{picture}(0,0)(97,-10)
1748 \includegraphics[height=0.9cm]{001_arrow.eps}
1749 \end{picture}
1750 \end{center}
1751 \vspace{0.1cm}
1752 \end{minipage}
1753 }
1754 \begin{minipage}{0.3cm}
1755 \hfill
1756 \end{minipage}
1757 \framebox{
1758 \begin{minipage}{5.9cm}
1759 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1760 \begin{center}
1761 \begin{picture}(0,0)(60,0)
1762 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1763 \end{picture}
1764 \begin{picture}(0,0)(25,0)
1765 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1766 \end{picture}
1767 \begin{picture}(0,0)(-20,0)
1768 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1769 \end{picture}
1770 \begin{picture}(0,0)(-55,0)
1771 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1772 \end{picture}
1773 \begin{picture}(0,0)(12.5,5)
1774 \includegraphics[width=1cm]{100_arrow.eps}
1775 \end{picture}
1776 \begin{picture}(0,0)(95,0)
1777 \includegraphics[height=0.9cm]{001_arrow.eps}
1778 \end{picture}
1779 \end{center}
1780 \vspace{0.1cm}
1781 \end{minipage}
1782 }
1783
1784 \end{slide}
1785
1786 \begin{slide}
1787
1788  {\large\bf
1789   Conclusion of defect / migration / combined defect simulations
1790  }
1791
1792  \footnotesize
1793
1794 \vspace*{0.1cm}
1795
1796 Defect structures
1797 \begin{itemize}
1798  \item Accurately described by quantum-mechanical simulations
1799  \item Less accurate description by classical potential simulations
1800  \item Underestimated formation energy of \cs{} by classical approach
1801  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
1802 \end{itemize}
1803
1804 Migration
1805 \begin{itemize}
1806  \item C migration pathway in Si identified
1807  \item Consistent with reorientation and diffusion experiments
1808 \end{itemize} 
1809 \begin{itemize}
1810  \item Different path and ...
1811  \item overestimated barrier by classical potential calculations
1812 \end{itemize} 
1813
1814 Concerning the precipitation mechanism
1815 \begin{itemize}
1816  \item Agglomeration of C-Si dumbbells energetically favorable
1817        (stress compensation)
1818  \item C-Si indeed favored compared to
1819        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1820  \item Possible low interaction capture radius of
1821        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1822  \item Low barrier for
1823        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
1824  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1825        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1826 \end{itemize} 
1827 \begin{center}
1828 {\color{blue}Results suggest increased participation of \cs}
1829 \end{center}
1830
1831 \end{slide}
1832
1833 \begin{slide}
1834
1835  {\large\bf
1836   Silicon carbide precipitation simulations
1837  }
1838
1839  \small
1840
1841 {\scriptsize
1842  \begin{pspicture}(0,0)(12,6.5)
1843   % nodes
1844   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1845    \parbox{7cm}{
1846    \begin{itemize}
1847     \item Create c-Si volume
1848     \item Periodc boundary conditions
1849     \item Set requested $T$ and $p=0\text{ bar}$
1850     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1851    \end{itemize}
1852   }}}}
1853   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1854    \parbox{7cm}{
1855    Insertion of C atoms at constant T
1856    \begin{itemize}
1857     \item total simulation volume {\pnode{in1}}
1858     \item volume of minimal SiC precipitate {\pnode{in2}}
1859     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1860           precipitate
1861    \end{itemize} 
1862   }}}}
1863   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1864    \parbox{7.0cm}{
1865    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1866   }}}}
1867   \ncline[]{->}{init}{insert}
1868   \ncline[]{->}{insert}{cool}
1869   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1870   \rput(7.8,6){\footnotesize $V_1$}
1871   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1872   \rput(9.2,4.85){\tiny $V_2$}
1873   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1874   \rput(9.55,4.45){\footnotesize $V_3$}
1875   \rput(7.9,3.2){\pnode{ins1}}
1876   \rput(9.22,2.8){\pnode{ins2}}
1877   \rput(11.0,2.4){\pnode{ins3}}
1878   \ncline[]{->}{in1}{ins1}
1879   \ncline[]{->}{in2}{ins2}
1880   \ncline[]{->}{in3}{ins3}
1881  \end{pspicture}
1882 }
1883
1884 \begin{itemize}
1885  \item Restricted to classical potential simulations
1886  \item $V_2$ and $V_3$ considered due to low diffusion
1887  \item Amount of C atoms: 6000
1888        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1889  \item Simulation volume: $31\times 31\times 31$ unit cells
1890        (238328 Si atoms)
1891 \end{itemize}
1892
1893 \end{slide}
1894
1895 \begin{slide}
1896
1897  {\large\bf\boldmath
1898   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1899  }
1900
1901  \small
1902
1903 \begin{minipage}{6.5cm}
1904 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1905 \end{minipage} 
1906 \begin{minipage}{6.5cm}
1907 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1908 \end{minipage} 
1909
1910 \begin{minipage}{6.5cm}
1911 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1912 \end{minipage} 
1913 \begin{minipage}{6.5cm}
1914 \scriptsize
1915 \underline{Low C concentration ($V_1$)}\\
1916 \hkl<1 0 0> C-Si dumbbell dominated structure
1917 \begin{itemize}
1918  \item Si-C bumbs around 0.19 nm
1919  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1920        concatenated dumbbells of various orientation
1921  \item Si-Si NN distance stretched to 0.3 nm
1922 \end{itemize}
1923 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1924 \underline{High C concentration ($V_2$, $V_3$)}\\
1925 High amount of strongly bound C-C bonds\\
1926 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1927 Only short range order observable\\
1928 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1929 \end{minipage} 
1930
1931 \end{slide}
1932
1933 \begin{slide}
1934
1935  {\large\bf\boldmath
1936   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1937  }
1938
1939  \small
1940
1941 \begin{minipage}{6.5cm}
1942 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1943 \end{minipage} 
1944 \begin{minipage}{6.5cm}
1945 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1946 \end{minipage} 
1947
1948 \begin{minipage}{6.5cm}
1949 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1950 \end{minipage} 
1951 \begin{minipage}{6.5cm}
1952 \scriptsize
1953 \underline{Low C concentration ($V_1$)}\\
1954 \hkl<1 0 0> C-Si dumbbell dominated structure
1955 \begin{itemize}
1956  \item Si-C bumbs around 0.19 nm
1957  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1958        concatenated dumbbells of various orientation
1959  \item Si-Si NN distance stretched to 0.3 nm
1960 \end{itemize}
1961 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1962 \underline{High C concentration ($V_2$, $V_3$)}\\
1963 High amount of strongly bound C-C bonds\\
1964 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1965 Only short range order observable\\
1966 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1967 \end{minipage} 
1968
1969 \begin{pspicture}(0,0)(0,0)
1970 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
1971 \begin{minipage}{10cm}
1972 \small
1973 {\color{red}\bf 3C-SiC formation fails to appear}
1974 \begin{itemize}
1975 \item Low C concentration simulations
1976  \begin{itemize}
1977   \item Formation of \ci{} indeed occurs
1978   \item Agllomeration not observed
1979  \end{itemize}
1980 \item High C concentration simulations
1981  \begin{itemize}
1982   \item Amorphous SiC-like structure\\
1983         (not expected at prevailing temperatures)
1984   \item Rearrangement and transition into 3C-SiC structure missing
1985  \end{itemize}
1986 \end{itemize}
1987 \end{minipage}
1988  }}}
1989 \end{pspicture}
1990
1991 \end{slide}
1992
1993 \begin{slide}
1994
1995  {\large\bf
1996   Limitations of molecular dynamics and short range potentials
1997  }
1998
1999 \footnotesize
2000
2001 \vspace{0.2cm}
2002
2003 \underline{Time scale problem of MD}\\[0.2cm]
2004 Minimize integration error\\
2005 $\Rightarrow$ discretization considerably smaller than
2006               reciprocal of fastest vibrational mode\\[0.1cm]
2007 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
2008 $\Rightarrow$ suitable choice of time step:
2009               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
2010 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
2011 Several local minima in energy surface separated by large energy barriers\\
2012 $\Rightarrow$ transition event corresponds to a multiple
2013               of vibrational periods\\
2014 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
2015               infrequent transition events\\[0.1cm]
2016 {\color{blue}Accelerated methods:}
2017 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
2018
2019 \vspace{0.3cm}
2020
2021 \underline{Limitations related to the short range potential}\\[0.2cm]
2022 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
2023 and 2$^{\text{nd}}$ next neighbours\\
2024 $\Rightarrow$ overestimated unphysical high forces of next neighbours
2025
2026 \vspace{0.3cm}
2027
2028 \framebox{
2029 \color{red}
2030 Potential enhanced problem of slow phase space propagation
2031 }
2032
2033 \vspace{0.3cm}
2034
2035 \underline{Approach to the (twofold) problem}\\[0.2cm]
2036 Increased temperature simulations without TAD corrections\\
2037 (accelerated methods or higher time scales exclusively not sufficient)
2038
2039 \begin{picture}(0,0)(-260,-30)
2040 \framebox{
2041 \begin{minipage}{4.2cm}
2042 \tiny
2043 \begin{center}
2044 \vspace{0.03cm}
2045 \underline{IBS}
2046 \end{center}
2047 \begin{itemize}
2048 \item 3C-SiC also observed for higher T
2049 \item higher T inside sample
2050 \item structural evolution vs.\\
2051       equilibrium properties
2052 \end{itemize}
2053 \end{minipage}
2054 }
2055 \end{picture}
2056
2057 \begin{picture}(0,0)(-305,-155)
2058 \framebox{
2059 \begin{minipage}{2.5cm}
2060 \tiny
2061 \begin{center}
2062 retain proper\\
2063 thermodynmic sampling
2064 \end{center}
2065 \end{minipage}
2066 }
2067 \end{picture}
2068
2069 \end{slide}
2070
2071 \begin{slide}
2072
2073  {\large\bf
2074   Increased temperature simulations at low C concentration
2075  }
2076
2077 \small
2078
2079 \begin{minipage}{6.5cm}
2080 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2081 \end{minipage}
2082 \begin{minipage}{6.5cm}
2083 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2084 \end{minipage}
2085
2086 \begin{minipage}{6.5cm}
2087 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2088 \end{minipage}
2089 \begin{minipage}{6.5cm}
2090 \scriptsize
2091  \underline{Si-C bonds:}
2092  \begin{itemize}
2093   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2094   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2095  \end{itemize}
2096  \underline{Si-Si bonds:}
2097  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2098  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2099  \underline{C-C bonds:}
2100  \begin{itemize}
2101   \item C-C next neighbour pairs reduced (mandatory)
2102   \item Peak at 0.3 nm slightly shifted
2103         \begin{itemize}
2104          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2105                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2106                combinations (|)\\
2107                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2108                ($\downarrow$)
2109          \item Range [|-$\downarrow$]:
2110                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2111                with nearby Si$_{\text{I}}$}
2112         \end{itemize}
2113  \end{itemize}
2114 \end{minipage}
2115
2116 \begin{picture}(0,0)(-330,-74)
2117 \color{blue}
2118 \framebox{
2119 \begin{minipage}{1.6cm}
2120 \tiny
2121 \begin{center}
2122 stretched SiC\\[-0.1cm]
2123 in c-Si
2124 \end{center}
2125 \end{minipage}
2126 }
2127 \end{picture}
2128
2129 \end{slide}
2130
2131 \begin{slide}
2132
2133  {\large\bf
2134   Increased temperature simulations at low C concentration
2135  }
2136
2137 \small
2138
2139 \begin{minipage}{6.5cm}
2140 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2141 \end{minipage}
2142 \begin{minipage}{6.5cm}
2143 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2144 \end{minipage}
2145
2146 \begin{minipage}{6.5cm}
2147 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2148 \end{minipage}
2149 \begin{minipage}{6.5cm}
2150 \scriptsize
2151  \underline{Si-C bonds:}
2152  \begin{itemize}
2153   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2154   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2155  \end{itemize}
2156  \underline{Si-Si bonds:}
2157  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2158  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2159  \underline{C-C bonds:}
2160  \begin{itemize}
2161   \item C-C next neighbour pairs reduced (mandatory)
2162   \item Peak at 0.3 nm slightly shifted
2163         \begin{itemize}
2164          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2165                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2166                combinations (|)\\
2167                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2168                ($\downarrow$)
2169          \item Range [|-$\downarrow$]:
2170                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2171                with nearby Si$_{\text{I}}$}
2172         \end{itemize}
2173  \end{itemize}
2174 \end{minipage}
2175
2176 %\begin{picture}(0,0)(-330,-74)
2177 %\color{blue}
2178 %\framebox{
2179 %\begin{minipage}{1.6cm}
2180 %\tiny
2181 %\begin{center}
2182 %stretched SiC\\[-0.1cm]
2183 %in c-Si
2184 %\end{center}
2185 %\end{minipage}
2186 %}
2187 %\end{picture}
2188
2189 \begin{pspicture}(0,0)(0,0)
2190 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2191 \begin{minipage}{10cm}
2192 \small
2193 {\color{blue}\bf Stretched SiC in c-Si}
2194 \begin{itemize}
2195 \item Consistent to precipitation model involving \cs{}
2196 \item Explains annealing behavior of high/low T C implants
2197       \begin{itemize}
2198        \item Low T: highly mobiel \ci{}
2199        \item High T: stable configurations of \cs{}
2200       \end{itemize}
2201 \end{itemize}
2202 $\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2203 $\Rightarrow$ Precipitation mechanism involving \cs{}
2204 \end{minipage}
2205  }}}
2206 \end{pspicture}
2207
2208 \end{slide}
2209
2210 \begin{slide}
2211
2212  {\large\bf
2213   Increased temperature simulations at high C concentration
2214  }
2215
2216 \footnotesize
2217
2218 \begin{minipage}{6.5cm}
2219 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2220 \end{minipage}
2221 \begin{minipage}{6.5cm}
2222 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2223 \end{minipage}
2224
2225 \vspace{0.1cm}
2226
2227 \scriptsize
2228
2229 \framebox{
2230 \begin{minipage}[t]{6.0cm}
2231 0.186 nm: Si-C pairs $\uparrow$\\
2232 (as expected in 3C-SiC)\\[0.2cm]
2233 0.282 nm: Si-C-C\\[0.2cm]
2234 $\approx$0.35 nm: C-Si-Si
2235 \end{minipage}
2236 }
2237 \begin{minipage}{0.2cm}
2238 \hfill
2239 \end{minipage}
2240 \framebox{
2241 \begin{minipage}[t]{6.0cm}
2242 0.15 nm: C-C pairs $\uparrow$\\
2243 (as expected in graphite/diamond)\\[0.2cm]
2244 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2245 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2246 \end{minipage}
2247 }
2248
2249 \begin{itemize}
2250 \item Decreasing cut-off artifact
2251 \item {\color{red}Amorphous} SiC-like phase remains
2252 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2253 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2254 \end{itemize}
2255
2256 \vspace{-0.1cm}
2257
2258 \begin{center}
2259 {\color{blue}
2260 \framebox{
2261 {\color{black}
2262 High C \& small $V$ \& short $t$
2263 $\Rightarrow$
2264 }
2265 Slow restructuring due to strong C-C bonds
2266 {\color{black}
2267 $\Leftarrow$
2268 High C \& low T implants
2269 }
2270 }
2271 }
2272 \end{center}
2273
2274 \end{slide}
2275
2276 \begin{slide}
2277
2278  {\large\bf
2279   Summary and Conclusions
2280  }
2281
2282  \scriptsize
2283
2284 %\vspace{0.1cm}
2285
2286 \framebox{
2287 \begin{minipage}[t]{12.9cm}
2288  \underline{Pecipitation simulations}
2289  \begin{itemize}
2290   \item High C concentration $\rightarrow$ amorphous SiC like phase
2291   \item Problem of potential enhanced slow phase space propagation
2292   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2293   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2294   \item High T necessary to simulate IBS conditions (far from equilibrium)
2295   \item Precipitation by successive agglomeration of \cs (epitaxy)
2296   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2297         (stretched SiC, interface)
2298  \end{itemize}
2299 \end{minipage}
2300 }
2301
2302 %\vspace{0.1cm}
2303
2304 \framebox{
2305 \begin{minipage}{12.9cm}
2306  \underline{Defects}
2307  \begin{itemize}
2308    \item DFT / EA
2309         \begin{itemize}
2310          \item Point defects excellently / fairly well described
2311                by DFT / EA
2312          \item C$_{\text{sub}}$ drastically underestimated by EA
2313          \item EA predicts correct ground state:
2314                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2315          \item Identified migration path explaining
2316                diffusion and reorientation experiments by DFT
2317          \item EA fails to describe \ci{} migration:
2318                Wrong path \& overestimated barrier
2319         \end{itemize}
2320    \item Combinations of defects
2321          \begin{itemize}
2322           \item Agglomeration of point defects energetically favorable
2323                 by compensation of stress
2324           \item Formation of C-C unlikely
2325           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2326           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2327                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2328         \end{itemize}
2329  \end{itemize}
2330 \end{minipage}
2331 }
2332
2333 \begin{center}
2334 {\color{blue}
2335 \framebox{Precipitation by successive agglomeration of \cs{}}
2336 }
2337 \end{center}
2338
2339 \end{slide}
2340
2341 \begin{slide}
2342
2343  {\large\bf
2344   Acknowledgements
2345  }
2346
2347  \vspace{0.1cm}
2348
2349  \small
2350
2351  Thanks to \ldots
2352
2353  \underline{Augsburg}
2354  \begin{itemize}
2355   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2356   \item Ralf Utermann (EDV)
2357  \end{itemize}
2358  
2359  \underline{Helsinki}
2360  \begin{itemize}
2361   \item Prof. K. Nordlund (MD)
2362  \end{itemize}
2363  
2364  \underline{Munich}
2365  \begin{itemize}
2366   \item Bayerische Forschungsstiftung (financial support)
2367  \end{itemize}
2368  
2369  \underline{Paderborn}
2370  \begin{itemize}
2371   \item Prof. J. Lindner (SiC)
2372   \item Prof. G. Schmidt (DFT + financial support)
2373   \item Dr. E. Rauls (DFT + SiC)
2374   \item Dr. S. Sanna (VASP)
2375  \end{itemize}
2376
2377 \vspace{0.2cm}
2378
2379 \begin{center}
2380 \framebox{
2381 \bf Thank you for your attention!
2382 }
2383 \end{center}
2384
2385 \end{slide}
2386
2387 \end{document}
2388
2389 \fi