formulas ...
[lectures/latex.git] / posic / talks / mpi_app.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 \newcommand{\headdiplom}{
60 \begin{pspicture}(0,0)(0,0)
61 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
62 \begin{minipage}{14cm}
63 \hfill
64 \vspace{0.7cm}
65 \end{minipage}
66 }}
67 \end{pspicture}
68 }
69
70 \newcommand{\headphd}{
71 \begin{pspicture}(0,0)(0,0)
72 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
73 \begin{minipage}{14cm}
74 \hfill
75 \vspace{0.7cm}
76 \end{minipage}
77 }}
78 \end{pspicture}
79 }
80
81 \begin{document}
82
83 \extraslideheight{10in}
84 \slideframe{plain}
85
86 \pagestyle{empty}
87
88 % specify width and height
89 \slidewidth 26.3cm 
90 \slideheight 19.9cm 
91
92 % margin
93 \def\slidetopmargin{-0.15cm}
94
95 \newcommand{\ham}{\mathcal{H}}
96 \newcommand{\pot}{\mathcal{V}}
97 \newcommand{\foo}{\mathcal{U}}
98 \newcommand{\vir}{\mathcal{W}}
99
100 % itemize level ii
101 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
102
103 % nice phi
104 \renewcommand{\phi}{\varphi}
105
106 % roman letters
107 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
108
109 % colors
110 \newrgbcolor{si-yellow}{.6 .6 0}
111 \newrgbcolor{hb}{0.75 0.77 0.89}
112 \newrgbcolor{lbb}{0.75 0.8 0.88}
113 \newrgbcolor{hlbb}{0.825 0.88 0.968}
114 \newrgbcolor{lachs}{1.0 .93 .81}
115
116 % shortcuts
117 \newcommand{\si}{Si$_{\text{i}}${}}
118 \newcommand{\ci}{C$_{\text{i}}${}}
119 \newcommand{\cs}{C$_{\text{sub}}${}}
120 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
121 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
122 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
123 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
124
125 % no vertical centering
126 %\centerslidesfalse
127
128 % layout check
129 %\layout
130 \begin{slide}
131 \center
132 {\Huge
133 E\\
134 F\\
135 G\\
136 A B C D E F G H G F E D C B A
137 G\\
138 F\\
139 E\\
140 }
141 \end{slide}
142
143 % topic
144
145 \begin{slide}
146 \begin{center}
147
148  \vspace{16pt}
149
150  {\LARGE\bf
151   Atomistic simulation studies\\[0.2cm]
152   in the C/Si system
153  }
154
155  \vspace{48pt}
156
157  \textsc{Frank Zirkelbach}
158
159  \vspace{48pt}
160
161  Application talk at the Max Planck Institute for Solid State Research
162
163  \vspace{08pt}
164
165  Stuttgart, November 2011
166
167 \end{center}
168 \end{slide}
169
170 % no vertical centering
171 \centerslidesfalse
172
173 \ifnum1=0
174
175 % intro
176
177 \begin{slide}
178
179 %{\large\bf
180 % Phase diagram of the C/Si system\\
181 %}
182
183 \vspace*{0.2cm}
184
185 \begin{minipage}{6.5cm}
186 \includegraphics[width=6.5cm]{si-c_phase.eps}
187 \begin{center}
188 {\tiny
189 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
190 }
191 \end{center}
192 \begin{pspicture}(0,0)(0,0)
193 \psellipse[linecolor=blue,linewidth=0.1cm](3.55,4.0)(0.5,2.9)
194 \end{pspicture}
195 \end{minipage}
196 \begin{minipage}{6cm}
197 {\bf Phase diagram of the C/Si system}\\[0.2cm]
198 {\color{blue}Stoichiometric composition}
199 \begin{itemize}
200 \item only chemical stable compound
201 \item wide band gap semiconductor\\
202       \underline{silicon carbide}, SiC
203 \end{itemize}
204 \end{minipage}
205
206 \end{slide}
207
208 % motivation / properties / applications of silicon carbide
209
210 \begin{slide}
211
212 \vspace*{1.8cm}
213
214 \small
215
216 \begin{pspicture}(0,0)(13.5,5)
217
218  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
219
220  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
221  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
222
223  \rput[lt](0,4.6){\color{gray}PROPERTIES}
224
225  \rput[lt](0.3,4){wide band gap}
226  \rput[lt](0.3,3.5){high electric breakdown field}
227  \rput[lt](0.3,3){good electron mobility}
228  \rput[lt](0.3,2.5){high electron saturation drift velocity}
229  \rput[lt](0.3,2){high thermal conductivity}
230
231  \rput[lt](0.3,1.5){hard and mechanically stable}
232  \rput[lt](0.3,1){chemically inert}
233
234  \rput[lt](0.3,0.5){radiation hardness}
235
236  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
237
238  \rput[rt](12.5,3.85){high-temperature, high power}
239  \rput[rt](12.5,3.5){and high-frequency}
240  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
241
242  \rput[rt](12.5,2.35){material suitable for extreme conditions}
243  \rput[rt](12.5,2){microelectromechanical systems}
244  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
245
246  \rput[rt](12.5,0.85){first wall reactor material, detectors}
247  \rput[rt](12.5,0.5){and electronic devices for space}
248
249 \end{pspicture}
250
251 \begin{picture}(0,0)(5,-162)
252 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
253 \end{picture}
254 \begin{picture}(0,0)(-120,-162)
255 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
256 \end{picture}
257 \begin{picture}(0,0)(-270,-162)
258 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
259 \end{picture}
260 %%%%
261 \begin{picture}(0,0)(10,65)
262 \includegraphics[height=2.8cm]{sic_switch.eps}
263 \end{picture}
264 %\begin{picture}(0,0)(-243,65)
265 \begin{picture}(0,0)(-110,65)
266 \includegraphics[height=2.8cm]{ise_99.eps}
267 \end{picture}
268 %\begin{picture}(0,0)(-135,65)
269 \begin{picture}(0,0)(-100,65)
270 \includegraphics[height=1.2cm]{infineon_schottky.eps}
271 \end{picture}
272 \begin{picture}(0,0)(-233,65)
273 \includegraphics[height=2.8cm]{solar_car.eps}
274 \end{picture}
275
276 \end{slide}
277
278 % motivation
279
280 \begin{slide}
281
282  {\large\bf
283   Polytypes of SiC\\[0.4cm]
284  }
285
286 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
287 \begin{minipage}{1.9cm}
288 {\tiny cubic (twist)}
289 \end{minipage}
290 \begin{minipage}{2.9cm}
291 {\tiny hexagonal (no twist)}
292 \end{minipage}
293
294 \begin{picture}(0,0)(-150,0)
295  \includegraphics[width=7cm]{polytypes.eps}
296 \end{picture}
297
298 \vspace{0.6cm}
299
300 \footnotesize
301
302 \begin{tabular}{l c c c c c c}
303 \hline
304  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
305 \hline
306 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
307 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
308 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
309 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
310 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
311 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
312 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
313 \hline
314 \end{tabular}
315
316 \begin{pspicture}(0,0)(0,0)
317 \psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
318 \end{pspicture}
319 \begin{pspicture}(0,0)(0,0)
320 \psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
321 \end{pspicture}
322 \begin{pspicture}(0,0)(0,0)
323 \psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
324 \end{pspicture}
325
326 \end{slide}
327
328 % fabrication
329
330 \begin{slide}
331
332  {\large\bf
333   Fabrication of silicon carbide
334  }
335
336  \small
337  
338  \vspace{2pt}
339
340 \begin{center}
341  {\color{gray}
342  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
343  }
344 \end{center}
345
346 \vspace{2pt}
347
348 SiC thin films by MBE \& CVD
349 \begin{itemize}
350  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
351  \item \underline{Commercially available} semiconductor power devices based on
352        \underline{\foreignlanguage{greek}{a}-SiC}
353  \item Production of favored \underline{3C-SiC} material
354        \underline{less advanced}
355  \item Quality and size not yet sufficient
356 \end{itemize}
357 \begin{picture}(0,0)(-310,-20)
358   \includegraphics[width=2.0cm]{cree.eps}
359 \end{picture}
360
361 \vspace{-0.2cm}
362
363 Alternative approach:
364 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
365
366 \vspace{0.2cm}
367
368 \scriptsize
369
370 \framebox{
371 \begin{minipage}{3.15cm}
372  \begin{center}
373 \includegraphics[width=3cm]{imp.eps}\\
374  {\tiny
375   Carbon implantation
376  }
377  \end{center}
378 \end{minipage}
379 \begin{minipage}{3.15cm}
380  \begin{center}
381 \includegraphics[width=3cm]{annealing.eps}\\
382  {\tiny
383   \unit[12]{h} annealing at \degc{1200}
384  }
385  \end{center}
386 \end{minipage}
387 }
388 \begin{minipage}{5.5cm}
389  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
390  \begin{center}
391  {\tiny
392   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
393  }
394  \end{center}
395 \end{minipage}
396
397 \end{slide}
398
399 % contents
400
401 \begin{slide}
402
403 {\large\bf
404  Systematic investigation of C implantations into Si
405 }
406
407 \vspace{1.7cm}
408 \begin{center}
409 \hspace{-1.0cm}
410 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
411 \end{center}
412
413 \end{slide}
414
415 % outline
416
417 \begin{slide}
418
419 {\large\bf
420  Outline
421 }
422
423 \vspace{1.7cm}
424 \begin{center}
425 \hspace{-1.0cm}
426 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
427 \end{center}
428
429 \begin{pspicture}(0,0)(0,0)
430 \rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
431 \begin{minipage}{11cm}
432 {\color{black}Diploma thesis}\\
433  \underline{Monte Carlo} simulation modeling the selforganization process\\
434  leading to periodic arrays of nanometric amorphous SiC precipitates
435 \end{minipage}
436 }}}
437 \end{pspicture}
438 \begin{pspicture}(0,0)(0,0)
439 \rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
440 \begin{minipage}{11cm}
441 {\color{black}Doctoral studies}\\
442  Classical potential \underline{molecular dynamics} simulations \ldots\\
443  \underline{Density functional theory} calculations \ldots\\[0.2cm]
444  \ldots on defect formation and SiC precipitation in Si
445 \end{minipage}
446 }}}
447 \end{pspicture}
448 \begin{pspicture}(0,0)(0,0)
449 \psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0)
450 \end{pspicture}
451 \begin{pspicture}(0,0)(0,0)
452 \psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6)
453 \end{pspicture}
454
455 \end{slide}
456
457 \begin{slide}
458
459 \headdiplom
460 {\large\bf
461  Selforganization of nanometric amorphous SiC lamellae
462 }
463
464 \small
465
466 \vspace{0.2cm}
467
468 \begin{itemize}
469  \item Regularly spaced, nanometric spherical\\
470        and lamellar amorphous inclusions\\
471        at the upper a/c interface
472  \item Carbon accumulation\\
473        in amorphous volumes
474 \end{itemize}
475
476 \vspace{0.4cm}
477
478 \begin{minipage}{12cm}
479 \includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
480 {\scriptsize
481 XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si,
482 {\color{red}\underline{\degc{150}}},
483 Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
484 }
485 \end{minipage}
486
487 \begin{picture}(0,0)(-182,-215)
488 \begin{minipage}{6.5cm}
489 \begin{center}
490 \includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm]
491 {\scriptsize
492 XTEM bright-field and respective EFTEM C map
493 }
494 \end{center}
495 \end{minipage}
496 \end{picture}
497
498 \end{slide}
499
500 \begin{slide}
501
502 \headdiplom
503 {\large\bf
504  Model displaying the formation of ordered lamellae
505 }
506
507 \vspace{0.1cm}
508
509 \begin{center}
510  \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps}
511 \end{center}
512
513 \footnotesize
514
515 \begin{itemize}
516 \item Supersaturation of C in c-Si\\
517       $\rightarrow$ {\bf Carbon induced} nucleation of spherical
518       SiC$_x$-precipitates
519 \item High interfacial energy between 3C-SiC and c-Si\\
520       $\rightarrow$ {\bf Amorphous} precipitates
521 \item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\
522       $\rightarrow$ {\bf Lateral strain} (black arrows)
523 \item Implantation range near surface\\
524       $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
525 \item Reduction of the carbon supersaturation in c-Si\\
526       $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
527       (white arrows)
528 \item Remaining lateral strain\\
529       $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
530 \item Absence of crystalline neighbours (structural information)\\
531       $\rightarrow$ {\bf Stabilization} of amorphous inclusions 
532       {\bf against recrystallization}
533 \end{itemize}
534
535 \end{slide}
536
537 \begin{slide}
538
539 \headdiplom
540 {\large\bf
541  Implementation of the Monte Carlo code
542 }
543
544 \small
545
546 \begin{enumerate}
547  \item \underline{Amorphization / Recrystallization}\\
548        Ion collision in discretized target determined by random numbers
549        distributed according to nuclear energy loss.
550        Amorphization/recrystallization probability:
551 \[
552 p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
553 \]
554 \begin{itemize}
555  \item {\color{green} $p_b$} normal `ballistic' amorphization
556  \item {\color{blue} $p_c$} carbon induced amorphization
557  \item {\color{red} $p_s$} stress enhanced amorphization
558 \end{itemize}
559 \[
560 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
561 \]
562 \[
563 \delta (\vec r) = \left\{
564 \begin{array}{ll}
565         1 & \textrm{if volume at position $\vec r$ is amorphous} \\
566         0 & \textrm{otherwise} \\
567 \end{array}
568 \right.
569 \]
570  \item \underline{Carbon incorporation}\\
571        Incorporation volume determined according to implantation profile
572  \item \underline{Diffusion / Sputtering}
573        \begin{itemize}
574         \item Transfer fraction of C atoms
575               of crystalline into neighbored amorphous volumes
576         \item Remove surface layer
577        \end{itemize}
578 \end{enumerate}
579
580 \end{slide}
581
582 \begin{slide}
583
584 \begin{minipage}{3.7cm}
585 \begin{pspicture}(0,0)(0,0)
586 \rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
587 \begin{minipage}{3.7cm}
588 \hfill
589 \vspace{0.7cm}
590 \end{minipage}
591 }}
592 \end{pspicture}
593 {\large\bf
594  Results
595 }
596
597 \footnotesize
598
599 \vspace{1.2cm}
600
601 Evolution of the \ldots
602 \begin{itemize}
603  \item continuous\\
604        amorphous layer
605  \item a/c interface
606  \item lamellar precipitates
607 \end{itemize}
608 \ldots reproduced!\\[1.4cm]
609
610 {\color{blue}
611 \begin{center}
612 Experiment \& simulation\\
613 in good agreement\\[1.0cm]
614
615 Simulation is able to model the whole depth region\\[1.2cm]
616 \end{center}
617 }
618
619 \end{minipage}
620 \begin{minipage}{0.5cm}
621 \vfill
622 \end{minipage}
623 \begin{minipage}{8.0cm}
624  \vspace{-0.3cm}
625  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
626  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
627 \end{minipage}
628
629 \end{slide}
630
631 \begin{slide}
632
633 \headdiplom
634 {\large\bf
635  Structural \& compositional details
636 }
637
638 \begin{minipage}[t]{7.5cm}
639 \includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\
640 \end{minipage}
641 \begin{minipage}[t]{5.0cm}
642 \includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps}
643 \end{minipage}
644
645 \footnotesize
646
647 \vspace{-0.1cm}
648
649 \begin{itemize}
650  \item Fluctuation of C concentration in lamellae region
651  \item \unit[8--10]{at.\%} C saturation limit
652        within the respective conditions
653  \item Complementarily arranged and alternating sequence of layers\\
654        with a high and low amount of amorphous regions
655  \item C accumulation in the amorphous phase / Origin of stress
656 \end{itemize}
657
658 \begin{picture}(0,0)(-260,-50)
659 \framebox{
660 \begin{minipage}{3cm}
661 \begin{center}
662 {\color{blue}
663 Precipitation process\\
664 gets traceable\\
665 by simulation!
666 }
667 \end{center}
668 \end{minipage}
669 }
670 \end{picture}
671
672 \end{slide}
673
674 \begin{slide}
675
676 \headphd
677 {\large\bf
678  Formation of epitaxial single crystalline 3C-SiC
679 }
680
681 \footnotesize
682
683 \vspace{0.2cm}
684
685 \begin{center}
686 \begin{itemize}
687  \item \underline{Implantation step 1}\\[0.1cm]
688         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
689         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
690         {\color{blue}precipitates}
691  \item \underline{Implantation step 2}\\[0.1cm]
692         Little remaining dose | \unit[180]{keV} | \degc{250}\\
693         $\Rightarrow$
694         Destruction/Amorphization of precipitates at layer interface
695  \item \underline{Annealing}\\[0.1cm]
696        \unit[10]{h} at \degc{1250}\\
697        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
698 \end{itemize}
699 \end{center}
700
701 \begin{minipage}{7cm}
702 \includegraphics[width=7cm]{ibs_3c-sic.eps}
703 \end{minipage}
704 \begin{minipage}{5cm}
705 \begin{pspicture}(0,0)(0,0)
706 \rnode{box}{
707 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
708 \begin{minipage}{5.3cm}
709  \begin{center}
710  {\color{blue}
711   3C-SiC precipitation\\
712   not yet fully understood
713  }
714  \end{center}
715  \vspace*{0.1cm}
716  \renewcommand\labelitemi{$\Rightarrow$}
717  Details of the SiC precipitation
718  \begin{itemize}
719   \item significant technological progress\\
720         in SiC thin film formation
721   \item perspectives for processes relying\\
722         upon prevention of SiC precipitation
723  \end{itemize}
724 \end{minipage}
725 }}
726 \rput(-6.8,5.4){\pnode{h0}}
727 \rput(-3.0,5.4){\pnode{h1}}
728 \ncline[linecolor=blue]{-}{h0}{h1}
729 \ncline[linecolor=blue]{->}{h1}{box}
730 \end{pspicture}
731 \end{minipage}
732
733 \end{slide}
734
735 \begin{slide}
736
737 \headphd
738 {\large\bf
739   Supposed precipitation mechanism of SiC in Si
740 }
741
742  \scriptsize
743
744  \vspace{0.1cm}
745
746  \framebox{
747  \begin{minipage}{3.6cm}
748  \begin{center}
749  Si \& SiC lattice structure\\[0.1cm]
750  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
751  \end{center}
752 {\tiny
753  \begin{minipage}{1.7cm}
754 \underline{Silicon}\\
755 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
756 $a=\unit[5.429]{\\A}$\\
757 $\rho^*_{\text{Si}}=\unit[100]{\%}$
758  \end{minipage}
759  \begin{minipage}{1.7cm}
760 \underline{Silicon carbide}\\
761 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
762 $a=\unit[4.359]{\\A}$\\
763 $\rho^*_{\text{Si}}=\unit[97]{\%}$
764  \end{minipage}
765 }
766  \end{minipage}
767  }
768  \hspace{0.1cm}
769  \begin{minipage}{4.1cm}
770  \begin{center}
771  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
772  \end{center}
773  \end{minipage}
774  \hspace{0.1cm}
775  \begin{minipage}{4.0cm}
776  \begin{center}
777  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
778  \end{center}
779  \end{minipage}
780
781  \vspace{0.1cm}
782
783  \begin{minipage}{4.0cm}
784  \begin{center}
785  C-Si dimers (dumbbells)\\[-0.1cm]
786  on Si interstitial sites
787  \end{center}
788  \end{minipage}
789  \hspace{0.1cm}
790  \begin{minipage}{4.1cm}
791  \begin{center}
792  Agglomeration of C-Si dumbbells\\[-0.1cm]
793  $\Rightarrow$ dark contrasts
794  \end{center}
795  \end{minipage}
796  \hspace{0.1cm}
797  \begin{minipage}{4.0cm}
798  \begin{center}
799  Precipitation of 3C-SiC in Si\\[-0.1cm]
800  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
801  \& release of Si self-interstitials
802  \end{center}
803  \end{minipage}
804
805  \vspace{0.1cm}
806
807  \begin{minipage}{4.0cm}
808  \begin{center}
809  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
810  \end{center}
811  \end{minipage}
812  \hspace{0.1cm}
813  \begin{minipage}{4.1cm}
814  \begin{center}
815  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
816  \end{center}
817  \end{minipage}
818  \hspace{0.1cm}
819  \begin{minipage}{4.0cm}
820  \begin{center}
821  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
822  \end{center}
823  \end{minipage}
824
825 \begin{pspicture}(0,0)(0,0)
826 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
827 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
828 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
829 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
830 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
831  $4a_{\text{Si}}=5a_{\text{SiC}}$
832  }}}
833 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
834 \hkl(h k l) planes match
835  }}}
836 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
837 r = \unit[2--4]{nm}
838  }}}
839 \end{pspicture}
840
841 \end{slide}
842
843 \begin{slide}
844
845 \headphd
846 {\large\bf
847  Supposed precipitation mechanism of SiC in Si
848 }
849
850  \scriptsize
851
852  \vspace{0.1cm}
853
854  \framebox{
855  \begin{minipage}{3.6cm}
856  \begin{center}
857  Si \& SiC lattice structure\\[0.1cm]
858  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
859  \end{center}
860 {\tiny
861  \begin{minipage}{1.7cm}
862 \underline{Silicon}\\
863 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
864 $a=\unit[5.429]{\\A}$\\
865 $\rho^*_{\text{Si}}=\unit[100]{\%}$
866  \end{minipage}
867  \begin{minipage}{1.7cm}
868 \underline{Silicon carbide}\\
869 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
870 $a=\unit[4.359]{\\A}$\\
871 $\rho^*_{\text{Si}}=\unit[97]{\%}$
872  \end{minipage}
873 }
874  \end{minipage}
875  }
876  \hspace{0.1cm}
877  \begin{minipage}{4.1cm}
878  \begin{center}
879  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
880  \end{center}
881  \end{minipage}
882  \hspace{0.1cm}
883  \begin{minipage}{4.0cm}
884  \begin{center}
885  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
886  \end{center}
887  \end{minipage}
888
889  \vspace{0.1cm}
890
891  \begin{minipage}{4.0cm}
892  \begin{center}
893  C-Si dimers (dumbbells)\\[-0.1cm]
894  on Si interstitial sites
895  \end{center}
896  \end{minipage}
897  \hspace{0.1cm}
898  \begin{minipage}{4.1cm}
899  \begin{center}
900  Agglomeration of C-Si dumbbells\\[-0.1cm]
901  $\Rightarrow$ dark contrasts
902  \end{center}
903  \end{minipage}
904  \hspace{0.1cm}
905  \begin{minipage}{4.0cm}
906  \begin{center}
907  Precipitation of 3C-SiC in Si\\[-0.1cm]
908  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
909  \& release of Si self-interstitials
910  \end{center}
911  \end{minipage}
912
913  \vspace{0.1cm}
914
915  \begin{minipage}{4.0cm}
916  \begin{center}
917  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
918  \end{center}
919  \end{minipage}
920  \hspace{0.1cm}
921  \begin{minipage}{4.1cm}
922  \begin{center}
923  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
924  \end{center}
925  \end{minipage}
926  \hspace{0.1cm}
927  \begin{minipage}{4.0cm}
928  \begin{center}
929  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
930  \end{center}
931  \end{minipage}
932
933 \begin{pspicture}(0,0)(0,0)
934 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
935 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
936 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
937 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
938 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
939  $4a_{\text{Si}}=5a_{\text{SiC}}$
940  }}}
941 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
942 \hkl(h k l) planes match
943  }}}
944 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
945 r = \unit[2--4]{nm}
946  }}}
947 % controversial view!
948 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
949 \begin{minipage}{14cm}
950 \hfill
951 \vspace{12cm}
952 \end{minipage}
953 }}
954 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
955 \begin{minipage}{10cm}
956 \small
957 \vspace*{0.2cm}
958 \begin{center}
959 {\color{gray}\bf Controversial findings}
960 \end{center}
961 \begin{itemize}
962 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
963  \begin{itemize}
964   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
965   \item \si{} reacting with further C in cleared volume
966  \end{itemize}
967 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
968  \begin{itemize}
969   \item Room temperature implantation $\rightarrow$ high C diffusion
970   \item Elevated temperature implantation $\rightarrow$ no C redistribution
971  \end{itemize}
972  $\Rightarrow$ mobile {\color{red}\ci} opposed to
973  stable {\color{blue}\cs{}} configurations
974 \item Strained silicon \& Si/SiC heterostructures
975       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
976  \begin{itemize}
977   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
978   \item Incoherent SiC (strain relaxation)
979  \end{itemize}
980 \end{itemize}
981 \vspace{0.1cm}
982 \begin{center}
983 {\Huge${\lightning}$} \hspace{0.3cm}
984 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
985 {\Huge${\lightning}$}
986 \end{center}
987 \vspace{0.2cm}
988 \end{minipage}
989  }}}
990 \end{pspicture}
991
992 \end{slide}
993
994 % continue here
995 \fi
996
997 \begin{slide}
998
999 \headphd
1000 {\large\bf
1001  Utilized computational methods
1002 }
1003
1004 \vspace{0.2cm}
1005
1006 \small
1007
1008 {\bf Molecular dynamics (MD)}\\
1009 \scriptsize
1010 \begin{tabular}{p{4.5cm} p{7.5cm}}
1011 Basics & Details\\
1012 \hline
1013 System of $N$ particles &
1014 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
1015 \hline
1016 Phase space propagation &
1017 Velocity Verlet | timestep: \unit[1]{fs} \\
1018 \hline
1019 Analytical interaction potential &
1020 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
1021 (Erhart/Albe)
1022 $\displaystyle
1023 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
1024     \pot_{ij} = {\color{red}f_C(r_{ij})}
1025     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
1026 $\\
1027 \hline
1028 Observables: time/ensemble averages &
1029 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
1030 \hline
1031 \end{tabular}
1032
1033 \small
1034
1035 \vspace{0.1cm}
1036
1037 {\bf Density functional theory (DFT)}
1038
1039 \scriptsize
1040
1041 \begin{minipage}[t]{6cm}
1042 \underline{Basics}
1043 \begin{itemize}
1044  \item Born-Oppenheimer approximation:\\
1045        Decouple electronic \& ionic motion
1046  \item Hohenberg-Kohn theorem:\\
1047        $n_0(r) \stackrel{\text{uniquely}}{\rightarrow}$
1048        $V_0$ / $H$ / $\Phi_i$ / \underline{$E_0$}
1049 \end{itemize}
1050 \underline{Details}
1051 \begin{itemize}
1052 \item Code: \textsc{vasp}
1053 \item Plane wave basis set $\{\phi_j\}$\\[0.1cm]
1054 $\displaystyle
1055 \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r)
1056 $\\
1057 $\displaystyle
1058 E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
1059 $
1060 \item Ultrasoft pseudopotential
1061 \item Brillouin zone sampling: $\Gamma$-point
1062 \end{itemize}
1063 \end{minipage}
1064 \begin{minipage}[t]{6cm}
1065
1066 \[
1067 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
1068 \]
1069 \[
1070 n(r)=\sum_i^N|\Phi_i(r)|^2
1071 \]
1072 \[
1073 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
1074                  +V_{\text{XC}}[n(r)]
1075 \]
1076
1077 \end{minipage}
1078
1079 \end{slide}
1080
1081 \end{document}
1082 \ifnum1=0
1083
1084 \begin{slide}
1085
1086  \small
1087  {\large\bf
1088   Density functional theory (DFT) calculations
1089  }
1090
1091  Basic ingredients necessary for DFT
1092
1093  \begin{itemize}
1094   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
1095         \begin{itemize}
1096          \item ... uniquely determines the ground state potential
1097                / wavefunctions
1098          \item ... minimizes the systems total energy
1099         \end{itemize}
1100   \item \underline{Born-Oppenheimer}
1101         - $N$ moving electrons in an external potential of static nuclei
1102 \[
1103 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
1104               +\sum_i^N V_{\text{ext}}(r_i)
1105               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
1106 \]
1107   \item \underline{Effective potential}
1108         - averaged electrostatic potential \& exchange and correlation
1109 \[
1110 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
1111                  +V_{\text{XC}}[n(r)]
1112 \]
1113   \item \underline{Kohn-Sham system}
1114         - Schr\"odinger equation of N non-interacting particles
1115 \[
1116 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
1117 =\epsilon_i\Phi_i(r)
1118 \quad
1119 \Rightarrow
1120 \quad
1121 n(r)=\sum_i^N|\Phi_i(r)|^2
1122 \]
1123   \item \underline{Self-consistent solution}\\
1124 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
1125 which in turn depends on $n(r)$
1126   \item \underline{Variational principle}
1127         - minimize total energy with respect to $n(r)$
1128  \end{itemize}
1129
1130 \end{slide}
1131
1132 \begin{slide}
1133
1134  {\large\bf
1135   Density functional theory (DFT) calculations
1136  }
1137
1138  \small
1139
1140  \vspace*{0.2cm}
1141
1142  Details of applied DFT calculations in this work
1143
1144  \begin{itemize}
1145   \item \underline{Exchange correlation functional}
1146         - approximations for the inhomogeneous electron gas
1147         \begin{itemize}
1148          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
1149          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
1150         \end{itemize}
1151   \item \underline{Plane wave basis set}
1152         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
1153   \item \underline{Brillouin zone sampling} -
1154         {\color{blue}$\Gamma$-point only} calculations
1155   \item \underline{Pseudo potential} 
1156         - consider only the valence electrons
1157   \item \underline{Code} - VASP 4.6
1158  \end{itemize}
1159
1160  \vspace*{0.2cm}
1161
1162  MD and structural optimization
1163
1164  \begin{itemize}
1165   \item MD integration: Gear predictor corrector algorithm
1166   \item Pressure control: Parrinello-Rahman pressure control
1167   \item Structural optimization: Conjugate gradient method
1168  \end{itemize}
1169
1170 \begin{pspicture}(0,0)(0,0)
1171 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
1172 \end{pspicture}
1173
1174 \end{slide}
1175
1176 \begin{slide}
1177
1178  {\large\bf
1179   C and Si self-interstitial point defects in silicon
1180  }
1181
1182  \small
1183
1184  \vspace*{0.3cm}
1185
1186 \begin{minipage}{8cm}
1187 Procedure:\\[0.3cm]
1188   \begin{pspicture}(0,0)(7,5)
1189   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1190    \parbox{7cm}{
1191    \begin{itemize}
1192     \item Creation of c-Si simulation volume
1193     \item Periodic boundary conditions
1194     \item $T=0\text{ K}$, $p=0\text{ bar}$
1195    \end{itemize}
1196   }}}}
1197 \rput(3.5,2.1){\rnode{insert}{\psframebox{
1198  \parbox{7cm}{
1199   \begin{center}
1200   Insertion of interstitial C/Si atoms
1201   \end{center}
1202   }}}}
1203   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1204    \parbox{7cm}{
1205    \begin{center}
1206    Relaxation / structural energy minimization
1207    \end{center}
1208   }}}}
1209   \ncline[]{->}{init}{insert}
1210   \ncline[]{->}{insert}{cool}
1211  \end{pspicture}
1212 \end{minipage}
1213 \begin{minipage}{5cm}
1214   \includegraphics[width=5cm]{unit_cell_e.eps}\\
1215 \end{minipage}
1216
1217 \begin{minipage}{9cm}
1218  \begin{tabular}{l c c}
1219  \hline
1220  & size [unit cells] & \# atoms\\
1221 \hline
1222 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
1223 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
1224 \hline
1225  \end{tabular}
1226 \end{minipage}
1227 \begin{minipage}{4cm}
1228 {\color{red}$\bullet$} Tetrahedral\\
1229 {\color{green}$\bullet$} Hexagonal\\
1230 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
1231 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
1232 {\color{cyan}$\bullet$} Bond-centered\\
1233 {\color{black}$\bullet$} Vacancy / Substitutional
1234 \end{minipage}
1235
1236 \end{slide}
1237
1238 \begin{slide}
1239
1240  \footnotesize
1241
1242 \begin{minipage}{9.5cm}
1243
1244  {\large\bf
1245   Si self-interstitial point defects in silicon\\
1246  }
1247
1248 \begin{tabular}{l c c c c c}
1249 \hline
1250  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
1251 \hline
1252  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
1253  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
1254 \hline
1255 \end{tabular}\\[0.2cm]
1256
1257 \begin{minipage}{4.7cm}
1258 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
1259 \end{minipage}
1260 \begin{minipage}{4.7cm}
1261 \begin{center}
1262 {\tiny nearly T $\rightarrow$ T}\\
1263 \end{center}
1264 \includegraphics[width=4.7cm]{nhex_tet.ps}
1265 \end{minipage}\\
1266
1267 \underline{Hexagonal} \hspace{2pt}
1268 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
1269 \framebox{
1270 \begin{minipage}{2.7cm}
1271 $E_{\text{f}}^*=4.48\text{ eV}$\\
1272 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
1273 \end{minipage}
1274 \begin{minipage}{0.4cm}
1275 \begin{center}
1276 $\Rightarrow$
1277 \end{center}
1278 \end{minipage}
1279 \begin{minipage}{2.7cm}
1280 $E_{\text{f}}=3.96\text{ eV}$\\
1281 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
1282 \end{minipage}
1283 }
1284 \begin{minipage}{2.9cm}
1285 \begin{flushright}
1286 \underline{Vacancy}\\
1287 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
1288 \end{flushright}
1289 \end{minipage}
1290
1291 \end{minipage}
1292 \begin{minipage}{3.5cm}
1293
1294 \begin{flushright}
1295 \underline{\hkl<1 1 0> dumbbell}\\
1296 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
1297 \underline{Tetrahedral}\\
1298 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
1299 \underline{\hkl<1 0 0> dumbbell}\\
1300 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
1301 \end{flushright}
1302
1303 \end{minipage}
1304
1305 \end{slide}
1306
1307 \begin{slide}
1308
1309 \footnotesize
1310
1311  {\large\bf
1312   C interstitial point defects in silicon\\[-0.1cm]
1313  }
1314
1315 \begin{tabular}{l c c c c c c r}
1316 \hline
1317  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
1318 \hline
1319  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1320  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1321 \hline
1322 \end{tabular}\\[0.1cm]
1323
1324 \framebox{
1325 \begin{minipage}{2.7cm}
1326 \underline{Hexagonal} \hspace{2pt}
1327 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1328 $E_{\text{f}}^*=9.05\text{ eV}$\\
1329 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
1330 \end{minipage}
1331 \begin{minipage}{0.4cm}
1332 \begin{center}
1333 $\Rightarrow$
1334 \end{center}
1335 \end{minipage}
1336 \begin{minipage}{2.7cm}
1337 \underline{\hkl<1 0 0>}\\
1338 $E_{\text{f}}=3.88\text{ eV}$\\
1339 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
1340 \end{minipage}
1341 }
1342 \begin{minipage}{2cm}
1343 \hfill
1344 \end{minipage}
1345 \begin{minipage}{3cm}
1346 \begin{flushright}
1347 \underline{Tetrahedral}\\
1348 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
1349 \end{flushright}
1350 \end{minipage}
1351
1352 \framebox{
1353 \begin{minipage}{2.7cm}
1354 \underline{Bond-centered}\\
1355 $E_{\text{f}}^*=5.59\text{ eV}$\\
1356 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
1357 \end{minipage}
1358 \begin{minipage}{0.4cm}
1359 \begin{center}
1360 $\Rightarrow$
1361 \end{center}
1362 \end{minipage}
1363 \begin{minipage}{2.7cm}
1364 \underline{\hkl<1 1 0> dumbbell}\\
1365 $E_{\text{f}}=5.18\text{ eV}$\\
1366 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
1367 \end{minipage}
1368 }
1369 \begin{minipage}{2cm}
1370 \hfill
1371 \end{minipage}
1372 \begin{minipage}{3cm}
1373 \begin{flushright}
1374 \underline{Substitutional}\\
1375 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
1376 \end{flushright}
1377 \end{minipage}
1378
1379 \end{slide}
1380
1381 \begin{slide}
1382
1383 \footnotesize
1384
1385  {\large\bf\boldmath
1386   C \hkl<1 0 0> dumbbell interstitial configuration\\
1387  }
1388
1389 {\tiny
1390 \begin{tabular}{l c c c c c c c c}
1391 \hline
1392  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
1393 \hline
1394 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
1395 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
1396 \hline
1397 \end{tabular}\\[0.2cm]
1398 \begin{tabular}{l c c c c }
1399 \hline
1400  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
1401 \hline
1402 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
1403 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
1404 \hline
1405 \end{tabular}\\[0.2cm]
1406 \begin{tabular}{l c c c}
1407 \hline
1408  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
1409 \hline
1410 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
1411 VASP & 0.109 & -0.065 & 0.174 \\
1412 \hline
1413 \end{tabular}\\[0.6cm]
1414 }
1415
1416 \begin{minipage}{3.0cm}
1417 \begin{center}
1418 \underline{Erhart/Albe}
1419 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
1420 \end{center}
1421 \end{minipage}
1422 \begin{minipage}{3.0cm}
1423 \begin{center}
1424 \underline{VASP}
1425 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
1426 \end{center}
1427 \end{minipage}\\
1428
1429 \begin{picture}(0,0)(-185,10)
1430 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
1431 \end{picture}
1432 \begin{picture}(0,0)(-280,-150)
1433 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
1434 \end{picture}
1435
1436 \begin{pspicture}(0,0)(0,0)
1437 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
1438 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
1439 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
1440 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
1441 \end{pspicture}
1442
1443 \end{slide}
1444
1445 \begin{slide}
1446
1447 \small
1448
1449 \begin{minipage}{8.5cm}
1450
1451  {\large\bf
1452   Bond-centered interstitial configuration\\[-0.1cm]
1453  }
1454
1455 \begin{minipage}{3.0cm}
1456 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1457 \end{minipage}
1458 \begin{minipage}{5.2cm}
1459 \begin{itemize}
1460  \item Linear Si-C-Si bond
1461  \item Si: one C \& 3 Si neighbours
1462  \item Spin polarized calculations
1463  \item No saddle point!\\
1464        Real local minimum!
1465 \end{itemize}
1466 \end{minipage}
1467
1468 \framebox{
1469  \tiny
1470  \begin{minipage}[t]{6.5cm}
1471   \begin{minipage}[t]{1.2cm}
1472   {\color{red}Si}\\
1473   {\tiny sp$^3$}\\[0.8cm]
1474   \underline{${\color{black}\uparrow}$}
1475   \underline{${\color{black}\uparrow}$}
1476   \underline{${\color{black}\uparrow}$}
1477   \underline{${\color{red}\uparrow}$}\\
1478   sp$^3$
1479   \end{minipage}
1480   \begin{minipage}[t]{1.4cm}
1481   \begin{center}
1482   {\color{red}M}{\color{blue}O}\\[0.8cm]
1483   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1484   $\sigma_{\text{ab}}$\\[0.5cm]
1485   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1486   $\sigma_{\text{b}}$
1487   \end{center}
1488   \end{minipage}
1489   \begin{minipage}[t]{1.0cm}
1490   \begin{center}
1491   {\color{blue}C}\\
1492   {\tiny sp}\\[0.2cm]
1493   \underline{${\color{white}\uparrow\uparrow}$}
1494   \underline{${\color{white}\uparrow\uparrow}$}\\
1495   2p\\[0.4cm]
1496   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1497   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1498   sp
1499   \end{center}
1500   \end{minipage}
1501   \begin{minipage}[t]{1.4cm}
1502   \begin{center}
1503   {\color{blue}M}{\color{green}O}\\[0.8cm]
1504   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1505   $\sigma_{\text{ab}}$\\[0.5cm]
1506   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1507   $\sigma_{\text{b}}$
1508   \end{center}
1509   \end{minipage}
1510   \begin{minipage}[t]{1.2cm}
1511   \begin{flushright}
1512   {\color{green}Si}\\
1513   {\tiny sp$^3$}\\[0.8cm]
1514   \underline{${\color{green}\uparrow}$}
1515   \underline{${\color{black}\uparrow}$}
1516   \underline{${\color{black}\uparrow}$}
1517   \underline{${\color{black}\uparrow}$}\\
1518   sp$^3$
1519   \end{flushright}
1520   \end{minipage}
1521  \end{minipage}
1522 }\\[0.1cm]
1523
1524 \framebox{
1525 \begin{minipage}{4.5cm}
1526 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1527 \end{minipage}
1528 \begin{minipage}{3.5cm}
1529 {\color{gray}$\bullet$} Spin up\\
1530 {\color{green}$\bullet$} Spin down\\
1531 {\color{blue}$\bullet$} Resulting spin up\\
1532 {\color{yellow}$\bullet$} Si atoms\\
1533 {\color{red}$\bullet$} C atom
1534 \end{minipage}
1535 }
1536
1537 \end{minipage}
1538 \begin{minipage}{4.2cm}
1539 \begin{flushright}
1540 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1541 {\color{green}$\Box$} {\tiny unoccupied}\\
1542 {\color{red}$\bullet$} {\tiny occupied}
1543 \end{flushright}
1544 \end{minipage}
1545
1546 \end{slide}
1547
1548 \begin{slide}
1549
1550  {\large\bf\boldmath
1551   Migration of the C \hkl<1 0 0> dumbbell interstitial
1552  }
1553
1554 \scriptsize
1555
1556  {\small Investigated pathways}
1557
1558 \begin{minipage}{8.5cm}
1559 \begin{minipage}{8.3cm}
1560 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1561 \begin{minipage}{2.4cm}
1562 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1563 \end{minipage}
1564 \begin{minipage}{0.4cm}
1565 $\rightarrow$
1566 \end{minipage}
1567 \begin{minipage}{2.4cm}
1568 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1569 \end{minipage}
1570 \begin{minipage}{0.4cm}
1571 $\rightarrow$
1572 \end{minipage}
1573 \begin{minipage}{2.4cm}
1574 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1575 \end{minipage}
1576 \end{minipage}\\
1577 \begin{minipage}{8.3cm}
1578 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1579 \begin{minipage}{2.4cm}
1580 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1581 \end{minipage}
1582 \begin{minipage}{0.4cm}
1583 $\rightarrow$
1584 \end{minipage}
1585 \begin{minipage}{2.4cm}
1586 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1587 \end{minipage}
1588 \begin{minipage}{0.4cm}
1589 $\rightarrow$
1590 \end{minipage}
1591 \begin{minipage}{2.4cm}
1592 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1593 \end{minipage}
1594 \end{minipage}\\
1595 \begin{minipage}{8.3cm}
1596 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1597 \begin{minipage}{2.4cm}
1598 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1599 \end{minipage}
1600 \begin{minipage}{0.4cm}
1601 $\rightarrow$
1602 \end{minipage}
1603 \begin{minipage}{2.4cm}
1604 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1605 \end{minipage}
1606 \begin{minipage}{0.4cm}
1607 $\rightarrow$
1608 \end{minipage}
1609 \begin{minipage}{2.4cm}
1610 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1611 \end{minipage}
1612 \end{minipage}
1613 \end{minipage}
1614 \framebox{
1615 \begin{minipage}{4.2cm}
1616  {\small Constrained relaxation\\
1617          technique (CRT) method}\\
1618 \includegraphics[width=4cm]{crt_orig.eps}
1619 \begin{itemize}
1620  \item Constrain diffusing atom
1621  \item Static constraints 
1622 \end{itemize}
1623 \vspace*{0.3cm}
1624  {\small Modifications}\\
1625 \includegraphics[width=4cm]{crt_mod.eps}
1626 \begin{itemize}
1627  \item Constrain all atoms
1628  \item Update individual\\
1629        constraints
1630 \end{itemize}
1631 \end{minipage}
1632 }
1633
1634 \end{slide}
1635
1636 \begin{slide}
1637
1638  {\large\bf\boldmath
1639   Migration of the C \hkl<1 0 0> dumbbell interstitial
1640  }
1641
1642 \scriptsize
1643
1644 \framebox{
1645 \begin{minipage}{5.9cm}
1646 \begin{flushleft}
1647 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1648 \end{flushleft}
1649 \begin{center}
1650 \begin{picture}(0,0)(60,0)
1651 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1652 \end{picture}
1653 \begin{picture}(0,0)(-5,0)
1654 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1655 \end{picture}
1656 \begin{picture}(0,0)(-55,0)
1657 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1658 \end{picture}
1659 \begin{picture}(0,0)(12.5,10)
1660 \includegraphics[width=1cm]{110_arrow.eps}
1661 \end{picture}
1662 \begin{picture}(0,0)(90,0)
1663 \includegraphics[height=0.9cm]{001_arrow.eps}
1664 \end{picture}
1665 \end{center}
1666 \vspace*{0.35cm}
1667 \end{minipage}
1668 }
1669 \begin{minipage}{0.3cm}
1670 \hfill
1671 \end{minipage}
1672 \framebox{
1673 \begin{minipage}{5.9cm}
1674 \begin{flushright}
1675 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1676 \end{flushright}
1677 \begin{center}
1678 \begin{picture}(0,0)(60,0)
1679 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1680 \end{picture}
1681 \begin{picture}(0,0)(5,0)
1682 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1683 \end{picture}
1684 \begin{picture}(0,0)(-55,0)
1685 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1686 \end{picture}
1687 \begin{picture}(0,0)(12.5,10)
1688 \includegraphics[width=1cm]{100_arrow.eps}
1689 \end{picture}
1690 \begin{picture}(0,0)(90,0)
1691 \includegraphics[height=0.9cm]{001_arrow.eps}
1692 \end{picture}
1693 \end{center}
1694 \vspace*{0.3cm}
1695 \end{minipage}\\
1696 }
1697
1698 \vspace*{0.05cm}
1699
1700 \framebox{
1701 \begin{minipage}{5.9cm}
1702 \begin{flushleft}
1703 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1704 \end{flushleft}
1705 \begin{center}
1706 \begin{picture}(0,0)(60,0)
1707 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1708 \end{picture}
1709 \begin{picture}(0,0)(10,0)
1710 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1711 \end{picture}
1712 \begin{picture}(0,0)(-60,0)
1713 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1714 \end{picture}
1715 \begin{picture}(0,0)(12.5,10)
1716 \includegraphics[width=1cm]{100_arrow.eps}
1717 \end{picture}
1718 \begin{picture}(0,0)(90,0)
1719 \includegraphics[height=0.9cm]{001_arrow.eps}
1720 \end{picture}
1721 \end{center}
1722 \vspace*{0.3cm}
1723 \end{minipage}
1724 }
1725 \begin{minipage}{0.3cm}
1726 \hfill
1727 \end{minipage}
1728 \begin{minipage}{6.5cm}
1729 VASP results
1730 \begin{itemize}
1731  \item Energetically most favorable path
1732        \begin{itemize}
1733         \item Path 2
1734         \item Activation energy: $\approx$ 0.9 eV 
1735         \item Experimental values: 0.73 ... 0.87 eV
1736        \end{itemize}
1737        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1738  \item Reorientation (path 3)
1739        \begin{itemize}
1740         \item More likely composed of two consecutive steps of type 2
1741         \item Experimental values: 0.77 ... 0.88 eV
1742        \end{itemize}
1743        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1744 \end{itemize}
1745 \end{minipage}
1746
1747 \end{slide}
1748
1749 \begin{slide}
1750
1751  {\large\bf\boldmath
1752   Migration of the C \hkl<1 0 0> dumbbell interstitial
1753  }
1754
1755 \scriptsize
1756
1757  \vspace{0.1cm}
1758
1759 \begin{minipage}{6.5cm}
1760
1761 \framebox{
1762 \begin{minipage}[t]{5.9cm}
1763 \begin{flushleft}
1764 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1765 \end{flushleft}
1766 \begin{center}
1767 \begin{pspicture}(0,0)(0,0)
1768 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1769 \end{pspicture}
1770 \begin{picture}(0,0)(60,-50)
1771 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1772 \end{picture}
1773 \begin{picture}(0,0)(5,-50)
1774 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1775 \end{picture}
1776 \begin{picture}(0,0)(-55,-50)
1777 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1778 \end{picture}
1779 \begin{picture}(0,0)(12.5,-40)
1780 \includegraphics[width=1cm]{110_arrow.eps}
1781 \end{picture}
1782 \begin{picture}(0,0)(90,-45)
1783 \includegraphics[height=0.9cm]{001_arrow.eps}
1784 \end{picture}\\
1785 \begin{pspicture}(0,0)(0,0)
1786 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1787 \end{pspicture}
1788 \begin{picture}(0,0)(60,-15)
1789 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1790 \end{picture}
1791 \begin{picture}(0,0)(35,-15)
1792 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1793 \end{picture}
1794 \begin{picture}(0,0)(-5,-15)
1795 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1796 \end{picture}
1797 \begin{picture}(0,0)(-55,-15)
1798 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1799 \end{picture}
1800 \begin{picture}(0,0)(12.5,-5)
1801 \includegraphics[width=1cm]{100_arrow.eps}
1802 \end{picture}
1803 \begin{picture}(0,0)(90,-15)
1804 \includegraphics[height=0.9cm]{010_arrow.eps}
1805 \end{picture}
1806 \end{center}
1807 \end{minipage}
1808 }\\[0.1cm]
1809
1810 \begin{minipage}{5.9cm}
1811 Erhart/Albe results
1812 \begin{itemize}
1813  \item Lowest activation energy: $\approx$ 2.2 eV
1814  \item 2.4 times higher than VASP
1815  \item Different pathway
1816 \end{itemize}
1817 \end{minipage}
1818
1819 \end{minipage}
1820 \begin{minipage}{6.5cm}
1821
1822 \framebox{
1823 \begin{minipage}{5.9cm}
1824 %\begin{flushright}
1825 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1826 %\end{flushright}
1827 %\begin{center}
1828 %\begin{pspicture}(0,0)(0,0)
1829 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1830 %\end{pspicture}
1831 %\begin{picture}(0,0)(60,-5)
1832 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1833 %\end{picture}
1834 %\begin{picture}(0,0)(0,-5)
1835 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1836 %\end{picture}
1837 %\begin{picture}(0,0)(-55,-5)
1838 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1839 %\end{picture}
1840 %\begin{picture}(0,0)(12.5,5)
1841 %\includegraphics[width=1cm]{100_arrow.eps}
1842 %\end{picture}
1843 %\begin{picture}(0,0)(90,0)
1844 %\includegraphics[height=0.9cm]{001_arrow.eps}
1845 %\end{picture}
1846 %\end{center}
1847 %\vspace{0.2cm}
1848 %\end{minipage}
1849 %}\\[0.2cm]
1850 %
1851 %\framebox{
1852 %\begin{minipage}{5.9cm}
1853 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1854 \end{minipage}
1855 }\\[0.1cm]
1856
1857 \begin{minipage}{5.9cm}
1858 Transition involving \ci{} \hkl<1 1 0>
1859 \begin{itemize}
1860  \item Bond-centered configuration unstable\\
1861        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1862  \item Transition minima of path 2 \& 3\\
1863        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1864  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1865  \item 2.4 - 3.4 times higher than VASP
1866  \item Rotation of dumbbell orientation
1867 \end{itemize}
1868 \vspace{0.1cm}
1869 \begin{center}
1870 {\color{blue}Overestimated diffusion barrier}
1871 \end{center}
1872 \end{minipage}
1873
1874 \end{minipage}
1875
1876 \end{slide}
1877
1878 \begin{slide}
1879
1880  {\large\bf\boldmath
1881   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1882  }
1883
1884 \small
1885
1886 \vspace*{0.1cm}
1887
1888 Binding energy: 
1889 $
1890 E_{\text{b}}=
1891 E_{\text{f}}^{\text{defect combination}}-
1892 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1893 E_{\text{f}}^{\text{2nd defect}}
1894 $
1895
1896 \vspace*{0.1cm}
1897
1898 {\scriptsize
1899 \begin{tabular}{l c c c c c c}
1900 \hline
1901  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1902  \hline
1903  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1904  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1905  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1906  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1907  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1908  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1909  \hline
1910  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1911  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1912 \hline
1913 \end{tabular}
1914 }
1915
1916 \vspace*{0.3cm}
1917
1918 \footnotesize
1919
1920 \begin{minipage}[t]{3.8cm}
1921 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1922 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1923 \end{minipage}
1924 \begin{minipage}[t]{3.5cm}
1925 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1926 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1927 \end{minipage}
1928 \begin{minipage}[t]{5.5cm}
1929 \begin{itemize}
1930  \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
1931        $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1932  \item Stress compensation / increase
1933  \item Unfavored: antiparallel orientations
1934  \item Indication of energetically favored\\
1935        agglomeration
1936  \item Most favorable: C clustering
1937  \item However: High barrier ($>4\,\text{eV}$)
1938  \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
1939        (Entropy)
1940 \end{itemize}
1941 \end{minipage}
1942
1943 \begin{picture}(0,0)(-295,-130)
1944 \includegraphics[width=3.5cm]{comb_pos.eps}
1945 \end{picture}
1946
1947 \end{slide}
1948
1949 \begin{slide}
1950
1951  {\large\bf\boldmath
1952   Combinations of C-Si \hkl<1 0 0>-type interstitials
1953  }
1954
1955 \small
1956
1957 \vspace*{0.1cm}
1958
1959 Energetically most favorable combinations along \hkl<1 1 0>
1960
1961 \vspace*{0.1cm}
1962
1963 {\scriptsize
1964 \begin{tabular}{l c c c c c c}
1965 \hline
1966  & 1 & 2 & 3 & 4 & 5 & 6\\
1967 \hline
1968 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1969 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1970 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1971 \hline
1972 \end{tabular}
1973 }
1974
1975 \vspace*{0.3cm}
1976
1977 \begin{minipage}{7.0cm}
1978 \includegraphics[width=7cm]{db_along_110_cc.ps}
1979 \end{minipage}
1980 \begin{minipage}{6.0cm}
1981 \begin{itemize}
1982  \item Interaction proportional to reciprocal cube of C-C distance
1983  \item Saturation in the immediate vicinity
1984  \renewcommand\labelitemi{$\Rightarrow$}
1985  \item Agglomeration of \ci{} expected
1986  \item Absence of C clustering
1987 \end{itemize}
1988 \begin{center}
1989 {\color{blue}
1990  Consisten with initial precipitation model
1991 }
1992 \end{center}
1993 \end{minipage}
1994
1995 \vspace{0.2cm}
1996
1997 \end{slide}
1998
1999 \begin{slide}
2000
2001  {\large\bf\boldmath
2002   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
2003  }
2004
2005  \scriptsize
2006
2007 %\begin{center}
2008 %\begin{minipage}{3.2cm}
2009 %\includegraphics[width=3cm]{sub_110_combo.eps}
2010 %\end{minipage}
2011 %\begin{minipage}{7.8cm}
2012 %\begin{tabular}{l c c c c c c}
2013 %\hline
2014 %C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
2015 %                   \hkl<1 0 1> & \hkl<-1 0 1> \\
2016 %\hline
2017 %1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
2018 %2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
2019 %3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
2020 %4 & \RM{4} & B & D & E & E & D \\
2021 %5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
2022 %\hline
2023 %\end{tabular}
2024 %\end{minipage}
2025 %\end{center}
2026
2027 %\begin{center}
2028 %\begin{tabular}{l c c c c c c c c c c}
2029 %\hline
2030 %Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
2031 %\hline
2032 %$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
2033 %$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
2034 %$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
2035 %\hline
2036 %\end{tabular}
2037 %\end{center}
2038
2039 \begin{minipage}{6.0cm}
2040 \includegraphics[width=5.8cm]{c_sub_si110.ps}
2041 \end{minipage}
2042 \begin{minipage}{7cm}
2043 \scriptsize
2044 \begin{itemize}
2045  \item IBS: C may displace Si\\
2046        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
2047  \item Assumption:\\
2048        \hkl<1 1 0>-type $\rightarrow$ favored combination
2049  \renewcommand\labelitemi{$\Rightarrow$}
2050  \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
2051  \item Less favorable than C-Si \hkl<1 0 0> dumbbell
2052  \item Interaction drops quickly to zero\\
2053        $\rightarrow$ low capture radius
2054 \end{itemize}
2055 \begin{center}
2056  {\color{blue}
2057  IBS process far from equilibrium\\
2058  \cs{} \& \si{} instead of thermodynamic ground state
2059  }
2060 \end{center}
2061 \end{minipage}
2062
2063 \begin{minipage}{6.5cm}
2064 \includegraphics[width=6.0cm]{162-097.ps}
2065 \begin{itemize}
2066  \item Low migration barrier
2067 \end{itemize}
2068 \end{minipage}
2069 \begin{minipage}{6.5cm}
2070 \begin{center}
2071 Ab initio MD at \degc{900}\\
2072 \includegraphics[width=3.3cm]{md_vasp_01.eps}
2073 $t=\unit[2230]{fs}$\\
2074 \includegraphics[width=3.3cm]{md_vasp_02.eps}
2075 $t=\unit[2900]{fs}$
2076 \end{center}
2077 {\color{blue}
2078 Contribution of entropy to structural formation
2079 }
2080 \end{minipage}
2081
2082 \end{slide}
2083
2084 \begin{slide}
2085
2086  {\large\bf\boldmath
2087   Migration in C-Si \hkl<1 0 0> and vacancy combinations
2088  }
2089
2090  \footnotesize
2091
2092 \vspace{0.1cm}
2093
2094 \begin{minipage}[t]{3cm}
2095 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
2096 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
2097 \end{minipage}
2098 \begin{minipage}[t]{7cm}
2099 \vspace{0.2cm}
2100 \begin{center}
2101  Low activation energies\\
2102  High activation energies for reverse processes\\
2103  $\Downarrow$\\
2104  {\color{blue}C$_{\text{sub}}$ very stable}\\
2105 \vspace*{0.1cm}
2106  \hrule
2107 \vspace*{0.1cm}
2108  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
2109  $\Downarrow$\\
2110  {\color{blue}Formation of SiC by successive substitution by C}
2111
2112 \end{center}
2113 \end{minipage}
2114 \begin{minipage}[t]{3cm}
2115 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
2116 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
2117 \end{minipage}
2118
2119
2120 \framebox{
2121 \begin{minipage}{5.9cm}
2122 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
2123 \begin{center}
2124 \begin{picture}(0,0)(70,0)
2125 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
2126 \end{picture}
2127 \begin{picture}(0,0)(30,0)
2128 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
2129 \end{picture}
2130 \begin{picture}(0,0)(-10,0)
2131 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
2132 \end{picture}
2133 \begin{picture}(0,0)(-48,0)
2134 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
2135 \end{picture}
2136 \begin{picture}(0,0)(12.5,5)
2137 \includegraphics[width=1cm]{100_arrow.eps}
2138 \end{picture}
2139 \begin{picture}(0,0)(97,-10)
2140 \includegraphics[height=0.9cm]{001_arrow.eps}
2141 \end{picture}
2142 \end{center}
2143 \vspace{0.1cm}
2144 \end{minipage}
2145 }
2146 \begin{minipage}{0.3cm}
2147 \hfill
2148 \end{minipage}
2149 \framebox{
2150 \begin{minipage}{5.9cm}
2151 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
2152 \begin{center}
2153 \begin{picture}(0,0)(60,0)
2154 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
2155 \end{picture}
2156 \begin{picture}(0,0)(25,0)
2157 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
2158 \end{picture}
2159 \begin{picture}(0,0)(-20,0)
2160 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
2161 \end{picture}
2162 \begin{picture}(0,0)(-55,0)
2163 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
2164 \end{picture}
2165 \begin{picture}(0,0)(12.5,5)
2166 \includegraphics[width=1cm]{100_arrow.eps}
2167 \end{picture}
2168 \begin{picture}(0,0)(95,0)
2169 \includegraphics[height=0.9cm]{001_arrow.eps}
2170 \end{picture}
2171 \end{center}
2172 \vspace{0.1cm}
2173 \end{minipage}
2174 }
2175
2176 \end{slide}
2177
2178 \begin{slide}
2179
2180  {\large\bf
2181   Conclusion of defect / migration / combined defect simulations
2182  }
2183
2184  \footnotesize
2185
2186 \vspace*{0.1cm}
2187
2188 Defect structures
2189 \begin{itemize}
2190  \item Accurately described by quantum-mechanical simulations
2191  \item Less accurate description by classical potential simulations
2192  \item Underestimated formation energy of \cs{} by classical approach
2193  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
2194 \end{itemize}
2195
2196 Migration
2197 \begin{itemize}
2198  \item C migration pathway in Si identified
2199  \item Consistent with reorientation and diffusion experiments
2200 \end{itemize} 
2201 \begin{itemize}
2202  \item Different path and ...
2203  \item overestimated barrier by classical potential calculations
2204 \end{itemize} 
2205
2206 Concerning the precipitation mechanism
2207 \begin{itemize}
2208  \item Agglomeration of C-Si dumbbells energetically favorable
2209        (stress compensation)
2210  \item C-Si indeed favored compared to
2211        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2212  \item Possible low interaction capture radius of
2213        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2214  \item Low barrier for
2215        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
2216  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
2217        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
2218 \end{itemize} 
2219 \begin{center}
2220 {\color{blue}Results suggest increased participation of \cs}
2221 \end{center}
2222
2223 \end{slide}
2224
2225 \begin{slide}
2226
2227  {\large\bf
2228   Silicon carbide precipitation simulations
2229  }
2230
2231  \small
2232
2233 {\scriptsize
2234  \begin{pspicture}(0,0)(12,6.5)
2235   % nodes
2236   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
2237    \parbox{7cm}{
2238    \begin{itemize}
2239     \item Create c-Si volume
2240     \item Periodc boundary conditions
2241     \item Set requested $T$ and $p=0\text{ bar}$
2242     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
2243    \end{itemize}
2244   }}}}
2245   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
2246    \parbox{7cm}{
2247    Insertion of C atoms at constant T
2248    \begin{itemize}
2249     \item total simulation volume {\pnode{in1}}
2250     \item volume of minimal SiC precipitate {\pnode{in2}}
2251     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
2252           precipitate
2253    \end{itemize} 
2254   }}}}
2255   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
2256    \parbox{7.0cm}{
2257    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
2258   }}}}
2259   \ncline[]{->}{init}{insert}
2260   \ncline[]{->}{insert}{cool}
2261   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
2262   \rput(7.8,6){\footnotesize $V_1$}
2263   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
2264   \rput(9.2,4.85){\tiny $V_2$}
2265   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
2266   \rput(9.55,4.45){\footnotesize $V_3$}
2267   \rput(7.9,3.2){\pnode{ins1}}
2268   \rput(9.22,2.8){\pnode{ins2}}
2269   \rput(11.0,2.4){\pnode{ins3}}
2270   \ncline[]{->}{in1}{ins1}
2271   \ncline[]{->}{in2}{ins2}
2272   \ncline[]{->}{in3}{ins3}
2273  \end{pspicture}
2274 }
2275
2276 \begin{itemize}
2277  \item Restricted to classical potential simulations
2278  \item $V_2$ and $V_3$ considered due to low diffusion
2279  \item Amount of C atoms: 6000
2280        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
2281  \item Simulation volume: $31\times 31\times 31$ unit cells
2282        (238328 Si atoms)
2283 \end{itemize}
2284
2285 \end{slide}
2286
2287 \begin{slide}
2288
2289  {\large\bf\boldmath
2290   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2291  }
2292
2293  \small
2294
2295 \begin{minipage}{6.5cm}
2296 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2297 \end{minipage} 
2298 \begin{minipage}{6.5cm}
2299 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2300 \end{minipage} 
2301
2302 \begin{minipage}{6.5cm}
2303 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2304 \end{minipage} 
2305 \begin{minipage}{6.5cm}
2306 \scriptsize
2307 \underline{Low C concentration ($V_1$)}\\
2308 \hkl<1 0 0> C-Si dumbbell dominated structure
2309 \begin{itemize}
2310  \item Si-C bumbs around 0.19 nm
2311  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2312        concatenated dumbbells of various orientation
2313  \item Si-Si NN distance stretched to 0.3 nm
2314 \end{itemize}
2315 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2316 \underline{High C concentration ($V_2$, $V_3$)}\\
2317 High amount of strongly bound C-C bonds\\
2318 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2319 Only short range order observable\\
2320 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2321 \end{minipage} 
2322
2323 \end{slide}
2324
2325 \begin{slide}
2326
2327  {\large\bf\boldmath
2328   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2329  }
2330
2331  \small
2332
2333 \begin{minipage}{6.5cm}
2334 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2335 \end{minipage} 
2336 \begin{minipage}{6.5cm}
2337 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2338 \end{minipage} 
2339
2340 \begin{minipage}{6.5cm}
2341 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2342 \end{minipage} 
2343 \begin{minipage}{6.5cm}
2344 \scriptsize
2345 \underline{Low C concentration ($V_1$)}\\
2346 \hkl<1 0 0> C-Si dumbbell dominated structure
2347 \begin{itemize}
2348  \item Si-C bumbs around 0.19 nm
2349  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2350        concatenated dumbbells of various orientation
2351  \item Si-Si NN distance stretched to 0.3 nm
2352 \end{itemize}
2353 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2354 \underline{High C concentration ($V_2$, $V_3$)}\\
2355 High amount of strongly bound C-C bonds\\
2356 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2357 Only short range order observable\\
2358 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2359 \end{minipage} 
2360
2361 \begin{pspicture}(0,0)(0,0)
2362 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2363 \begin{minipage}{10cm}
2364 \small
2365 {\color{red}\bf 3C-SiC formation fails to appear}
2366 \begin{itemize}
2367 \item Low C concentration simulations
2368  \begin{itemize}
2369   \item Formation of \ci{} indeed occurs
2370   \item Agllomeration not observed
2371  \end{itemize}
2372 \item High C concentration simulations
2373  \begin{itemize}
2374   \item Amorphous SiC-like structure\\
2375         (not expected at prevailing temperatures)
2376   \item Rearrangement and transition into 3C-SiC structure missing
2377  \end{itemize}
2378 \end{itemize}
2379 \end{minipage}
2380  }}}
2381 \end{pspicture}
2382
2383 \end{slide}
2384
2385 \begin{slide}
2386
2387  {\large\bf
2388   Limitations of molecular dynamics and short range potentials
2389  }
2390
2391 \footnotesize
2392
2393 \vspace{0.2cm}
2394
2395 \underline{Time scale problem of MD}\\[0.2cm]
2396 Minimize integration error\\
2397 $\Rightarrow$ discretization considerably smaller than
2398               reciprocal of fastest vibrational mode\\[0.1cm]
2399 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
2400 $\Rightarrow$ suitable choice of time step:
2401               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
2402 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
2403 Several local minima in energy surface separated by large energy barriers\\
2404 $\Rightarrow$ transition event corresponds to a multiple
2405               of vibrational periods\\
2406 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
2407               infrequent transition events\\[0.1cm]
2408 {\color{blue}Accelerated methods:}
2409 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
2410
2411 \vspace{0.3cm}
2412
2413 \underline{Limitations related to the short range potential}\\[0.2cm]
2414 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
2415 and 2$^{\text{nd}}$ next neighbours\\
2416 $\Rightarrow$ overestimated unphysical high forces of next neighbours
2417
2418 \vspace{0.3cm}
2419
2420 \framebox{
2421 \color{red}
2422 Potential enhanced problem of slow phase space propagation
2423 }
2424
2425 \vspace{0.3cm}
2426
2427 \underline{Approach to the (twofold) problem}\\[0.2cm]
2428 Increased temperature simulations without TAD corrections\\
2429 (accelerated methods or higher time scales exclusively not sufficient)
2430
2431 \begin{picture}(0,0)(-260,-30)
2432 \framebox{
2433 \begin{minipage}{4.2cm}
2434 \tiny
2435 \begin{center}
2436 \vspace{0.03cm}
2437 \underline{IBS}
2438 \end{center}
2439 \begin{itemize}
2440 \item 3C-SiC also observed for higher T
2441 \item higher T inside sample
2442 \item structural evolution vs.\\
2443       equilibrium properties
2444 \end{itemize}
2445 \end{minipage}
2446 }
2447 \end{picture}
2448
2449 \begin{picture}(0,0)(-305,-155)
2450 \framebox{
2451 \begin{minipage}{2.5cm}
2452 \tiny
2453 \begin{center}
2454 retain proper\\
2455 thermodynmic sampling
2456 \end{center}
2457 \end{minipage}
2458 }
2459 \end{picture}
2460
2461 \end{slide}
2462
2463 \begin{slide}
2464
2465  {\large\bf
2466   Increased temperature simulations at low C concentration
2467  }
2468
2469 \small
2470
2471 \begin{minipage}{6.5cm}
2472 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2473 \end{minipage}
2474 \begin{minipage}{6.5cm}
2475 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2476 \end{minipage}
2477
2478 \begin{minipage}{6.5cm}
2479 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2480 \end{minipage}
2481 \begin{minipage}{6.5cm}
2482 \scriptsize
2483  \underline{Si-C bonds:}
2484  \begin{itemize}
2485   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2486   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2487  \end{itemize}
2488  \underline{Si-Si bonds:}
2489  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2490  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2491  \underline{C-C bonds:}
2492  \begin{itemize}
2493   \item C-C next neighbour pairs reduced (mandatory)
2494   \item Peak at 0.3 nm slightly shifted
2495         \begin{itemize}
2496          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2497                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2498                combinations (|)\\
2499                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2500                ($\downarrow$)
2501          \item Range [|-$\downarrow$]:
2502                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2503                with nearby Si$_{\text{I}}$}
2504         \end{itemize}
2505  \end{itemize}
2506 \end{minipage}
2507
2508 \begin{picture}(0,0)(-330,-74)
2509 \color{blue}
2510 \framebox{
2511 \begin{minipage}{1.6cm}
2512 \tiny
2513 \begin{center}
2514 stretched SiC\\[-0.1cm]
2515 in c-Si
2516 \end{center}
2517 \end{minipage}
2518 }
2519 \end{picture}
2520
2521 \end{slide}
2522
2523 \begin{slide}
2524
2525  {\large\bf
2526   Increased temperature simulations at low C concentration
2527  }
2528
2529 \small
2530
2531 \begin{minipage}{6.5cm}
2532 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2533 \end{minipage}
2534 \begin{minipage}{6.5cm}
2535 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2536 \end{minipage}
2537
2538 \begin{minipage}{6.5cm}
2539 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2540 \end{minipage}
2541 \begin{minipage}{6.5cm}
2542 \scriptsize
2543  \underline{Si-C bonds:}
2544  \begin{itemize}
2545   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2546   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2547  \end{itemize}
2548  \underline{Si-Si bonds:}
2549  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2550  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2551  \underline{C-C bonds:}
2552  \begin{itemize}
2553   \item C-C next neighbour pairs reduced (mandatory)
2554   \item Peak at 0.3 nm slightly shifted
2555         \begin{itemize}
2556          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2557                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2558                combinations (|)\\
2559                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2560                ($\downarrow$)
2561          \item Range [|-$\downarrow$]:
2562                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2563                with nearby Si$_{\text{I}}$}
2564         \end{itemize}
2565  \end{itemize}
2566 \end{minipage}
2567
2568 %\begin{picture}(0,0)(-330,-74)
2569 %\color{blue}
2570 %\framebox{
2571 %\begin{minipage}{1.6cm}
2572 %\tiny
2573 %\begin{center}
2574 %stretched SiC\\[-0.1cm]
2575 %in c-Si
2576 %\end{center}
2577 %\end{minipage}
2578 %}
2579 %\end{picture}
2580
2581 \begin{pspicture}(0,0)(0,0)
2582 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2583 \begin{minipage}{10cm}
2584 \small
2585 {\color{blue}\bf Stretched SiC in c-Si}
2586 \begin{itemize}
2587 \item Consistent to precipitation model involving \cs{}
2588 \item Explains annealing behavior of high/low T C implants
2589       \begin{itemize}
2590        \item Low T: highly mobiel \ci{}
2591        \item High T: stable configurations of \cs{}
2592       \end{itemize}
2593 \end{itemize}
2594 $\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2595 $\Rightarrow$ Precipitation mechanism involving \cs{}
2596 \end{minipage}
2597  }}}
2598 \end{pspicture}
2599
2600 \end{slide}
2601
2602 \begin{slide}
2603
2604  {\large\bf
2605   Increased temperature simulations at high C concentration
2606  }
2607
2608 \footnotesize
2609
2610 \begin{minipage}{6.5cm}
2611 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2612 \end{minipage}
2613 \begin{minipage}{6.5cm}
2614 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2615 \end{minipage}
2616
2617 \vspace{0.1cm}
2618
2619 \scriptsize
2620
2621 \framebox{
2622 \begin{minipage}[t]{6.0cm}
2623 0.186 nm: Si-C pairs $\uparrow$\\
2624 (as expected in 3C-SiC)\\[0.2cm]
2625 0.282 nm: Si-C-C\\[0.2cm]
2626 $\approx$0.35 nm: C-Si-Si
2627 \end{minipage}
2628 }
2629 \begin{minipage}{0.2cm}
2630 \hfill
2631 \end{minipage}
2632 \framebox{
2633 \begin{minipage}[t]{6.0cm}
2634 0.15 nm: C-C pairs $\uparrow$\\
2635 (as expected in graphite/diamond)\\[0.2cm]
2636 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2637 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2638 \end{minipage}
2639 }
2640
2641 \begin{itemize}
2642 \item Decreasing cut-off artifact
2643 \item {\color{red}Amorphous} SiC-like phase remains
2644 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2645 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2646 \end{itemize}
2647
2648 \vspace{-0.1cm}
2649
2650 \begin{center}
2651 {\color{blue}
2652 \framebox{
2653 {\color{black}
2654 High C \& small $V$ \& short $t$
2655 $\Rightarrow$
2656 }
2657 Slow restructuring due to strong C-C bonds
2658 {\color{black}
2659 $\Leftarrow$
2660 High C \& low T implants
2661 }
2662 }
2663 }
2664 \end{center}
2665
2666 \end{slide}
2667
2668 \begin{slide}
2669
2670  {\large\bf
2671   Summary and Conclusions
2672  }
2673
2674  \scriptsize
2675
2676 %\vspace{0.1cm}
2677
2678 \framebox{
2679 \begin{minipage}[t]{12.9cm}
2680  \underline{Pecipitation simulations}
2681  \begin{itemize}
2682   \item High C concentration $\rightarrow$ amorphous SiC like phase
2683   \item Problem of potential enhanced slow phase space propagation
2684   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2685   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2686   \item High T necessary to simulate IBS conditions (far from equilibrium)
2687   \item Precipitation by successive agglomeration of \cs (epitaxy)
2688   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2689         (stretched SiC, interface)
2690  \end{itemize}
2691 \end{minipage}
2692 }
2693
2694 %\vspace{0.1cm}
2695
2696 \framebox{
2697 \begin{minipage}{12.9cm}
2698  \underline{Defects}
2699  \begin{itemize}
2700    \item DFT / EA
2701         \begin{itemize}
2702          \item Point defects excellently / fairly well described
2703                by DFT / EA
2704          \item C$_{\text{sub}}$ drastically underestimated by EA
2705          \item EA predicts correct ground state:
2706                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2707          \item Identified migration path explaining
2708                diffusion and reorientation experiments by DFT
2709          \item EA fails to describe \ci{} migration:
2710                Wrong path \& overestimated barrier
2711         \end{itemize}
2712    \item Combinations of defects
2713          \begin{itemize}
2714           \item Agglomeration of point defects energetically favorable
2715                 by compensation of stress
2716           \item Formation of C-C unlikely
2717           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2718           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2719                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2720         \end{itemize}
2721  \end{itemize}
2722 \end{minipage}
2723 }
2724
2725 \begin{center}
2726 {\color{blue}
2727 \framebox{Precipitation by successive agglomeration of \cs{}}
2728 }
2729 \end{center}
2730
2731 \end{slide}
2732
2733 \begin{slide}
2734
2735  {\large\bf
2736   Acknowledgements
2737  }
2738
2739  \vspace{0.1cm}
2740
2741  \small
2742
2743  Thanks to \ldots
2744
2745  \underline{Augsburg}
2746  \begin{itemize}
2747   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2748   \item Ralf Utermann (EDV)
2749  \end{itemize}
2750  
2751  \underline{Helsinki}
2752  \begin{itemize}
2753   \item Prof. K. Nordlund (MD)
2754  \end{itemize}
2755  
2756  \underline{Munich}
2757  \begin{itemize}
2758   \item Bayerische Forschungsstiftung (financial support)
2759  \end{itemize}
2760  
2761  \underline{Paderborn}
2762  \begin{itemize}
2763   \item Prof. J. Lindner (SiC)
2764   \item Prof. G. Schmidt (DFT + financial support)
2765   \item Dr. E. Rauls (DFT + SiC)
2766   \item Dr. S. Sanna (VASP)
2767  \end{itemize}
2768
2769 \vspace{0.2cm}
2770
2771 \begin{center}
2772 \framebox{
2773 \bf Thank you for your attention!
2774 }
2775 \end{center}
2776
2777 \end{slide}
2778
2779 \end{document}
2780
2781 \fi