19a85785ea2318bffa0163102972107455962c2b
[lectures/latex.git] / posic / talks / seminar_2010.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv,draft]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[greek,german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 %\usepackage{epic}
24 %\usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage{miller}
30
31 \usepackage[setpagesize=false]{hyperref}
32
33 \usepackage{semcolor}
34 \usepackage{semlayer}           % Seminar overlays
35 \usepackage{slidesec}           % Seminar sections and list of slides
36
37 \input{seminar.bug}             % Official bugs corrections
38 \input{seminar.bg2}             % Unofficial bugs corrections
39
40 \articlemag{1}
41
42 \special{landscape}
43
44 % font
45 %\usepackage{cmbright}
46 %\renewcommand{\familydefault}{\sfdefault}
47 %\usepackage{mathptmx}
48
49 \usepackage{upgreek}
50
51 \begin{document}
52
53 \extraslideheight{10in}
54 \slideframe{none}
55
56 \pagestyle{empty}
57
58 % specify width and height
59 \slidewidth 27.7cm 
60 \slideheight 19.1cm 
61
62 % shift it into visual area properly
63 \def\slideleftmargin{3.3cm}
64 \def\slidetopmargin{0.6cm}
65
66 \newcommand{\ham}{\mathcal{H}}
67 \newcommand{\pot}{\mathcal{V}}
68 \newcommand{\foo}{\mathcal{U}}
69 \newcommand{\vir}{\mathcal{W}}
70
71 % itemize level ii
72 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
73
74 % nice phi
75 \renewcommand{\phi}{\varphi}
76
77 % colors
78 \newrgbcolor{si-yellow}{.6 .6 0}
79 \newrgbcolor{hb}{0.75 0.77 0.89}
80 \newrgbcolor{lbb}{0.75 0.8 0.88}
81 \newrgbcolor{hlbb}{0.825 0.88 0.968}
82 \newrgbcolor{lachs}{1.0 .93 .81}
83
84 % topic
85
86 \begin{slide}
87 \begin{center}
88
89  \vspace{16pt}
90
91  {\LARGE\bf
92   Atomistic simulation study of the silicon carbide precipitation
93   in silicon
94  }
95
96  \vspace{48pt}
97
98  \textsc{F. Zirkelbach}
99
100  \vspace{48pt}
101
102  Lehrstuhlseminar
103
104  \vspace{08pt}
105
106  17. Juni 2010
107
108 \end{center}
109 \end{slide}
110
111 % motivation / properties / applications of silicon carbide
112 \begin{slide}
113
114 \small
115
116 \begin{pspicture}(0,0)(13.5,5)
117
118
119
120  \psframe*[linecolor=hb](0,0)(13.5,5)
121
122  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
123  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
124
125  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
126
127  \rput[lt](0.5,4){wide band gap}
128  \rput[lt](0.5,3.5){high electric breakdown field}
129  \rput[lt](0.5,3){good electron mobility}
130  \rput[lt](0.5,2.5){high electron saturation drift velocity}
131  \rput[lt](0.5,2){high thermal conductivity}
132
133  \rput[lt](0.5,1.5){hard and mechanically stable}
134  \rput[lt](0.5,1){chemically inert}
135
136  \rput[lt](0.5,0.5){radiation hardness}
137
138  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
139
140  \rput[rt](13,3.85){high-temperature, high power}
141  \rput[rt](13,3.5){and high-frequency}
142  \rput[rt](13,3.15){electronic and optoelectronic devices}
143
144  \rput[rt](13,2.35){material suitable for extreme conditions}
145  \rput[rt](13,2){microelectromechanical systems}
146  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
147
148  \rput[rt](13,0.85){first wall reactor material, detectors}
149  \rput[rt](13,0.5){and electronic devices for space}
150
151 \end{pspicture}
152
153 \begin{picture}(0,0)(-10,68)
154 \includegraphics[width=2.6cm]{wide_band_gap.eps}
155 \end{picture}
156 \begin{picture}(0,0)(-295,-165)
157 \includegraphics[width=3cm]{sic_led.eps}
158 \end{picture}
159 \begin{picture}(0,0)(-215,-165)
160 \includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
161 \end{picture}
162 \begin{picture}(0,0)(-313,65)
163 \includegraphics[width=2.2cm]{infineon_schottky.eps}
164 \end{picture}
165 \begin{picture}(0,0)(-220,65)
166 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
167 \end{picture}
168
169 \end{slide}
170
171 % contents
172
173 \begin{slide}
174
175 {\large\bf
176  Outline
177 }
178
179  \begin{itemize}
180   \item Polyteps and fabrication of silicon carbide
181   \item Supposed precipitation mechanism of SiC in Si
182   \item Utilized simulation techniques
183         \begin{itemize}
184          \item Molecular dynamics (MD) simulations
185          \item Density functional theory (DFT) calculations
186         \end{itemize}
187   \item C and Si self-interstitial point defects in silicon
188   \item Silicon carbide precipitation simulations
189   \item Investigation of a silicon carbide precipitate in silicon
190   \item Summary / Conclusion / Outlook
191  \end{itemize}
192
193 \end{slide}
194
195 % start of contents
196
197 \begin{slide}
198
199  {\large\bf
200   Polytypes of SiC
201  }
202
203  \vspace{4cm}
204
205  \small
206
207 \begin{tabular}{l c c c c c c}
208 \hline
209  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
210 \hline
211 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
212 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
213 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
214 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
215 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
216 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
217 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
218 \hline
219 \end{tabular}
220
221 {\tiny
222  Values for $T=300$ K
223 }
224
225 \begin{picture}(0,0)(-160,-155)
226  \includegraphics[width=7cm]{polytypes.eps}
227 \end{picture}
228 \begin{picture}(0,0)(-10,-185)
229  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
230 \end{picture}
231 \begin{picture}(0,0)(-10,-175)
232  {\tiny cubic (twist)}
233 \end{picture}
234 \begin{picture}(0,0)(-60,-175)
235  {\tiny hexagonal (no twist)}
236 \end{picture}
237 \begin{pspicture}(0,0)(0,0)
238 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
239 \end{pspicture}
240 \begin{pspicture}(0,0)(0,0)
241 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
242 \end{pspicture}
243 \begin{pspicture}(0,0)(0,0)
244 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
245 \end{pspicture}
246
247 \end{slide}
248
249 \begin{slide}
250
251  {\large\bf
252   Fabrication of silicon carbide
253  }
254
255  \small
256  
257  \vspace{4pt}
258
259  SiC - \emph{Born from the stars, perfected on earth.}
260  
261  \vspace{4pt}
262
263  Conventional thin film SiC growth:
264  \begin{itemize}
265   \item \underline{Sublimation growth using the modified Lely method}
266         \begin{itemize}
267          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
268          \item Surrounded by polycrystalline SiC in a graphite crucible\\
269                at $T=2100-2400 \, ^{\circ} \text{C}$
270          \item Deposition of supersaturated vapor on cooler seed crystal
271         \end{itemize}
272   \item \underline{Homoepitaxial growth using CVD}
273         \begin{itemize}
274          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
275          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
276          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
277          \item High quality but limited in size of substrates
278         \end{itemize}
279   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
280         \begin{itemize}
281          \item Two steps: carbonization and growth
282          \item $T=650-1050 \, ^{\circ} \text{C}$
283          \item Quality and size not yet sufficient
284         \end{itemize}
285  \end{itemize}
286
287  \begin{picture}(0,0)(-280,-65)
288   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
289  \end{picture}
290  \begin{picture}(0,0)(-280,-55)
291   \begin{minipage}{5cm}
292   {\tiny
293    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
294    on 6H-SiC substrate
295   }
296   \end{minipage}
297  \end{picture}
298  \begin{picture}(0,0)(-265,-150)
299   \includegraphics[width=2.4cm]{m_lely.eps}
300  \end{picture}
301  \begin{picture}(0,0)(-333,-175)
302   \begin{minipage}{5cm}
303   {\tiny
304    1. Lid\\[-7pt]
305    2. Heating\\[-7pt]
306    3. Source\\[-7pt]
307    4. Crucible\\[-7pt]
308    5. Insulation\\[-7pt]
309    6. Seed crystal
310   }
311   \end{minipage}
312  \end{picture}
313
314 \end{slide}
315
316 \begin{slide}
317
318  {\large\bf
319   Fabrication of silicon carbide
320  }
321
322  \small
323
324  Alternative approach:
325  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
326  \begin{itemize}
327   \item \underline{Implantation step 1}\\
328         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
329         $\Rightarrow$ box-like distribution of equally sized
330                        and epitactically oriented SiC precipitates
331                        
332   \item \underline{Implantation step 2}\\
333         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
334         $\Rightarrow$ destruction of SiC nanocrystals
335                       in growing amorphous interface layers
336   \item \underline{Annealing}\\
337         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
338         $\Rightarrow$ homogeneous, stoichiometric SiC layer
339                       with sharp interfaces
340  \end{itemize}
341
342  \begin{minipage}{6.3cm}
343  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
344  {\tiny
345   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
346  }
347  \end{minipage}
348 \framebox{
349  \begin{minipage}{6.3cm}
350  \begin{center}
351  {\color{blue}
352   Precipitation mechanism not yet fully understood!
353  }
354  \renewcommand\labelitemi{$\Rightarrow$}
355  \small
356  \underline{Understanding the SiC precipitation}
357  \begin{itemize}
358   \item significant technological progress in SiC thin film formation
359   \item perspectives for processes relying upon prevention of SiC precipitation
360  \end{itemize}
361  \end{center}
362  \end{minipage}
363 }
364  
365 \end{slide}
366
367 \begin{slide}
368
369  {\large\bf
370   Supposed precipitation mechanism of SiC in Si
371  }
372
373  \scriptsize
374
375  \vspace{0.1cm}
376
377  \begin{minipage}{3.8cm}
378  Si \& SiC lattice structure\\[0.2cm]
379  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
380  \hrule
381  \end{minipage}
382  \hspace{0.6cm}
383  \begin{minipage}{3.8cm}
384  \begin{center}
385  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
386  \end{center}
387  \end{minipage}
388  \hspace{0.6cm}
389  \begin{minipage}{3.8cm}
390  \begin{center}
391  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
392  \end{center}
393  \end{minipage}
394
395  \begin{minipage}{4cm}
396  \begin{center}
397  C-Si dimers (dumbbells)\\[-0.1cm]
398  on Si interstitial sites
399  \end{center}
400  \end{minipage}
401  \hspace{0.2cm}
402  \begin{minipage}{4.2cm}
403  \begin{center}
404  Agglomeration of C-Si dumbbells\\[-0.1cm]
405  $\Rightarrow$ dark contrasts
406  \end{center}
407  \end{minipage}
408  \hspace{0.2cm}
409  \begin{minipage}{4cm}
410  \begin{center}
411  Precipitation of 3C-SiC in Si\\[-0.1cm]
412  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
413  \& release of Si self-interstitials
414  \end{center}
415  \end{minipage}
416
417  \begin{minipage}{3.8cm}
418  \begin{center}
419  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
420  \end{center}
421  \end{minipage}
422  \hspace{0.6cm}
423  \begin{minipage}{3.8cm}
424  \begin{center}
425  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
426  \end{center}
427  \end{minipage}
428  \hspace{0.6cm}
429  \begin{minipage}{3.8cm}
430  \begin{center}
431  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
432  \end{center}
433  \end{minipage}
434
435 \begin{pspicture}(0,0)(0,0)
436 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
437 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
438 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
439 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
440 \end{pspicture}
441  
442 \end{slide}
443
444 \begin{slide}
445
446  {\large\bf
447   Molecular dynamics (MD) simulations
448  }
449
450  \vspace{12pt}
451
452  \small
453
454  {\bf MD basics:}
455  \begin{itemize}
456   \item Microscopic description of N particle system
457   \item Analytical interaction potential
458   \item Numerical integration using Newtons equation of motion\\
459         as a propagation rule in 6N-dimensional phase space
460   \item Observables obtained by time and/or ensemble averages
461  \end{itemize}
462  {\bf Details of the simulation:}
463  \begin{itemize}
464   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
465   \item Ensemble: NpT (isothermal-isobaric)
466         \begin{itemize}
467          \item Berendsen thermostat:
468                $\tau_{\text{T}}=100\text{ fs}$
469          \item Berendsen barostat:\\
470                $\tau_{\text{P}}=100\text{ fs}$,
471                $\beta^{-1}=100\text{ GPa}$
472         \end{itemize}
473   \item Erhart/Albe potential: Tersoff-like bond order potential
474   \vspace*{12pt}
475         \[
476         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
477         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
478         \]
479  \end{itemize}
480
481  \begin{picture}(0,0)(-230,-30)
482   \includegraphics[width=5cm]{tersoff_angle.eps} 
483  \end{picture}
484  
485 \end{slide}
486
487 \begin{slide}
488
489  {\large\bf
490   Density functional theory (DFT) calculations
491  }
492
493  \small
494
495  Basic ingredients necessary for DFT
496
497  \begin{itemize}
498   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
499         \begin{itemize}
500          \item ... uniquely determines the ground state potential
501                / wavefunctions
502          \item ... minimizes the systems total energy
503         \end{itemize}
504   \item \underline{Born-Oppenheimer}
505         - $N$ moving electrons in an external potential of static nuclei
506 \[
507 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
508               +\sum_i^N V_{\text{ext}}(r_i)
509               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
510 \]
511   \item \underline{Effective potential}
512         - averaged electrostatic potential \& exchange and correlation
513 \[
514 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
515                  +V_{\text{XC}}[n(r)]
516 \]
517   \item \underline{Kohn-Sham system}
518         - Schr\"odinger equation of N non-interacting particles
519 \[
520 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
521 =\epsilon_i\Phi_i(r)
522 \quad
523 \Rightarrow
524 \quad
525 n(r)=\sum_i^N|\Phi_i(r)|^2
526 \]
527   \item \underline{Self-consistent solution}\\
528 $n(r)$ depends on $\Phi_i$, which depends on $V_{\text{eff}}$,
529 which in turn depends on $n(r)$
530   \item \underline{Variational principle}
531         - minimize total energy with respect to $n(r)$
532  \end{itemize}
533
534 \end{slide}
535
536 \begin{slide}
537
538  {\large\bf
539   Density functional theory (DFT) calculations
540  }
541
542  \small
543
544  \vspace*{0.2cm}
545
546  Details of applied DFT calculations in this work
547
548  \begin{itemize}
549   \item \underline{Exchange correlation functional}
550         - approximations for the inhomogeneous electron gas
551         \begin{itemize}
552          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
553          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
554         \end{itemize}
555   \item \underline{Plane wave basis set}
556         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
557 \[
558 \rightarrow
559 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
560 \]
561   \item \underline{$k$-point sampling} - $\Gamma$-point only calculations
562   \item \underline{Pseudo potential} 
563         - consider only the valence electrons
564   \item \underline{Code} - VASP 4.6
565  \end{itemize}
566
567  \vspace*{0.2cm}
568
569  MD and structural optimization
570
571  \begin{itemize}
572   \item MD integration: Gear predictor corrector algorithm
573   \item Pressure control: Parrinello-Rahman pressure control
574   \item Structural optimization: Conjugate gradient method
575  \end{itemize}
576
577 \end{slide}
578
579 \begin{slide}
580
581  {\large\bf
582   C and Si self-interstitial point defects in silicon
583  }
584
585  \small
586
587  \vspace*{0.3cm}
588
589 \begin{minipage}{8cm}
590 Procedure:\\[0.3cm]
591   \begin{pspicture}(0,0)(7,5)
592   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
593    \parbox{7cm}{
594    \begin{itemize}
595     \item Creation of c-Si simulation volume
596     \item Periodic boundary conditions
597     \item $T=0\text{ K}$, $p=0\text{ bar}$
598    \end{itemize}
599   }}}}
600 \rput(3.5,2.1){\rnode{insert}{\psframebox{
601  \parbox{7cm}{
602   \begin{center}
603   Insertion of interstitial C/Si atoms
604   \end{center}
605   }}}}
606   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
607    \parbox{7cm}{
608    \begin{center}
609    Relaxation / structural energy minimization
610    \end{center}
611   }}}}
612   \ncline[]{->}{init}{insert}
613   \ncline[]{->}{insert}{cool}
614  \end{pspicture}
615 \end{minipage}
616 \begin{minipage}{5cm}
617   \includegraphics[width=5cm]{unit_cell_e.eps}\\
618 \end{minipage}
619
620 \begin{minipage}{9cm}
621  \begin{tabular}{l c c}
622  \hline
623  & size [unit cells] & \# atoms\\
624 \hline
625 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
626 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
627 \hline
628  \end{tabular}
629 \end{minipage}
630 \begin{minipage}{4cm}
631 {\color{red}$\bullet$} Tetrahedral\\
632 {\color{green}$\bullet$} Hexagonal\\
633 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
634 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
635 {\color{cyan}$\bullet$} Bond-centered\\
636 {\color{black}$\bullet$} Vacancy / Substitutional
637 \end{minipage}
638
639 \end{slide}
640
641 \begin{slide}
642
643  \footnotesize
644
645 \begin{minipage}{9.5cm}
646
647  {\large\bf
648   Si self-interstitial point defects in silicon\\
649  }
650
651 \begin{tabular}{l c c c c c}
652 \hline
653  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
654 \hline
655  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
656  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
657 \hline
658 \end{tabular}\\[0.2cm]
659
660 \begin{minipage}{4.7cm}
661 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
662 \end{minipage}
663 \begin{minipage}{4.7cm}
664 \begin{center}
665 {\tiny nearly T $\rightarrow$ T}\\
666 \end{center}
667 \includegraphics[width=4.7cm]{nhex_tet.ps}
668 \end{minipage}\\
669
670 \underline{Hexagonal} \hspace{2pt}
671 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
672 \framebox{
673 \begin{minipage}{2.7cm}
674 $E_{\text{f}}^*=4.48\text{ eV}$\\
675 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
676 \end{minipage}
677 \begin{minipage}{0.4cm}
678 \begin{center}
679 $\Rightarrow$
680 \end{center}
681 \end{minipage}
682 \begin{minipage}{2.7cm}
683 $E_{\text{f}}=3.96\text{ eV}$\\
684 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
685 \end{minipage}
686 }
687 \begin{minipage}{2.9cm}
688 \begin{flushright}
689 \underline{Vacancy}\\
690 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
691 \end{flushright}
692 \end{minipage}
693
694 \end{minipage}
695 \begin{minipage}{3.5cm}
696
697 \begin{flushright}
698 \underline{\hkl<1 1 0> dumbbell}\\
699 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
700 \underline{Tetrahedral}\\
701 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
702 \underline{\hkl<1 0 0> dumbbell}\\
703 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
704 \end{flushright}
705
706 \end{minipage}
707
708 \end{slide}
709
710 \begin{slide}
711
712 \footnotesize
713
714  {\large\bf
715   C interstitial point defects in silicon\\[-0.1cm]
716  }
717
718 \begin{tabular}{l c c c c c c}
719 \hline
720  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B \\
721 \hline
722  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 \\
723  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & 0.75 & 5.59$^*$ \\
724 \hline
725 \end{tabular}\\[0.1cm]
726
727 \framebox{
728 \begin{minipage}{2.7cm}
729 \underline{Hexagonal} \hspace{2pt}
730 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
731 $E_{\text{f}}^*=9.05\text{ eV}$\\
732 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
733 \end{minipage}
734 \begin{minipage}{0.4cm}
735 \begin{center}
736 $\Rightarrow$
737 \end{center}
738 \end{minipage}
739 \begin{minipage}{2.7cm}
740 \underline{\hkl<1 0 0>}\\
741 $E_{\text{f}}=3.88\text{ eV}$\\
742 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
743 \end{minipage}
744 }
745 \begin{minipage}{2cm}
746 \hfill
747 \end{minipage}
748 \begin{minipage}{3cm}
749 \begin{flushright}
750 \underline{Tetrahedral}\\
751 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
752 \end{flushright}
753 \end{minipage}
754
755 \framebox{
756 \begin{minipage}{2.7cm}
757 \underline{Bond-centered}\\
758 $E_{\text{f}}^*=5.59\text{ eV}$\\
759 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
760 \end{minipage}
761 \begin{minipage}{0.4cm}
762 \begin{center}
763 $\Rightarrow$
764 \end{center}
765 \end{minipage}
766 \begin{minipage}{2.7cm}
767 \underline{\hkl<1 1 0> dumbbell}\\
768 $E_{\text{f}}=5.18\text{ eV}$\\
769 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
770 \end{minipage}
771 }
772 \begin{minipage}{2cm}
773 \hfill
774 \end{minipage}
775 \begin{minipage}{3cm}
776 \begin{flushright}
777 \underline{Substitutional}\\
778 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
779 \end{flushright}
780 \end{minipage}
781
782 \end{slide}
783
784 \begin{slide}
785
786 \footnotesize
787
788  {\large\bf\boldmath
789   C \hkl<1 0 0> dumbbell interstitial configuration\\
790  }
791
792 {\tiny
793 \begin{tabular}{l c c c c c c c c}
794 \hline
795  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
796 \hline
797 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
798 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
799 \hline
800 \end{tabular}\\[0.2cm]
801 \begin{tabular}{l c c c c }
802 \hline
803  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
804 \hline
805 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
806 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
807 \hline
808 \end{tabular}\\[0.2cm]
809 \begin{tabular}{l c c c}
810 \hline
811  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
812 \hline
813 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
814 VASP & 0.109 & -0.065 & 0.174 \\
815 \hline
816 \end{tabular}\\[0.6cm]
817 }
818
819 \begin{minipage}{3.0cm}
820 \begin{center}
821 \underline{Erhart/Albe}
822 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
823 \end{center}
824 \end{minipage}
825 \begin{minipage}{3.0cm}
826 \begin{center}
827 \underline{VASP}
828 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
829 \end{center}
830 \end{minipage}\\
831
832 \begin{picture}(0,0)(-185,10)
833 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
834 \end{picture}
835 \begin{picture}(0,0)(-280,-150)
836 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
837 \end{picture}
838
839 \begin{pspicture}(0,0)(0,0)
840 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
841 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
842 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
843 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
844 \end{pspicture}
845
846 \end{slide}
847
848 \begin{slide}
849
850 \small
851
852 \begin{minipage}{8.5cm}
853
854  {\large\bf
855   Bond-centered interstitial configuration\\[-0.1cm]
856  }
857
858 \begin{minipage}{3.0cm}
859 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
860 \end{minipage}
861 \begin{minipage}{5.2cm}
862 \begin{itemize}
863  \item Linear Si-C-Si bond
864  \item Si: one C \& 3 Si neighbours
865  \item Spin polarized calculations
866  \item No saddle point!\\
867        Real local minimum!
868 \end{itemize}
869 \end{minipage}
870
871 \framebox{
872  \tiny
873  \begin{minipage}[t]{6.5cm}
874   \begin{minipage}[t]{1.2cm}
875   {\color{red}Si}\\
876   {\tiny sp$^3$}\\[0.8cm]
877   \underline{${\color{black}\uparrow}$}
878   \underline{${\color{black}\uparrow}$}
879   \underline{${\color{black}\uparrow}$}
880   \underline{${\color{red}\uparrow}$}\\
881   sp$^3$
882   \end{minipage}
883   \begin{minipage}[t]{1.4cm}
884   \begin{center}
885   {\color{red}M}{\color{blue}O}\\[0.8cm]
886   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
887   $\sigma_{\text{ab}}$\\[0.5cm]
888   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
889   $\sigma_{\text{b}}$
890   \end{center}
891   \end{minipage}
892   \begin{minipage}[t]{1.0cm}
893   \begin{center}
894   {\color{blue}C}\\
895   {\tiny sp}\\[0.2cm]
896   \underline{${\color{white}\uparrow\uparrow}$}
897   \underline{${\color{white}\uparrow\uparrow}$}\\
898   2p\\[0.4cm]
899   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
900   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
901   sp
902   \end{center}
903   \end{minipage}
904   \begin{minipage}[t]{1.4cm}
905   \begin{center}
906   {\color{blue}M}{\color{green}O}\\[0.8cm]
907   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
908   $\sigma_{\text{ab}}$\\[0.5cm]
909   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
910   $\sigma_{\text{b}}$
911   \end{center}
912   \end{minipage}
913   \begin{minipage}[t]{1.2cm}
914   \begin{flushright}
915   {\color{green}Si}\\
916   {\tiny sp$^3$}\\[0.8cm]
917   \underline{${\color{green}\uparrow}$}
918   \underline{${\color{black}\uparrow}$}
919   \underline{${\color{black}\uparrow}$}
920   \underline{${\color{black}\uparrow}$}\\
921   sp$^3$
922   \end{flushright}
923   \end{minipage}
924  \end{minipage}
925 }\\[0.1cm]
926
927 \framebox{
928 \begin{minipage}{4.5cm}
929 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
930 \end{minipage}
931 \begin{minipage}{3.5cm}
932 {\color{gray}$\bullet$} Spin up\\
933 {\color{green}$\bullet$} Spin down\\
934 {\color{blue}$\bullet$} Resulting spin up\\
935 {\color{yellow}$\bullet$} Si atoms\\
936 {\color{red}$\bullet$} C atom
937 \end{minipage}
938 }
939
940 \end{minipage}
941 \begin{minipage}{4.2cm}
942 \begin{flushright}
943 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
944 {\color{green}$\Box$} {\tiny unoccupied}\\
945 {\color{red}$\bullet$} {\tiny occupied}
946 \end{flushright}
947 \end{minipage}
948
949 \end{slide}
950
951 \begin{slide}
952
953  {\large\bf\boldmath
954   Migration of the C \hkl<1 0 0> dumbbell interstitial
955  }
956
957 \scriptsize
958
959  {\small Investigated pathways}
960
961 \begin{minipage}{8.5cm}
962 \begin{minipage}{8.3cm}
963 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
964 \begin{minipage}{2.4cm}
965 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
966 \end{minipage}
967 \begin{minipage}{0.4cm}
968 $\rightarrow$
969 \end{minipage}
970 \begin{minipage}{2.4cm}
971 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
972 \end{minipage}
973 \begin{minipage}{0.4cm}
974 $\rightarrow$
975 \end{minipage}
976 \begin{minipage}{2.4cm}
977 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
978 \end{minipage}
979 \end{minipage}\\
980 \begin{minipage}{8.3cm}
981 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
982 \begin{minipage}{2.4cm}
983 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
984 \end{minipage}
985 \begin{minipage}{0.4cm}
986 $\rightarrow$
987 \end{minipage}
988 \begin{minipage}{2.4cm}
989 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
990 \end{minipage}
991 \begin{minipage}{0.4cm}
992 $\rightarrow$
993 \end{minipage}
994 \begin{minipage}{2.4cm}
995 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
996 \end{minipage}
997 \end{minipage}\\
998 \begin{minipage}{8.3cm}
999 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1000 \begin{minipage}{2.4cm}
1001 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1002 \end{minipage}
1003 \begin{minipage}{0.4cm}
1004 $\rightarrow$
1005 \end{minipage}
1006 \begin{minipage}{2.4cm}
1007 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1008 \end{minipage}
1009 \begin{minipage}{0.4cm}
1010 $\rightarrow$
1011 \end{minipage}
1012 \begin{minipage}{2.4cm}
1013 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1014 \end{minipage}
1015 \end{minipage}
1016 \end{minipage}
1017 \framebox{
1018 \begin{minipage}{4.2cm}
1019  {\small Constrained relaxation\\
1020          technique (CRT) method}\\
1021 \includegraphics[width=4cm]{crt_orig.eps}
1022 \begin{itemize}
1023  \item Constrain diffusing atom
1024  \item Static constraints 
1025 \end{itemize}
1026 \vspace*{0.3cm}
1027  {\small Modifications}\\
1028 \includegraphics[width=4cm]{crt_mod.eps}
1029 \begin{itemize}
1030  \item Constrain all atoms
1031  \item Update individual\\
1032        constraints
1033 \end{itemize}
1034 \end{minipage}
1035 }
1036
1037 \end{slide}
1038
1039 \begin{slide}
1040
1041  {\large\bf\boldmath
1042   Migration of the C \hkl<1 0 0> dumbbell interstitial
1043  }
1044
1045 \scriptsize
1046
1047 \framebox{
1048 \begin{minipage}{5.9cm}
1049 \begin{flushleft}
1050 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1051 \end{flushleft}
1052 \begin{center}
1053 \begin{picture}(0,0)(60,0)
1054 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1055 \end{picture}
1056 \begin{picture}(0,0)(-5,0)
1057 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1058 \end{picture}
1059 \begin{picture}(0,0)(-55,0)
1060 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1061 \end{picture}
1062 \begin{picture}(0,0)(12.5,10)
1063 \includegraphics[width=1cm]{110_arrow.eps}
1064 \end{picture}
1065 \begin{picture}(0,0)(90,0)
1066 \includegraphics[height=0.9cm]{001_arrow.eps}
1067 \end{picture}
1068 \end{center}
1069 \vspace*{0.35cm}
1070 \end{minipage}
1071 }
1072 \begin{minipage}{0.3cm}
1073 \hfill
1074 \end{minipage}
1075 \framebox{
1076 \begin{minipage}{5.9cm}
1077 \begin{flushright}
1078 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1079 \end{flushright}
1080 \begin{center}
1081 \begin{picture}(0,0)(60,0)
1082 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1083 \end{picture}
1084 \begin{picture}(0,0)(5,0)
1085 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1086 \end{picture}
1087 \begin{picture}(0,0)(-55,0)
1088 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1089 \end{picture}
1090 \begin{picture}(0,0)(12.5,10)
1091 \includegraphics[width=1cm]{100_arrow.eps}
1092 \end{picture}
1093 \begin{picture}(0,0)(90,0)
1094 \includegraphics[height=0.9cm]{001_arrow.eps}
1095 \end{picture}
1096 \end{center}
1097 \vspace*{0.3cm}
1098 \end{minipage}\\
1099 }
1100
1101 \vspace*{0.05cm}
1102
1103 \framebox{
1104 \begin{minipage}{5.9cm}
1105 \begin{flushleft}
1106 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1107 \end{flushleft}
1108 \begin{center}
1109 \begin{picture}(0,0)(60,0)
1110 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1111 \end{picture}
1112 \begin{picture}(0,0)(10,0)
1113 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1114 \end{picture}
1115 \begin{picture}(0,0)(-60,0)
1116 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1117 \end{picture}
1118 \begin{picture}(0,0)(12.5,10)
1119 \includegraphics[width=1cm]{100_arrow.eps}
1120 \end{picture}
1121 \begin{picture}(0,0)(90,0)
1122 \includegraphics[height=0.9cm]{001_arrow.eps}
1123 \end{picture}
1124 \end{center}
1125 \vspace*{0.3cm}
1126 \end{minipage}
1127 }
1128 \begin{minipage}{0.3cm}
1129 \hfill
1130 \end{minipage}
1131 \begin{minipage}{6.5cm}
1132 VASP results
1133 \begin{itemize}
1134  \item Energetically most favorable path
1135        \begin{itemize}
1136         \item Path 2
1137         \item Activation energy: $\approx$ 0.9 eV 
1138         \item Experimental values: 0.73 ... 0.87 eV
1139        \end{itemize}
1140        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1141  \item Reorientation (path 3)
1142        \begin{itemize}
1143         \item More likely composed of two consecutive steps of type 2
1144         \item Experimental values: 0.77 ... 0.88 eV
1145        \end{itemize}
1146        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1147 \end{itemize}
1148 \end{minipage}
1149
1150 \end{slide}
1151
1152 \begin{slide}
1153
1154  {\large\bf\boldmath
1155   Migration of the C \hkl<1 0 0> dumbbell interstitial
1156  }
1157
1158 \scriptsize
1159
1160 \begin{minipage}{6.5cm}
1161
1162 \framebox{
1163 \begin{minipage}{5.9cm}
1164 \begin{flushleft}
1165 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1166 \end{flushleft}
1167 \begin{center}
1168 \begin{pspicture}(0,0)(0,0)
1169 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1170 \end{pspicture}
1171 \begin{picture}(0,0)(60,-50)
1172 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1173 \end{picture}
1174 \begin{picture}(0,0)(5,-50)
1175 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1176 \end{picture}
1177 \begin{picture}(0,0)(-55,-50)
1178 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1179 \end{picture}
1180 \begin{picture}(0,0)(12.5,-40)
1181 \includegraphics[width=1cm]{110_arrow.eps}
1182 \end{picture}
1183 \begin{picture}(0,0)(90,-45)
1184 \includegraphics[height=0.9cm]{001_arrow.eps}
1185 \end{picture}\\
1186 \begin{pspicture}(0,0)(0,0)
1187 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1188 \end{pspicture}
1189 \begin{picture}(0,0)(60,-15)
1190 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1191 \end{picture}
1192 \begin{picture}(0,0)(35,-15)
1193 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1194 \end{picture}
1195 \begin{picture}(0,0)(-5,-15)
1196 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1197 \end{picture}
1198 \begin{picture}(0,0)(-55,-15)
1199 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1200 \end{picture}
1201 \begin{picture}(0,0)(12.5,-5)
1202 \includegraphics[width=1cm]{100_arrow.eps}
1203 \end{picture}
1204 \begin{picture}(0,0)(90,-15)
1205 \includegraphics[height=0.9cm]{010_arrow.eps}
1206 \end{picture}
1207 \end{center}
1208 \end{minipage}
1209 }\\[0.1cm]
1210
1211 \begin{minipage}{5.9cm}
1212 Erhart/Albe results
1213 \begin{itemize}
1214  \item Lowest activation energy: $\approx$ 2.2 eV
1215  \item 2.4 times higher than VASP
1216  \item Different pathway
1217  \item Transition minima ($\rightarrow$ \hkl<1 1 0> dumbbell)
1218 \end{itemize}
1219 \end{minipage}
1220
1221 \end{minipage}
1222 \begin{minipage}{6.5cm}
1223
1224 \framebox{
1225 \begin{minipage}{5.9cm}
1226 \begin{flushright}
1227 \includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1228 \end{flushright}
1229 \begin{center}
1230 \begin{pspicture}(0,0)(0,0)
1231 \psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1232 \end{pspicture}
1233 \begin{picture}(0,0)(60,-5)
1234 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1235 \end{picture}
1236 \begin{picture}(0,0)(0,-5)
1237 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1238 \end{picture}
1239 \begin{picture}(0,0)(-55,-5)
1240 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1241 \end{picture}
1242 \begin{picture}(0,0)(12.5,5)
1243 \includegraphics[width=1cm]{100_arrow.eps}
1244 \end{picture}
1245 \begin{picture}(0,0)(90,0)
1246 \includegraphics[height=0.9cm]{001_arrow.eps}
1247 \end{picture}
1248 \end{center}
1249 \vspace{0.2cm}
1250 \end{minipage}
1251 }\\[0.2cm]
1252
1253 \framebox{
1254 \begin{minipage}{5.9cm}
1255 \includegraphics[width=5.9cm]{00-1_ip0-10.ps}
1256 \end{minipage}
1257 }
1258
1259 \end{minipage}
1260
1261 \end{slide}
1262
1263 \begin{slide}
1264
1265  {\large\bf\boldmath
1266   Migrations involving the C \hkl<1 1 0> dumbbell interstitial
1267  }
1268
1269 \small
1270
1271 \vspace*{0.1cm}
1272
1273 VASP
1274
1275 \begin{minipage}{6.0cm}
1276 \includegraphics[width=6cm]{vasp_mig/110_mig_vasp.ps}
1277 \end{minipage}
1278 \begin{minipage}{7cm}
1279 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1280 \hkl<0 -1 0> $\stackrel{0.7}{{\color{red}\longrightarrow}}$
1281 \hkl<1 1 0> $\stackrel{0.95}{{\color{blue}\longrightarrow}}$
1282 BC $\stackrel{0.25}{\longrightarrow}$ \hkl<0 0 -1>\\[0.3cm]
1283 Composed of three single transitions\\[0.3cm]
1284 Activation energy of second transition slightly\\
1285 higher than direct transition (path 2)\\[0.3cm]
1286 $\Rightarrow$ very unlikely to happen
1287 \end{minipage}\\[0.2cm]
1288
1289 Erhart/Albe
1290
1291 \begin{minipage}{6.0cm}
1292 \includegraphics[width=6cm]{110_mig.ps}
1293 \end{minipage}
1294 \begin{minipage}{7cm}
1295 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1296 \hkl<0 0 -1> $\stackrel{2.2}{{\color{green}\longrightarrow}}$
1297 \hkl<1 1 0> $\stackrel{0.9}{{\color{red}\longrightarrow}}$
1298 \hkl<0 0 -1>\\[0.3cm]
1299 Composed of two single transitions\\[0.3cm]
1300 Compared to direct transition: (2.2 eV \& 0.5 eV)\\[0.3cm]
1301 $\Rightarrow$ more readily constituting a probable transition
1302 \end{minipage}
1303
1304 \end{slide}
1305
1306 \begin{slide}
1307
1308  {\large\bf\boldmath
1309   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1310  }
1311
1312 \small
1313
1314 \vspace*{0.1cm}
1315
1316 Binding energy: 
1317 $
1318 E_{\text{b}}=
1319 E_{\text{f}}^{\text{defect combination}}-
1320 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1321 E_{\text{f}}^{\text{2nd defect}}
1322 $
1323
1324 \vspace*{0.1cm}
1325
1326 {\scriptsize
1327 \begin{tabular}{l c c c c c c}
1328 \hline
1329  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1330  \hline
1331  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1332  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1333  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1334  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1335  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1336  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1337  \hline
1338  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1339  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1340 \hline
1341 \end{tabular}
1342 }
1343
1344 \vspace*{0.3cm}
1345
1346 \footnotesize
1347
1348 \begin{minipage}[t]{3.8cm}
1349 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1350 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1351 \end{minipage}
1352 \begin{minipage}[t]{3.5cm}
1353 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1354 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1355 \end{minipage}
1356 \begin{minipage}[t]{5.5cm}
1357 \begin{itemize}
1358  \item Restricted to VASP simulations
1359  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1360  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1361  \item Stress compensation / increase
1362  \item Most favorable: C clustering
1363  \item Unfavored: antiparallel orientations
1364  \item Indication of energetically favored\\
1365        agglomeration
1366 \end{itemize}
1367 \end{minipage}
1368
1369 \begin{picture}(0,0)(-295,-130)
1370 \includegraphics[width=3.5cm]{comb_pos.eps}
1371 \end{picture}
1372
1373 \end{slide}
1374
1375 \begin{slide}
1376
1377  {\large\bf\boldmath
1378   Combinations of C-Si \hkl<1 0 0>-type interstitials
1379  }
1380
1381 \small
1382
1383 \vspace*{0.1cm}
1384
1385 Energetically most favorable combinations along \hkl<1 1 0>
1386
1387 {\scriptsize
1388 \begin{tabular}{l c c c c c c}
1389 \hline
1390  & 1 & 2 & 3 & 4 & 5 & 6\\
1391 \hline
1392 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1393 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1394 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1395 \hline
1396 \end{tabular}
1397 }
1398
1399 \vspace*{0.1cm}
1400
1401 \begin{minipage}{7.0cm}
1402 \includegraphics[width=7cm,draft=false]{db_along_110_cc.ps}
1403 \end{minipage}
1404 \begin{minipage}{6.0cm}
1405 \begin{itemize}
1406  \item Interaction proportional to reciprocal cube of C-C distance
1407  \item 
1408  \item 
1409 \end{itemize}
1410 \end{minipage}
1411
1412 \end{slide}
1413
1414 \begin{slide}
1415
1416  {\large\bf
1417   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1418  }
1419
1420  \small
1421
1422 \end{slide}
1423
1424 \begin{slide}
1425
1426  {\large\bf
1427   Migration of combined defects
1428  }
1429
1430  \small
1431
1432  present (describe) two starting confs, i.e. vac in c-Si
1433
1434  present migration results $\rightarrow$ SiC
1435
1436 \end{slide}
1437
1438 \begin{slide}
1439
1440  {\large\bf
1441   Silicon carbide precipitation simulations
1442  }
1443
1444  \small
1445  
1446  restricted to classical MD
1447
1448  explain procedure
1449
1450  then there is:
1451
1452  1. temperature as in exps
1453
1454  2. exkurs: limitations of conv...
1455
1456  3. increased temp ... high and low
1457
1458  4. temperature limit
1459
1460  5. final TODO
1461
1462 \end{slide}
1463
1464 \begin{slide}
1465
1466  {\large\bf
1467   Silicon carbide precipitation simulations
1468  }
1469
1470  \small
1471
1472 \end{slide}
1473
1474 \begin{slide}
1475
1476  {\large\bf
1477   Investigation of a silicon carbide precipitate in silicon
1478  }
1479
1480  \small
1481
1482  
1483
1484 \end{slide}
1485
1486 \end{document}