sec checkin (only small mods missing)
[lectures/latex.git] / posic / talks / seminar_2010.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv,draft]{seminar}
3 %\documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 \usepackage{semcolor}
35 \usepackage{semlayer}           % Seminar overlays
36 \usepackage{slidesec}           % Seminar sections and list of slides
37
38 \input{seminar.bug}             % Official bugs corrections
39 \input{seminar.bg2}             % Unofficial bugs corrections
40
41 \articlemag{1}
42
43 \special{landscape}
44
45 % font
46 %\usepackage{cmbright}
47 %\renewcommand{\familydefault}{\sfdefault}
48 %\usepackage{mathptmx}
49
50 \usepackage{upgreek}
51
52 \begin{document}
53
54 \extraslideheight{10in}
55 \slideframe{none}
56
57 \pagestyle{empty}
58
59 % specify width and height
60 \slidewidth 27.7cm 
61 \slideheight 19.1cm 
62
63 % shift it into visual area properly
64 \def\slideleftmargin{3.3cm}
65 \def\slidetopmargin{0.6cm}
66
67 \newcommand{\ham}{\mathcal{H}}
68 \newcommand{\pot}{\mathcal{V}}
69 \newcommand{\foo}{\mathcal{U}}
70 \newcommand{\vir}{\mathcal{W}}
71
72 % itemize level ii
73 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
74
75 % nice phi
76 \renewcommand{\phi}{\varphi}
77
78 % roman letters
79 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
80
81 % colors
82 \newrgbcolor{si-yellow}{.6 .6 0}
83 \newrgbcolor{hb}{0.75 0.77 0.89}
84 \newrgbcolor{lbb}{0.75 0.8 0.88}
85 \newrgbcolor{hlbb}{0.825 0.88 0.968}
86 \newrgbcolor{lachs}{1.0 .93 .81}
87
88 % topic
89
90 \begin{slide}
91 \begin{center}
92
93  \vspace{16pt}
94
95  {\LARGE\bf
96   Atomistic simulation study of the silicon carbide precipitation
97   in silicon
98  }
99
100  \vspace{48pt}
101
102  \textsc{F. Zirkelbach}
103
104  \vspace{48pt}
105
106  Lehrstuhlseminar
107
108  \vspace{08pt}
109
110  17. Juni 2010
111
112 \end{center}
113 \end{slide}
114
115 % motivation / properties / applications of silicon carbide
116 \begin{slide}
117
118 \small
119
120 \begin{pspicture}(0,0)(13.5,5)
121
122
123
124  \psframe*[linecolor=hb](0,0)(13.5,5)
125
126  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
127  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
128
129  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
130
131  \rput[lt](0.5,4){wide band gap}
132  \rput[lt](0.5,3.5){high electric breakdown field}
133  \rput[lt](0.5,3){good electron mobility}
134  \rput[lt](0.5,2.5){high electron saturation drift velocity}
135  \rput[lt](0.5,2){high thermal conductivity}
136
137  \rput[lt](0.5,1.5){hard and mechanically stable}
138  \rput[lt](0.5,1){chemically inert}
139
140  \rput[lt](0.5,0.5){radiation hardness}
141
142  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
143
144  \rput[rt](13,3.85){high-temperature, high power}
145  \rput[rt](13,3.5){and high-frequency}
146  \rput[rt](13,3.15){electronic and optoelectronic devices}
147
148  \rput[rt](13,2.35){material suitable for extreme conditions}
149  \rput[rt](13,2){microelectromechanical systems}
150  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
151
152  \rput[rt](13,0.85){first wall reactor material, detectors}
153  \rput[rt](13,0.5){and electronic devices for space}
154
155 \end{pspicture}
156
157 \begin{picture}(0,0)(-10,68)
158 \includegraphics[width=2.6cm]{wide_band_gap.eps}
159 \end{picture}
160 \begin{picture}(0,0)(-295,-165)
161 \includegraphics[width=3cm]{sic_led.eps}
162 \end{picture}
163 \begin{picture}(0,0)(-215,-165)
164 \includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
165 \end{picture}
166 \begin{picture}(0,0)(-313,65)
167 \includegraphics[width=2.2cm]{infineon_schottky.eps}
168 \end{picture}
169 \begin{picture}(0,0)(-220,65)
170 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
171 \end{picture}
172
173 \end{slide}
174
175 % contents
176
177 \begin{slide}
178
179 {\large\bf
180  Outline
181 }
182
183  \begin{itemize}
184   \item Polytyps and fabrication of silicon carbide
185   \item Supposed precipitation mechanism of SiC in Si
186   \item Utilized simulation techniques
187         \begin{itemize}
188          \item Molecular dynamics (MD) simulations
189          \item Density functional theory (DFT) calculations
190         \end{itemize}
191   \item C and Si self-interstitial point defects in silicon
192   \item Silicon carbide precipitation simulations
193   \item Investigation of a silicon carbide precipitate in silicon
194   \item Summary / Conclusion / Outlook
195  \end{itemize}
196
197 \end{slide}
198
199 % start of contents
200
201 \begin{slide}
202
203  {\large\bf
204   Polytypes of SiC
205  }
206
207  \vspace{4cm}
208
209  \small
210
211 \begin{tabular}{l c c c c c c}
212 \hline
213  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
214 \hline
215 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
216 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
217 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
218 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
219 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
220 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
221 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
222 \hline
223 \end{tabular}
224
225 {\tiny
226  Values for $T=300$ K
227 }
228
229 \begin{picture}(0,0)(-160,-155)
230  \includegraphics[width=7cm]{polytypes.eps}
231 \end{picture}
232 \begin{picture}(0,0)(-10,-185)
233  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
234 \end{picture}
235 \begin{picture}(0,0)(-10,-175)
236  {\tiny cubic (twist)}
237 \end{picture}
238 \begin{picture}(0,0)(-60,-175)
239  {\tiny hexagonal (no twist)}
240 \end{picture}
241 \begin{pspicture}(0,0)(0,0)
242 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
243 \end{pspicture}
244 \begin{pspicture}(0,0)(0,0)
245 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
246 \end{pspicture}
247 \begin{pspicture}(0,0)(0,0)
248 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
249 \end{pspicture}
250
251 \end{slide}
252
253 \begin{slide}
254
255  {\large\bf
256   Fabrication of silicon carbide
257  }
258
259  \small
260  
261  \vspace{4pt}
262
263  SiC - \emph{Born from the stars, perfected on earth.}
264  
265  \vspace{4pt}
266
267  Conventional thin film SiC growth:
268  \begin{itemize}
269   \item \underline{Sublimation growth using the modified Lely method}
270         \begin{itemize}
271          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
272          \item Surrounded by polycrystalline SiC in a graphite crucible\\
273                at $T=2100-2400 \, ^{\circ} \text{C}$
274          \item Deposition of supersaturated vapor on cooler seed crystal
275         \end{itemize}
276   \item \underline{Homoepitaxial growth using CVD}
277         \begin{itemize}
278          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
279          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
280          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
281          \item High quality but limited in size of substrates
282         \end{itemize}
283   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
284         \begin{itemize}
285          \item Two steps: carbonization and growth
286          \item $T=650-1050 \, ^{\circ} \text{C}$
287          \item Quality and size not yet sufficient
288         \end{itemize}
289  \end{itemize}
290
291  \begin{picture}(0,0)(-280,-65)
292   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
293  \end{picture}
294  \begin{picture}(0,0)(-280,-55)
295   \begin{minipage}{5cm}
296   {\tiny
297    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
298    on 6H-SiC substrate
299   }
300   \end{minipage}
301  \end{picture}
302  \begin{picture}(0,0)(-265,-150)
303   \includegraphics[width=2.4cm]{m_lely.eps}
304  \end{picture}
305  \begin{picture}(0,0)(-333,-175)
306   \begin{minipage}{5cm}
307   {\tiny
308    1. Lid\\[-7pt]
309    2. Heating\\[-7pt]
310    3. Source\\[-7pt]
311    4. Crucible\\[-7pt]
312    5. Insulation\\[-7pt]
313    6. Seed crystal
314   }
315   \end{minipage}
316  \end{picture}
317  \begin{picture}(0,0)(-230,-35)
318  \framebox{
319  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
320  }
321  \end{picture}
322  \begin{picture}(0,0)(-230,-10)
323  \framebox{
324  \begin{minipage}{3cm}
325  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
326                                less advanced}
327  \end{minipage}
328  }
329  \end{picture}
330
331 \end{slide}
332
333 \begin{slide}
334
335  {\large\bf
336   Fabrication of silicon carbide
337  }
338
339  \small
340
341  Alternative approach:
342  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
343  \begin{itemize}
344   \item \underline{Implantation step 1}\\
345         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
346         $\Rightarrow$ box-like distribution of equally sized
347                        and epitactically oriented SiC precipitates
348                        
349   \item \underline{Implantation step 2}\\
350         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
351         $\Rightarrow$ destruction of SiC nanocrystals
352                       in growing amorphous interface layers
353   \item \underline{Annealing}\\
354         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
355         $\Rightarrow$ homogeneous, stoichiometric SiC layer
356                       with sharp interfaces
357  \end{itemize}
358
359  \begin{minipage}{6.3cm}
360  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
361  {\tiny
362   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
363  }
364  \end{minipage}
365 \framebox{
366  \begin{minipage}{6.3cm}
367  \begin{center}
368  {\color{blue}
369   Precipitation mechanism not yet fully understood!
370  }
371  \renewcommand\labelitemi{$\Rightarrow$}
372  \small
373  \underline{Understanding the SiC precipitation}
374  \begin{itemize}
375   \item significant technological progress in SiC thin film formation
376   \item perspectives for processes relying upon prevention of SiC precipitation
377  \end{itemize}
378  \end{center}
379  \end{minipage}
380 }
381  
382 \end{slide}
383
384 \begin{slide}
385
386  {\large\bf
387   Supposed precipitation mechanism of SiC in Si
388  }
389
390  \scriptsize
391
392  \vspace{0.1cm}
393
394  \begin{minipage}{3.8cm}
395  Si \& SiC lattice structure\\[0.2cm]
396  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
397  \hrule
398  \end{minipage}
399  \hspace{0.6cm}
400  \begin{minipage}{3.8cm}
401  \begin{center}
402  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
403  \end{center}
404  \end{minipage}
405  \hspace{0.6cm}
406  \begin{minipage}{3.8cm}
407  \begin{center}
408  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
409  \end{center}
410  \end{minipage}
411
412  \begin{minipage}{4cm}
413  \begin{center}
414  C-Si dimers (dumbbells)\\[-0.1cm]
415  on Si interstitial sites
416  \end{center}
417  \end{minipage}
418  \hspace{0.2cm}
419  \begin{minipage}{4.2cm}
420  \begin{center}
421  Agglomeration of C-Si dumbbells\\[-0.1cm]
422  $\Rightarrow$ dark contrasts
423  \end{center}
424  \end{minipage}
425  \hspace{0.2cm}
426  \begin{minipage}{4cm}
427  \begin{center}
428  Precipitation of 3C-SiC in Si\\[-0.1cm]
429  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
430  \& release of Si self-interstitials
431  \end{center}
432  \end{minipage}
433
434  \begin{minipage}{3.8cm}
435  \begin{center}
436  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
437  \end{center}
438  \end{minipage}
439  \hspace{0.6cm}
440  \begin{minipage}{3.8cm}
441  \begin{center}
442  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
443  \end{center}
444  \end{minipage}
445  \hspace{0.6cm}
446  \begin{minipage}{3.8cm}
447  \begin{center}
448  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
449  \end{center}
450  \end{minipage}
451
452 \begin{pspicture}(0,0)(0,0)
453 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
454 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
455 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
456 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
457 \end{pspicture}
458  
459 \end{slide}
460
461 \begin{slide}
462
463  {\large\bf
464   Molecular dynamics (MD) simulations
465  }
466
467  \vspace{12pt}
468
469  \small
470
471  {\bf MD basics:}
472  \begin{itemize}
473   \item Microscopic description of N particle system
474   \item Analytical interaction potential
475   \item Numerical integration using Newtons equation of motion\\
476         as a propagation rule in 6N-dimensional phase space
477   \item Observables obtained by time and/or ensemble averages
478  \end{itemize}
479  {\bf Details of the simulation:}
480  \begin{itemize}
481   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
482   \item Ensemble: NpT (isothermal-isobaric)
483         \begin{itemize}
484          \item Berendsen thermostat:
485                $\tau_{\text{T}}=100\text{ fs}$
486          \item Berendsen barostat:\\
487                $\tau_{\text{P}}=100\text{ fs}$,
488                $\beta^{-1}=100\text{ GPa}$
489         \end{itemize}
490   \item Erhart/Albe potential: Tersoff-like bond order potential
491   \vspace*{12pt}
492         \[
493         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
494         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
495         \]
496  \end{itemize}
497
498  \begin{picture}(0,0)(-230,-30)
499   \includegraphics[width=5cm]{tersoff_angle.eps} 
500  \end{picture}
501  
502 \end{slide}
503
504 \begin{slide}
505
506  {\large\bf
507   Density functional theory (DFT) calculations
508  }
509
510  \small
511
512  Basic ingredients necessary for DFT
513
514  \begin{itemize}
515   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
516         \begin{itemize}
517          \item ... uniquely determines the ground state potential
518                / wavefunctions
519          \item ... minimizes the systems total energy
520         \end{itemize}
521   \item \underline{Born-Oppenheimer}
522         - $N$ moving electrons in an external potential of static nuclei
523 \[
524 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
525               +\sum_i^N V_{\text{ext}}(r_i)
526               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
527 \]
528   \item \underline{Effective potential}
529         - averaged electrostatic potential \& exchange and correlation
530 \[
531 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
532                  +V_{\text{XC}}[n(r)]
533 \]
534   \item \underline{Kohn-Sham system}
535         - Schr\"odinger equation of N non-interacting particles
536 \[
537 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
538 =\epsilon_i\Phi_i(r)
539 \quad
540 \Rightarrow
541 \quad
542 n(r)=\sum_i^N|\Phi_i(r)|^2
543 \]
544   \item \underline{Self-consistent solution}\\
545 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
546 which in turn depends on $n(r)$
547   \item \underline{Variational principle}
548         - minimize total energy with respect to $n(r)$
549  \end{itemize}
550
551 \end{slide}
552
553 \begin{slide}
554
555  {\large\bf
556   Density functional theory (DFT) calculations
557  }
558
559  \small
560
561  \vspace*{0.2cm}
562
563  Details of applied DFT calculations in this work
564
565  \begin{itemize}
566   \item \underline{Exchange correlation functional}
567         - approximations for the inhomogeneous electron gas
568         \begin{itemize}
569          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
570          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
571         \end{itemize}
572   \item \underline{Plane wave basis set}
573         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
574 \[
575 \rightarrow
576 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
577 \]
578   \item \underline{$k$-point sampling} - $\Gamma$-point only calculations
579   \item \underline{Pseudo potential} 
580         - consider only the valence electrons
581   \item \underline{Code} - VASP 4.6
582  \end{itemize}
583
584  \vspace*{0.2cm}
585
586  MD and structural optimization
587
588  \begin{itemize}
589   \item MD integration: Gear predictor corrector algorithm
590   \item Pressure control: Parrinello-Rahman pressure control
591   \item Structural optimization: Conjugate gradient method
592  \end{itemize}
593
594 \end{slide}
595
596 \begin{slide}
597
598  {\large\bf
599   C and Si self-interstitial point defects in silicon
600  }
601
602  \small
603
604  \vspace*{0.3cm}
605
606 \begin{minipage}{8cm}
607 Procedure:\\[0.3cm]
608   \begin{pspicture}(0,0)(7,5)
609   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
610    \parbox{7cm}{
611    \begin{itemize}
612     \item Creation of c-Si simulation volume
613     \item Periodic boundary conditions
614     \item $T=0\text{ K}$, $p=0\text{ bar}$
615    \end{itemize}
616   }}}}
617 \rput(3.5,2.1){\rnode{insert}{\psframebox{
618  \parbox{7cm}{
619   \begin{center}
620   Insertion of interstitial C/Si atoms
621   \end{center}
622   }}}}
623   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
624    \parbox{7cm}{
625    \begin{center}
626    Relaxation / structural energy minimization
627    \end{center}
628   }}}}
629   \ncline[]{->}{init}{insert}
630   \ncline[]{->}{insert}{cool}
631  \end{pspicture}
632 \end{minipage}
633 \begin{minipage}{5cm}
634   \includegraphics[width=5cm]{unit_cell_e.eps}\\
635 \end{minipage}
636
637 \begin{minipage}{9cm}
638  \begin{tabular}{l c c}
639  \hline
640  & size [unit cells] & \# atoms\\
641 \hline
642 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
643 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
644 \hline
645  \end{tabular}
646 \end{minipage}
647 \begin{minipage}{4cm}
648 {\color{red}$\bullet$} Tetrahedral\\
649 {\color{green}$\bullet$} Hexagonal\\
650 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
651 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
652 {\color{cyan}$\bullet$} Bond-centered\\
653 {\color{black}$\bullet$} Vacancy / Substitutional
654 \end{minipage}
655
656 \end{slide}
657
658 \begin{slide}
659
660  \footnotesize
661
662 \begin{minipage}{9.5cm}
663
664  {\large\bf
665   Si self-interstitial point defects in silicon\\
666  }
667
668 \begin{tabular}{l c c c c c}
669 \hline
670  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
671 \hline
672  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
673  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
674 \hline
675 \end{tabular}\\[0.2cm]
676
677 \begin{minipage}{4.7cm}
678 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
679 \end{minipage}
680 \begin{minipage}{4.7cm}
681 \begin{center}
682 {\tiny nearly T $\rightarrow$ T}\\
683 \end{center}
684 \includegraphics[width=4.7cm]{nhex_tet.ps}
685 \end{minipage}\\
686
687 \underline{Hexagonal} \hspace{2pt}
688 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
689 \framebox{
690 \begin{minipage}{2.7cm}
691 $E_{\text{f}}^*=4.48\text{ eV}$\\
692 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
693 \end{minipage}
694 \begin{minipage}{0.4cm}
695 \begin{center}
696 $\Rightarrow$
697 \end{center}
698 \end{minipage}
699 \begin{minipage}{2.7cm}
700 $E_{\text{f}}=3.96\text{ eV}$\\
701 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
702 \end{minipage}
703 }
704 \begin{minipage}{2.9cm}
705 \begin{flushright}
706 \underline{Vacancy}\\
707 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
708 \end{flushright}
709 \end{minipage}
710
711 \end{minipage}
712 \begin{minipage}{3.5cm}
713
714 \begin{flushright}
715 \underline{\hkl<1 1 0> dumbbell}\\
716 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
717 \underline{Tetrahedral}\\
718 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
719 \underline{\hkl<1 0 0> dumbbell}\\
720 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
721 \end{flushright}
722
723 \end{minipage}
724
725 \end{slide}
726
727 \begin{slide}
728
729 \footnotesize
730
731  {\large\bf
732   C interstitial point defects in silicon\\[-0.1cm]
733  }
734
735 \begin{tabular}{l c c c c c c}
736 \hline
737  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B \\
738 \hline
739  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 \\
740  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & 0.75 & 5.59$^*$ \\
741 \hline
742 \end{tabular}\\[0.1cm]
743
744 \framebox{
745 \begin{minipage}{2.7cm}
746 \underline{Hexagonal} \hspace{2pt}
747 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
748 $E_{\text{f}}^*=9.05\text{ eV}$\\
749 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
750 \end{minipage}
751 \begin{minipage}{0.4cm}
752 \begin{center}
753 $\Rightarrow$
754 \end{center}
755 \end{minipage}
756 \begin{minipage}{2.7cm}
757 \underline{\hkl<1 0 0>}\\
758 $E_{\text{f}}=3.88\text{ eV}$\\
759 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
760 \end{minipage}
761 }
762 \begin{minipage}{2cm}
763 \hfill
764 \end{minipage}
765 \begin{minipage}{3cm}
766 \begin{flushright}
767 \underline{Tetrahedral}\\
768 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
769 \end{flushright}
770 \end{minipage}
771
772 \framebox{
773 \begin{minipage}{2.7cm}
774 \underline{Bond-centered}\\
775 $E_{\text{f}}^*=5.59\text{ eV}$\\
776 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
777 \end{minipage}
778 \begin{minipage}{0.4cm}
779 \begin{center}
780 $\Rightarrow$
781 \end{center}
782 \end{minipage}
783 \begin{minipage}{2.7cm}
784 \underline{\hkl<1 1 0> dumbbell}\\
785 $E_{\text{f}}=5.18\text{ eV}$\\
786 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
787 \end{minipage}
788 }
789 \begin{minipage}{2cm}
790 \hfill
791 \end{minipage}
792 \begin{minipage}{3cm}
793 \begin{flushright}
794 \underline{Substitutional}\\
795 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
796 \end{flushright}
797 \end{minipage}
798
799 \end{slide}
800
801 \begin{slide}
802
803 \footnotesize
804
805  {\large\bf\boldmath
806   C \hkl<1 0 0> dumbbell interstitial configuration\\
807  }
808
809 {\tiny
810 \begin{tabular}{l c c c c c c c c}
811 \hline
812  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
813 \hline
814 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
815 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
816 \hline
817 \end{tabular}\\[0.2cm]
818 \begin{tabular}{l c c c c }
819 \hline
820  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
821 \hline
822 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
823 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
824 \hline
825 \end{tabular}\\[0.2cm]
826 \begin{tabular}{l c c c}
827 \hline
828  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
829 \hline
830 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
831 VASP & 0.109 & -0.065 & 0.174 \\
832 \hline
833 \end{tabular}\\[0.6cm]
834 }
835
836 \begin{minipage}{3.0cm}
837 \begin{center}
838 \underline{Erhart/Albe}
839 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
840 \end{center}
841 \end{minipage}
842 \begin{minipage}{3.0cm}
843 \begin{center}
844 \underline{VASP}
845 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
846 \end{center}
847 \end{minipage}\\
848
849 \begin{picture}(0,0)(-185,10)
850 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
851 \end{picture}
852 \begin{picture}(0,0)(-280,-150)
853 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
854 \end{picture}
855
856 \begin{pspicture}(0,0)(0,0)
857 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
858 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
859 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
860 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
861 \end{pspicture}
862
863 \end{slide}
864
865 \begin{slide}
866
867 \small
868
869 \begin{minipage}{8.5cm}
870
871  {\large\bf
872   Bond-centered interstitial configuration\\[-0.1cm]
873  }
874
875 \begin{minipage}{3.0cm}
876 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
877 \end{minipage}
878 \begin{minipage}{5.2cm}
879 \begin{itemize}
880  \item Linear Si-C-Si bond
881  \item Si: one C \& 3 Si neighbours
882  \item Spin polarized calculations
883  \item No saddle point!\\
884        Real local minimum!
885 \end{itemize}
886 \end{minipage}
887
888 \framebox{
889  \tiny
890  \begin{minipage}[t]{6.5cm}
891   \begin{minipage}[t]{1.2cm}
892   {\color{red}Si}\\
893   {\tiny sp$^3$}\\[0.8cm]
894   \underline{${\color{black}\uparrow}$}
895   \underline{${\color{black}\uparrow}$}
896   \underline{${\color{black}\uparrow}$}
897   \underline{${\color{red}\uparrow}$}\\
898   sp$^3$
899   \end{minipage}
900   \begin{minipage}[t]{1.4cm}
901   \begin{center}
902   {\color{red}M}{\color{blue}O}\\[0.8cm]
903   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
904   $\sigma_{\text{ab}}$\\[0.5cm]
905   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
906   $\sigma_{\text{b}}$
907   \end{center}
908   \end{minipage}
909   \begin{minipage}[t]{1.0cm}
910   \begin{center}
911   {\color{blue}C}\\
912   {\tiny sp}\\[0.2cm]
913   \underline{${\color{white}\uparrow\uparrow}$}
914   \underline{${\color{white}\uparrow\uparrow}$}\\
915   2p\\[0.4cm]
916   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
917   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
918   sp
919   \end{center}
920   \end{minipage}
921   \begin{minipage}[t]{1.4cm}
922   \begin{center}
923   {\color{blue}M}{\color{green}O}\\[0.8cm]
924   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
925   $\sigma_{\text{ab}}$\\[0.5cm]
926   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
927   $\sigma_{\text{b}}$
928   \end{center}
929   \end{minipage}
930   \begin{minipage}[t]{1.2cm}
931   \begin{flushright}
932   {\color{green}Si}\\
933   {\tiny sp$^3$}\\[0.8cm]
934   \underline{${\color{green}\uparrow}$}
935   \underline{${\color{black}\uparrow}$}
936   \underline{${\color{black}\uparrow}$}
937   \underline{${\color{black}\uparrow}$}\\
938   sp$^3$
939   \end{flushright}
940   \end{minipage}
941  \end{minipage}
942 }\\[0.1cm]
943
944 \framebox{
945 \begin{minipage}{4.5cm}
946 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
947 \end{minipage}
948 \begin{minipage}{3.5cm}
949 {\color{gray}$\bullet$} Spin up\\
950 {\color{green}$\bullet$} Spin down\\
951 {\color{blue}$\bullet$} Resulting spin up\\
952 {\color{yellow}$\bullet$} Si atoms\\
953 {\color{red}$\bullet$} C atom
954 \end{minipage}
955 }
956
957 \end{minipage}
958 \begin{minipage}{4.2cm}
959 \begin{flushright}
960 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
961 {\color{green}$\Box$} {\tiny unoccupied}\\
962 {\color{red}$\bullet$} {\tiny occupied}
963 \end{flushright}
964 \end{minipage}
965
966 \end{slide}
967
968 \begin{slide}
969
970  {\large\bf\boldmath
971   Migration of the C \hkl<1 0 0> dumbbell interstitial
972  }
973
974 \scriptsize
975
976  {\small Investigated pathways}
977
978 \begin{minipage}{8.5cm}
979 \begin{minipage}{8.3cm}
980 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
981 \begin{minipage}{2.4cm}
982 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
983 \end{minipage}
984 \begin{minipage}{0.4cm}
985 $\rightarrow$
986 \end{minipage}
987 \begin{minipage}{2.4cm}
988 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
989 \end{minipage}
990 \begin{minipage}{0.4cm}
991 $\rightarrow$
992 \end{minipage}
993 \begin{minipage}{2.4cm}
994 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
995 \end{minipage}
996 \end{minipage}\\
997 \begin{minipage}{8.3cm}
998 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
999 \begin{minipage}{2.4cm}
1000 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1001 \end{minipage}
1002 \begin{minipage}{0.4cm}
1003 $\rightarrow$
1004 \end{minipage}
1005 \begin{minipage}{2.4cm}
1006 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1007 \end{minipage}
1008 \begin{minipage}{0.4cm}
1009 $\rightarrow$
1010 \end{minipage}
1011 \begin{minipage}{2.4cm}
1012 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1013 \end{minipage}
1014 \end{minipage}\\
1015 \begin{minipage}{8.3cm}
1016 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1017 \begin{minipage}{2.4cm}
1018 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1019 \end{minipage}
1020 \begin{minipage}{0.4cm}
1021 $\rightarrow$
1022 \end{minipage}
1023 \begin{minipage}{2.4cm}
1024 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1025 \end{minipage}
1026 \begin{minipage}{0.4cm}
1027 $\rightarrow$
1028 \end{minipage}
1029 \begin{minipage}{2.4cm}
1030 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1031 \end{minipage}
1032 \end{minipage}
1033 \end{minipage}
1034 \framebox{
1035 \begin{minipage}{4.2cm}
1036  {\small Constrained relaxation\\
1037          technique (CRT) method}\\
1038 \includegraphics[width=4cm]{crt_orig.eps}
1039 \begin{itemize}
1040  \item Constrain diffusing atom
1041  \item Static constraints 
1042 \end{itemize}
1043 \vspace*{0.3cm}
1044  {\small Modifications}\\
1045 \includegraphics[width=4cm]{crt_mod.eps}
1046 \begin{itemize}
1047  \item Constrain all atoms
1048  \item Update individual\\
1049        constraints
1050 \end{itemize}
1051 \end{minipage}
1052 }
1053
1054 \end{slide}
1055
1056 \begin{slide}
1057
1058  {\large\bf\boldmath
1059   Migration of the C \hkl<1 0 0> dumbbell interstitial
1060  }
1061
1062 \scriptsize
1063
1064 \framebox{
1065 \begin{minipage}{5.9cm}
1066 \begin{flushleft}
1067 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1068 \end{flushleft}
1069 \begin{center}
1070 \begin{picture}(0,0)(60,0)
1071 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1072 \end{picture}
1073 \begin{picture}(0,0)(-5,0)
1074 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1075 \end{picture}
1076 \begin{picture}(0,0)(-55,0)
1077 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1078 \end{picture}
1079 \begin{picture}(0,0)(12.5,10)
1080 \includegraphics[width=1cm]{110_arrow.eps}
1081 \end{picture}
1082 \begin{picture}(0,0)(90,0)
1083 \includegraphics[height=0.9cm]{001_arrow.eps}
1084 \end{picture}
1085 \end{center}
1086 \vspace*{0.35cm}
1087 \end{minipage}
1088 }
1089 \begin{minipage}{0.3cm}
1090 \hfill
1091 \end{minipage}
1092 \framebox{
1093 \begin{minipage}{5.9cm}
1094 \begin{flushright}
1095 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1096 \end{flushright}
1097 \begin{center}
1098 \begin{picture}(0,0)(60,0)
1099 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1100 \end{picture}
1101 \begin{picture}(0,0)(5,0)
1102 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1103 \end{picture}
1104 \begin{picture}(0,0)(-55,0)
1105 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1106 \end{picture}
1107 \begin{picture}(0,0)(12.5,10)
1108 \includegraphics[width=1cm]{100_arrow.eps}
1109 \end{picture}
1110 \begin{picture}(0,0)(90,0)
1111 \includegraphics[height=0.9cm]{001_arrow.eps}
1112 \end{picture}
1113 \end{center}
1114 \vspace*{0.3cm}
1115 \end{minipage}\\
1116 }
1117
1118 \vspace*{0.05cm}
1119
1120 \framebox{
1121 \begin{minipage}{5.9cm}
1122 \begin{flushleft}
1123 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1124 \end{flushleft}
1125 \begin{center}
1126 \begin{picture}(0,0)(60,0)
1127 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1128 \end{picture}
1129 \begin{picture}(0,0)(10,0)
1130 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1131 \end{picture}
1132 \begin{picture}(0,0)(-60,0)
1133 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1134 \end{picture}
1135 \begin{picture}(0,0)(12.5,10)
1136 \includegraphics[width=1cm]{100_arrow.eps}
1137 \end{picture}
1138 \begin{picture}(0,0)(90,0)
1139 \includegraphics[height=0.9cm]{001_arrow.eps}
1140 \end{picture}
1141 \end{center}
1142 \vspace*{0.3cm}
1143 \end{minipage}
1144 }
1145 \begin{minipage}{0.3cm}
1146 \hfill
1147 \end{minipage}
1148 \begin{minipage}{6.5cm}
1149 VASP results
1150 \begin{itemize}
1151  \item Energetically most favorable path
1152        \begin{itemize}
1153         \item Path 2
1154         \item Activation energy: $\approx$ 0.9 eV 
1155         \item Experimental values: 0.73 ... 0.87 eV
1156        \end{itemize}
1157        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1158  \item Reorientation (path 3)
1159        \begin{itemize}
1160         \item More likely composed of two consecutive steps of type 2
1161         \item Experimental values: 0.77 ... 0.88 eV
1162        \end{itemize}
1163        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1164 \end{itemize}
1165 \end{minipage}
1166
1167 \end{slide}
1168
1169 \begin{slide}
1170
1171  {\large\bf\boldmath
1172   Migration of the C \hkl<1 0 0> dumbbell interstitial
1173  }
1174
1175 \scriptsize
1176
1177 \begin{minipage}{6.5cm}
1178
1179 \framebox{
1180 \begin{minipage}{5.9cm}
1181 \begin{flushleft}
1182 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1183 \end{flushleft}
1184 \begin{center}
1185 \begin{pspicture}(0,0)(0,0)
1186 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1187 \end{pspicture}
1188 \begin{picture}(0,0)(60,-50)
1189 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1190 \end{picture}
1191 \begin{picture}(0,0)(5,-50)
1192 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1193 \end{picture}
1194 \begin{picture}(0,0)(-55,-50)
1195 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1196 \end{picture}
1197 \begin{picture}(0,0)(12.5,-40)
1198 \includegraphics[width=1cm]{110_arrow.eps}
1199 \end{picture}
1200 \begin{picture}(0,0)(90,-45)
1201 \includegraphics[height=0.9cm]{001_arrow.eps}
1202 \end{picture}\\
1203 \begin{pspicture}(0,0)(0,0)
1204 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1205 \end{pspicture}
1206 \begin{picture}(0,0)(60,-15)
1207 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1208 \end{picture}
1209 \begin{picture}(0,0)(35,-15)
1210 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1211 \end{picture}
1212 \begin{picture}(0,0)(-5,-15)
1213 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1214 \end{picture}
1215 \begin{picture}(0,0)(-55,-15)
1216 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1217 \end{picture}
1218 \begin{picture}(0,0)(12.5,-5)
1219 \includegraphics[width=1cm]{100_arrow.eps}
1220 \end{picture}
1221 \begin{picture}(0,0)(90,-15)
1222 \includegraphics[height=0.9cm]{010_arrow.eps}
1223 \end{picture}
1224 \end{center}
1225 \end{minipage}
1226 }\\[0.1cm]
1227
1228 \begin{minipage}{5.9cm}
1229 Erhart/Albe results
1230 \begin{itemize}
1231  \item Lowest activation energy: $\approx$ 2.2 eV
1232  \item 2.4 times higher than VASP
1233  \item Different pathway
1234  \item Transition minima ($\rightarrow$ \hkl<1 1 0> dumbbell)
1235 \end{itemize}
1236 \end{minipage}
1237
1238 \end{minipage}
1239 \begin{minipage}{6.5cm}
1240
1241 \framebox{
1242 \begin{minipage}{5.9cm}
1243 \begin{flushright}
1244 \includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1245 \end{flushright}
1246 \begin{center}
1247 \begin{pspicture}(0,0)(0,0)
1248 \psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1249 \end{pspicture}
1250 \begin{picture}(0,0)(60,-5)
1251 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1252 \end{picture}
1253 \begin{picture}(0,0)(0,-5)
1254 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1255 \end{picture}
1256 \begin{picture}(0,0)(-55,-5)
1257 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1258 \end{picture}
1259 \begin{picture}(0,0)(12.5,5)
1260 \includegraphics[width=1cm]{100_arrow.eps}
1261 \end{picture}
1262 \begin{picture}(0,0)(90,0)
1263 \includegraphics[height=0.9cm]{001_arrow.eps}
1264 \end{picture}
1265 \end{center}
1266 \vspace{0.2cm}
1267 \end{minipage}
1268 }\\[0.2cm]
1269
1270 \framebox{
1271 \begin{minipage}{5.9cm}
1272 \includegraphics[width=5.9cm]{00-1_ip0-10.ps}
1273 \end{minipage}
1274 }
1275
1276 \end{minipage}
1277
1278 \end{slide}
1279
1280 \begin{slide}
1281
1282  {\large\bf\boldmath
1283   Migrations involving the C \hkl<1 1 0> dumbbell interstitial
1284  }
1285
1286 \small
1287
1288 \vspace*{0.1cm}
1289
1290 VASP
1291
1292 \begin{minipage}{6.0cm}
1293 \includegraphics[width=6cm]{vasp_mig/110_mig_vasp.ps}
1294 \end{minipage}
1295 \begin{minipage}{7cm}
1296 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1297 \hkl<0 -1 0> $\stackrel{0.7}{{\color{red}\longrightarrow}}$
1298 \hkl<1 1 0> $\stackrel{0.95}{{\color{blue}\longrightarrow}}$
1299 BC $\stackrel{0.25}{\longrightarrow}$ \hkl<0 0 -1>\\[0.3cm]
1300 Composed of three single transitions\\[0.3cm]
1301 Activation energy of second transition slightly\\
1302 higher than direct transition (path 2)\\[0.3cm]
1303 $\Rightarrow$ very unlikely to happen
1304 \end{minipage}\\[0.2cm]
1305
1306 Erhart/Albe
1307
1308 \begin{minipage}{6.0cm}
1309 \includegraphics[width=6cm]{110_mig.ps}
1310 \end{minipage}
1311 \begin{minipage}{7cm}
1312 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1313 \hkl<0 0 -1> $\stackrel{2.2}{{\color{green}\longrightarrow}}$
1314 \hkl<1 1 0> $\stackrel{0.9}{{\color{red}\longrightarrow}}$
1315 \hkl<0 0 -1>\\[0.3cm]
1316 Composed of two single transitions\\[0.3cm]
1317 Compared to direct transition: (2.2 eV \& 0.5 eV)\\[0.3cm]
1318 $\Rightarrow$ more readily constituting a probable transition
1319 \end{minipage}
1320
1321 \end{slide}
1322
1323 \begin{slide}
1324
1325  {\large\bf\boldmath
1326   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1327  }
1328
1329 \small
1330
1331 \vspace*{0.1cm}
1332
1333 Binding energy: 
1334 $
1335 E_{\text{b}}=
1336 E_{\text{f}}^{\text{defect combination}}-
1337 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1338 E_{\text{f}}^{\text{2nd defect}}
1339 $
1340
1341 \vspace*{0.1cm}
1342
1343 {\scriptsize
1344 \begin{tabular}{l c c c c c c}
1345 \hline
1346  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1347  \hline
1348  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1349  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1350  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1351  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1352  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1353  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1354  \hline
1355  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1356  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1357 \hline
1358 \end{tabular}
1359 }
1360
1361 \vspace*{0.3cm}
1362
1363 \footnotesize
1364
1365 \begin{minipage}[t]{3.8cm}
1366 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1367 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1368 \end{minipage}
1369 \begin{minipage}[t]{3.5cm}
1370 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1371 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1372 \end{minipage}
1373 \begin{minipage}[t]{5.5cm}
1374 \begin{itemize}
1375  \item Restricted to VASP simulations
1376  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1377  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1378  \item Stress compensation / increase
1379  \item Most favorable: C clustering
1380  \item Unfavored: antiparallel orientations
1381  \item Indication of energetically favored\\
1382        agglomeration
1383 \end{itemize}
1384 \end{minipage}
1385
1386 \begin{picture}(0,0)(-295,-130)
1387 \includegraphics[width=3.5cm]{comb_pos.eps}
1388 \end{picture}
1389
1390 \end{slide}
1391
1392 \begin{slide}
1393
1394  {\large\bf\boldmath
1395   Combinations of C-Si \hkl<1 0 0>-type interstitials
1396  }
1397
1398 \small
1399
1400 \vspace*{0.1cm}
1401
1402 Energetically most favorable combinations along \hkl<1 1 0>
1403
1404 \vspace*{0.1cm}
1405
1406 {\scriptsize
1407 \begin{tabular}{l c c c c c c}
1408 \hline
1409  & 1 & 2 & 3 & 4 & 5 & 6\\
1410 \hline
1411 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1412 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1413 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1414 \hline
1415 \end{tabular}
1416 }
1417
1418 \vspace*{0.3cm}
1419
1420 \begin{minipage}{7.0cm}
1421 \includegraphics[width=7cm]{db_along_110_cc.ps}
1422 \end{minipage}
1423 \begin{minipage}{6.0cm}
1424 \begin{center}
1425 {\color{blue}
1426  Interaction proportional to reciprocal cube of C-C distance
1427 }\\[0.2cm]
1428  Saturation in the immediate vicinity
1429 \end{center}
1430 \end{minipage}
1431
1432 \vspace{0.2cm}
1433
1434 \end{slide}
1435
1436 \begin{slide}
1437
1438  {\large\bf\boldmath
1439   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1440  }
1441
1442  \scriptsize
1443
1444 \begin{center}
1445 \begin{minipage}{3.2cm}
1446 \includegraphics[width=3cm]{sub_110_combo.eps}
1447 \end{minipage}
1448 \begin{minipage}{7.8cm}
1449 \begin{tabular}{l c c c c c c}
1450 \hline
1451 C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1452                    \hkl<1 0 1> & \hkl<-1 0 1> \\
1453 \hline
1454 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1455 2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1456 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1457 4 & \RM{4} & B & D & E & E & D \\
1458 5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1459 \hline
1460 \end{tabular}
1461 \end{minipage}
1462 \end{center}
1463
1464 \begin{center}
1465 \begin{tabular}{l c c c c c c c c c c}
1466 \hline
1467 Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1468 \hline
1469 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1470 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1471 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1472 \hline
1473 \end{tabular}
1474 \end{center}
1475
1476 \begin{minipage}{6.0cm}
1477 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1478 \end{minipage}
1479 \begin{minipage}{7cm}
1480 \small
1481 \begin{itemize}
1482  \item IBS: C may displace Si\\
1483        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1484  \item Assumption:\\
1485        \hkl<1 1 0>-type $\rightarrow$ favored combination
1486  \renewcommand\labelitemi{$\Rightarrow$}
1487  \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
1488        ($E_{\text{f}}=3.88\text{ eV}$)
1489  \item Interaction drops quickly to zero\\
1490        (low interaction capture radius)
1491 \end{itemize}
1492 \end{minipage}
1493
1494 \end{slide}
1495
1496 \begin{slide}
1497
1498  {\large\bf\boldmath
1499   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1500  }
1501
1502  \footnotesize
1503
1504 \vspace{0.1cm}
1505
1506 \begin{minipage}[t]{3cm}
1507 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1508 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1509 \end{minipage}
1510 \begin{minipage}[t]{7cm}
1511 \vspace{0.2cm}
1512 \begin{center}
1513  Low activation energies\\
1514  High activation energies for reverse processes\\
1515  $\Downarrow$\\
1516  {\color{blue}C$_{\text{sub}}$ very stable}\\
1517 \vspace*{0.1cm}
1518  \hrule
1519 \vspace*{0.1cm}
1520  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1521  $\Downarrow$\\
1522  {\color{blue}Formation of SiC by successive substitution by C}
1523
1524 \end{center}
1525 \end{minipage}
1526 \begin{minipage}[t]{3cm}
1527 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1528 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1529 \end{minipage}
1530
1531
1532 \framebox{
1533 \begin{minipage}{5.9cm}
1534 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1535 \begin{center}
1536 \begin{picture}(0,0)(70,0)
1537 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1538 \end{picture}
1539 \begin{picture}(0,0)(30,0)
1540 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1541 \end{picture}
1542 \begin{picture}(0,0)(-10,0)
1543 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1544 \end{picture}
1545 \begin{picture}(0,0)(-48,0)
1546 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1547 \end{picture}
1548 \begin{picture}(0,0)(12.5,5)
1549 \includegraphics[width=1cm]{100_arrow.eps}
1550 \end{picture}
1551 \begin{picture}(0,0)(97,-10)
1552 \includegraphics[height=0.9cm]{001_arrow.eps}
1553 \end{picture}
1554 \end{center}
1555 \vspace{0.1cm}
1556 \end{minipage}
1557 }
1558 \begin{minipage}{0.3cm}
1559 \hfill
1560 \end{minipage}
1561 \framebox{
1562 \begin{minipage}{5.9cm}
1563 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1564 \begin{center}
1565 \begin{picture}(0,0)(60,0)
1566 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1567 \end{picture}
1568 \begin{picture}(0,0)(25,0)
1569 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1570 \end{picture}
1571 \begin{picture}(0,0)(-20,0)
1572 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1573 \end{picture}
1574 \begin{picture}(0,0)(-55,0)
1575 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1576 \end{picture}
1577 \begin{picture}(0,0)(12.5,5)
1578 \includegraphics[width=1cm]{100_arrow.eps}
1579 \end{picture}
1580 \begin{picture}(0,0)(95,0)
1581 \includegraphics[height=0.9cm]{001_arrow.eps}
1582 \end{picture}
1583 \end{center}
1584 \vspace{0.1cm}
1585 \end{minipage}
1586 }
1587
1588 \end{slide}
1589
1590 \begin{slide}
1591
1592  {\large\bf
1593   Conclusion of defect / migration / combined defect simulations
1594  }
1595
1596  \small
1597
1598 \vspace*{0.1cm}
1599
1600 Defect structures
1601 \begin{itemize}
1602  \item Accurately described by quantum-mechanical simulations
1603  \item Less correct description by classical potential simulations
1604 \end{itemize}
1605 \vspace*{0.2cm}
1606 \begin{itemize}
1607  \item Consistent with solubility data of C in Si
1608  \item \hkl<1 0 0> C-Si dumbbell interstitial ground state configuration
1609  \item Consistent with reorientation and diffusion experiments
1610  \item C migration pathway in Si identified
1611 \end{itemize} 
1612
1613 \vspace*{0.2cm}
1614
1615 Concerning the precipitation mechanism
1616 \begin{itemize}
1617  \item Agglomeration of C-Si dumbbells energetically favorable
1618  \item C-Si indeed favored compared to
1619        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1620  \item Possible low interaction capture radius of
1621        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1622  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1623        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1624 \end{itemize} 
1625
1626 \vspace*{0.1cm}
1627 \begin{center}
1628 {\color{blue}Some results point to a different precipitation mechanism!}
1629 \end{center}
1630
1631 \end{slide}
1632
1633 \begin{slide}
1634
1635  {\large\bf
1636   Silicon carbide precipitation simulations
1637  }
1638
1639  \small
1640
1641 {\scriptsize
1642  \begin{pspicture}(0,0)(12,6.5)
1643   % nodes
1644   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1645    \parbox{7cm}{
1646    \begin{itemize}
1647     \item Create c-Si volume
1648     \item Periodc boundary conditions
1649     \item Set requested $T$ and $p=0\text{ bar}$
1650     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1651    \end{itemize}
1652   }}}}
1653   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1654    \parbox{7cm}{
1655    Insertion of C atoms at constant T
1656    \begin{itemize}
1657     \item total simulation volume {\pnode{in1}}
1658     \item volume of minimal SiC precipitate {\pnode{in2}}
1659     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1660           precipitate
1661    \end{itemize} 
1662   }}}}
1663   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1664    \parbox{7.0cm}{
1665    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1666   }}}}
1667   \ncline[]{->}{init}{insert}
1668   \ncline[]{->}{insert}{cool}
1669   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1670   \rput(7.8,6){\footnotesize $V_1$}
1671   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1672   \rput(9.2,4.85){\tiny $V_2$}
1673   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1674   \rput(9.55,4.45){\footnotesize $V_3$}
1675   \rput(7.9,3.2){\pnode{ins1}}
1676   \rput(9.22,2.8){\pnode{ins2}}
1677   \rput(11.0,2.4){\pnode{ins3}}
1678   \ncline[]{->}{in1}{ins1}
1679   \ncline[]{->}{in2}{ins2}
1680   \ncline[]{->}{in3}{ins3}
1681  \end{pspicture}
1682 }
1683
1684 \begin{itemize}
1685  \item Restricted to classical potential simulations
1686  \item $V_2$ and $V_3$ considered due to low diffusion
1687  \item Amount of C atoms: 6000
1688        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1689  \item Simulation volume: $31\times 31\times 31$ unit cells
1690        (238328 Si atoms)
1691 \end{itemize}
1692
1693 \end{slide}
1694
1695 \begin{slide}
1696
1697  {\large\bf\boldmath
1698   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1699  }
1700
1701  \small
1702
1703 \begin{minipage}{6.5cm}
1704 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1705 \end{minipage} 
1706 \begin{minipage}{6.5cm}
1707 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1708 \end{minipage} 
1709
1710 \begin{minipage}{6.5cm}
1711 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1712 \end{minipage} 
1713 \begin{minipage}{6.5cm}
1714 \scriptsize
1715 \underline{Low C concentration ($V_1$)}\\
1716 \hkl<1 0 0> C-Si dumbbell dominated structure
1717 \begin{itemize}
1718  \item Si-C bumbs around 0.19 nm
1719  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1720        concatenated dumbbells of various orientation
1721  \item Si-Si NN distance stretched to 0.3 nm
1722 \end{itemize}
1723 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1724 \underline{High C concentration ($V_2$, $V_3$)}\\
1725 High amount of strongly bound C-C bonds\\
1726 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1727 Only short range order observable\\
1728 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1729 \end{minipage} 
1730
1731 \end{slide}
1732
1733 \begin{slide}
1734
1735  {\large\bf
1736   Limitations of molecular dynamics and short range potentials
1737  }
1738
1739 \footnotesize
1740
1741 \vspace{0.2cm}
1742
1743 \underline{Time scale problem of MD}\\[0.2cm]
1744 Minimize integration error\\
1745 $\Rightarrow$ discretization considerably smaller than
1746               reciprocal of fastest vibrational mode\\[0.1cm]
1747 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
1748 $\Rightarrow$ suitable choice of time step:
1749               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
1750 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
1751 Several local minima in energy surface separated by large energy barriers\\
1752 $\Rightarrow$ transition event corresponds to a multiple
1753               of vibrational periods\\
1754 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
1755               infrequent transition events\\[0.1cm]
1756 {\color{blue}Accelerated methods:}
1757 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1758
1759 \vspace{0.3cm}
1760
1761 \underline{Limitations related to the short range potential}\\[0.2cm]
1762 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
1763 and 2$^{\text{nd}}$ next neighbours\\
1764 $\Rightarrow$ overestimated unphysical high forces of next neighbours
1765
1766 \vspace{0.3cm}
1767
1768 \framebox{
1769 \color{red}
1770 Potential enhanced problem of slow phase space propagation
1771 }
1772
1773 \vspace{0.3cm}
1774
1775 \underline{Approach to the (twofold) problem}\\[0.2cm]
1776 Increased temperature simulations without TAD corrections\\
1777 (accelerated methods or higher time scales exclusively not sufficient)
1778
1779 \begin{picture}(0,0)(-260,-30)
1780 \framebox{
1781 \begin{minipage}{4.2cm}
1782 \tiny
1783 \begin{center}
1784 \vspace{0.03cm}
1785 \underline{IBS}
1786 \end{center}
1787 \begin{itemize}
1788 \item 3C-SiC also observed for higher T
1789 \item higher T inside sample
1790 \item structural evolution vs.\\
1791       equilibrium properties
1792 \end{itemize}
1793 \end{minipage}
1794 }
1795 \end{picture}
1796
1797 \begin{picture}(0,0)(-305,-155)
1798 \framebox{
1799 \begin{minipage}{2.5cm}
1800 \tiny
1801 \begin{center}
1802 retain proper\\
1803 thermodynmic sampling
1804 \end{center}
1805 \end{minipage}
1806 }
1807 \end{picture}
1808
1809 \end{slide}
1810
1811 \begin{slide}
1812
1813  {\large\bf
1814   Increased temperature simulations at low C concentration
1815  }
1816
1817 \small
1818
1819 \begin{minipage}{6.5cm}
1820 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
1821 \end{minipage}
1822 \begin{minipage}{6.5cm}
1823 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
1824 \end{minipage}
1825
1826 \begin{minipage}{6.5cm}
1827 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
1828 \end{minipage}
1829 \begin{minipage}{6.5cm}
1830 \scriptsize
1831  \underline{Si-C bonds:}
1832  \begin{itemize}
1833   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1834   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1835  \end{itemize}
1836  \underline{Si-Si bonds:}
1837  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1838  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1839  \underline{C-C bonds:}
1840  \begin{itemize}
1841   \item C-C next neighbour pairs reduced (mandatory)
1842   \item Peak at 0.3 nm slightly shifted
1843         \begin{itemize}
1844          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1845                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1846                combinations (|)\\
1847                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1848                ($\downarrow$)
1849          \item Range [|-$\downarrow$]:
1850                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1851                with nearby Si$_{\text{I}}$}
1852         \end{itemize}
1853  \end{itemize}
1854 \end{minipage}
1855
1856 \begin{picture}(0,0)(-330,-74)
1857 \color{blue}
1858 \framebox{
1859 \begin{minipage}{1.6cm}
1860 \tiny
1861 \begin{center}
1862 stretched SiC\\[-0.1cm]
1863 in c-Si
1864 \end{center}
1865 \end{minipage}
1866 }
1867 \end{picture}
1868
1869 \end{slide}
1870
1871 \begin{slide}
1872
1873  {\large\bf
1874   Increased temperature simulations at high C concentration
1875  }
1876
1877 \footnotesize
1878
1879 \begin{minipage}{6.5cm}
1880 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1881 \end{minipage}
1882 \begin{minipage}{6.5cm}
1883 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1884 \end{minipage}
1885
1886 \begin{center}
1887 Decreasing cut-off artifact\\
1888 High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
1889 $\Rightarrow$ hard to categorize
1890 \end{center}
1891
1892 \vspace{0.1cm}
1893
1894 \framebox{
1895 \begin{minipage}[t]{6.0cm}
1896 0.186 nm: Si-C pairs $\uparrow$\\
1897 (as expected in 3C-SiC)\\[0.2cm]
1898 0.282 nm: Si-C-C\\[0.2cm]
1899 $\approx$0.35 nm: C-Si-Si
1900 \end{minipage}
1901 }
1902 \begin{minipage}{0.2cm}
1903 \hfill
1904 \end{minipage}
1905 \framebox{
1906 \begin{minipage}[t]{6.0cm}
1907 0.15 nm: C-C pairs $\uparrow$\\
1908 (as expected in graphite/diamond)\\[0.2cm]
1909 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
1910 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
1911 \end{minipage}
1912 }
1913
1914 \vspace{0.1cm}
1915
1916 \begin{center}
1917 {\color{red}Amorphous} SiC-like phase remains\\
1918 Slightly sharper peaks
1919 $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
1920 due to temperature\\[0.1cm]
1921 \framebox{
1922 \bf
1923 Continue with higher temperatures and longer time scales
1924 }
1925 \end{center}
1926
1927 \end{slide}
1928
1929 \begin{slide}
1930
1931  {\large\bf
1932   Valuation of a practicable temperature limit
1933  }
1934
1935  \small
1936
1937 \vspace{0.1cm}
1938
1939 \begin{center}
1940 \framebox{
1941 {\color{blue}
1942 Recrystallization is a hard task!
1943 $\Rightarrow$ Avoid melting!
1944 }
1945 }
1946 \end{center}
1947  
1948 \vspace{0.1cm}
1949
1950 \footnotesize
1951
1952 \begin{minipage}{7.5cm}
1953 \includegraphics[width=7cm]{fe_and_t.ps}
1954 \end{minipage}
1955 \begin{minipage}{5.5cm}
1956 \underline{Melting does not occur instantly after}\\
1957 \underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
1958 \begin{itemize}
1959 \item required transition enthalpy
1960 \item hysterisis behaviour
1961 \end{itemize}
1962 \underline{Heating up c-Si by 1 K/ps}
1963 \begin{itemize}
1964 \item transition occurs at $\approx$ 3125 K
1965 \item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
1966       (literature: 50.2 kJ/mole)
1967 \end{itemize}
1968 \end{minipage}
1969
1970 \vspace{0.1cm}
1971
1972 \framebox{
1973 \begin{minipage}{4cm}
1974 Initially chosen temperatures:\\
1975 $1.0 - 1.2 \cdot T_{\text{m}}$
1976 \end{minipage}
1977 }
1978 \begin{minipage}{3cm}
1979 \begin{center}
1980 $\Longrightarrow$
1981 \end{center}
1982 \end{minipage}
1983 \framebox{
1984 \begin{minipage}{5cm}
1985 Introduced C (defects)\\
1986 $\rightarrow$ reduction of transition point\\
1987 $\rightarrow$ melting already at $T_{\text{m}}$
1988 \end{minipage}
1989 }
1990
1991 \vspace{0.4cm}
1992
1993 \begin{center}
1994 \framebox{
1995 {\color{blue}
1996 Maximum temperature used: $0.95\cdot T_{\text{m}}$
1997 }
1998 }
1999 \end{center}
2000
2001 \end{slide}
2002
2003 \begin{slide}
2004
2005  {\large\bf
2006   Long time scale simulations at maximum temperature
2007  }
2008
2009  \small
2010  
2011 \vspace{1cm}
2012
2013 \underline{Differences}
2014 \begin{itemize}
2015  \item Cubic volume $\Rightarrow$ spherical volume
2016  \item Amount of C atoms: 6000 $\rightarrow$ 5500
2017  \item Temperature set to $0.95 \cdot T_{\text{m}}$
2018  \item Simulation volume: 21 unit cells of c-Si in each direction
2019 \end{itemize}
2020
2021 \vspace{1cm}
2022
2023 \begin{center}
2024  {\bf
2025 Simulations in progress! :)\\
2026  }
2027 ... show evolution of radial distribution in ns timesteps ...
2028 \end{center}
2029
2030 \vspace{4cm}
2031
2032 \end{slide}
2033
2034 \begin{slide}
2035
2036  {\large\bf
2037   Investigation of a silicon carbide precipitate in silicon
2038  }
2039
2040  \footnotesize
2041
2042 \vspace{0.2cm}
2043
2044 \framebox{
2045 \scriptsize
2046 \begin{minipage}{5.3cm}
2047 \[
2048 \frac{8}{a_{\text{Si}}^3}(
2049 \underbrace{21^3 a_{\text{Si}}^3}_{=V}
2050 -\frac{4}{3}\pi x^3)+
2051 \underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
2052 =21^3\cdot 8
2053 \]
2054 \[
2055 \Downarrow
2056 \]
2057 \[
2058 \frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
2059 \Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
2060 \]
2061 \[
2062 y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
2063 \]
2064 \end{minipage}
2065 }
2066 \begin{minipage}{0.3cm}
2067 \hfill
2068 \end{minipage}
2069 \begin{minipage}{7.0cm}
2070 \underline{Construction}
2071 \begin{itemize}
2072  \item Simulation volume: 21$^3$ unit cells of c-Si
2073  \item Spherical topotactically aligned precipitate\\
2074        $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
2075  \item Create c-Si but skipped inside sphere of radius $x$
2076  \item Create 3C-SiC inside sphere of radius $x$\\
2077        and lattice constant $y$
2078  \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
2079 \end{itemize}
2080 \end{minipage}
2081
2082 \vspace{0.3cm}
2083
2084 \begin{minipage}{6.2cm}
2085 \includegraphics[width=6cm,draft=false]{pc_0.ps}
2086 \end{minipage}
2087 \begin{minipage}{6.8cm}
2088 \underline{Results}
2089 \begin{itemize}
2090  \item Slight increase of c-Si lattice constant!
2091  \item C-C peaks (imply same distanced Si-Si peaks)
2092        \begin{itemize}
2093         \item New peak at 0.307 nm: 2$^{\text{nd}}$ NN in 3C-SiC
2094         \item Bumps ({\color{green}$\downarrow$}):
2095               4$^{\text{th}}$ and 6$^{\text{th}}$ NN
2096        \end{itemize}
2097  \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
2098        $\rightarrow$ compressed precipitate
2099  \item Interface tension:\\
2100        20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$\\
2101        (literature: $2 - 8 \times 10^{-4}$ J/cm$^2$)
2102 \end{itemize}
2103 \end{minipage}
2104
2105 \end{slide}
2106
2107 \begin{slide}
2108
2109  {\large\bf
2110   Investigation of a silicon carbide precipitate in silicon
2111  }
2112
2113  \footnotesize
2114
2115 \begin{minipage}{7cm}
2116 \underline{Appended annealing steps}
2117 \begin{itemize}
2118  \item artificially constructed interface\\
2119        $\rightarrow$ allow for rearrangement of interface atoms
2120  \item check SiC stability
2121 \end{itemize}
2122 \underline{Temperature schedule}
2123 \begin{itemize}
2124  \item rapidly heat up structure up to $2050\,^{\circ}\mathrm{C}$\\
2125        (75 K/ps)
2126  \item slow heating up to $1.2\cdot T_{\text{m}}=2940\text{ K}$
2127        by 1 K/ps\\
2128        $\rightarrow$ melting at around 2840 K
2129        (\href{../video/sic_prec_120.avi}{$\rhd$})
2130  \item cooling down structure at 100 \% $T_{\text{m}}$ (1 K/ps)\\
2131        $\rightarrow$ no energetically more favorable struture
2132 \end{itemize}
2133 \end{minipage}
2134 \begin{minipage}{6cm}
2135 \includegraphics[width=6.7cm]{fe_and_t_sic.ps}
2136 \end{minipage}
2137
2138 \begin{minipage}{4cm}
2139 \includegraphics[width=4cm]{sic_prec/melt_01.eps}
2140 \end{minipage}
2141 \begin{minipage}{0.4cm}
2142 $\rightarrow$
2143 \end{minipage}
2144 \begin{minipage}{4cm}
2145 \includegraphics[width=4cm]{sic_prec/melt_02.eps}
2146 \end{minipage}
2147 \begin{minipage}{0.4cm}
2148 $\rightarrow$
2149 \end{minipage}
2150 \begin{minipage}{4cm}
2151 \includegraphics[width=4cm]{sic_prec/melt_03.eps}
2152 \end{minipage}
2153
2154 \end{slide}
2155
2156 \begin{slide}
2157
2158  {\large\bf
2159   Summary / Conclusion / Outlook
2160  }
2161
2162  \scriptsize
2163
2164 \vspace{0.1cm}
2165
2166 \framebox{
2167 \begin{minipage}{12.9cm}
2168  \underline{Defects}
2169  \begin{itemize}
2170   \item Summary \& conclusion
2171         \begin{itemize}
2172          \item Point defects excellently / fairly well described
2173                by QM / classical potential simulations
2174          \item Identified migration path explaining
2175                diffusion and reorientation experiments
2176          \item Agglomeration of point defects energetically favorable
2177          \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2178         \end{itemize}
2179   \item Todo
2180         \begin{itemize}
2181          \item Discussions concerning interpretation of QM results (Paderborn)
2182          \item Compare migration barrier of
2183                \hkl<1 1 0> Si and C-Si \hkl<1 0 0> dumbbell
2184          \item Combination: Vacancy \& \hkl<1 1 0> Si self-interstitial \&
2185                             C-Si \hkl<1 0 0> dumbbell (IBS)
2186         \end{itemize}
2187  \end{itemize}
2188 \end{minipage}
2189 }
2190
2191 \vspace{0.2cm}
2192
2193 \framebox{
2194 \begin{minipage}[t]{6.2cm}
2195  \underline{Pecipitation simulations}
2196  \begin{itemize}
2197   \item Summary \& conclusion
2198         \begin{itemize}
2199          \item Low T
2200                $\rightarrow$ C-Si \hkl<1 0 0> dumbbell\\
2201                dominated structure
2202          \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2203          \item High C concentration\\
2204                $\rightarrow$ amorphous SiC like phase
2205         \end{itemize}
2206   \item Todo
2207         \begin{itemize}
2208          \item Accelerated method: self-guided MD
2209          \item Activation relaxation technique
2210          \item Constrainted transition path
2211         \end{itemize}
2212  \end{itemize}
2213 \end{minipage}
2214 }
2215 \framebox{
2216 \begin{minipage}[t]{6.2cm}
2217  \underline{Constructed 3C-SiC precipitate}
2218  \begin{itemize}
2219   \item Summary \& conclusion
2220         \begin{itemize}
2221          \item Small / stable / compressed 3C-SiC\\
2222                precipitate in slightly stretched\\
2223                c-Si matrix
2224          \item Interface tension matches experiemnts
2225         \end{itemize}
2226   \item Todo
2227         \begin{itemize}
2228          \item Try to improve interface
2229          \item Precipitates of different size
2230         \end{itemize}
2231  \end{itemize}
2232 \end{minipage}
2233 }
2234
2235  \small
2236
2237 \end{slide}
2238
2239 \begin{slide}
2240
2241  {\large\bf
2242   Acknowledgements
2243  }
2244
2245  \small
2246
2247  
2248
2249 \end{slide}
2250
2251 \end{document}