still dft, sec checkin
[lectures/latex.git] / posic / talks / seminar_2010.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[greek,german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 %\usepackage{epic}
24 %\usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage{miller}
30
31 \usepackage[setpagesize=false]{hyperref}
32
33 \usepackage{semcolor}
34 \usepackage{semlayer}           % Seminar overlays
35 \usepackage{slidesec}           % Seminar sections and list of slides
36
37 \input{seminar.bug}             % Official bugs corrections
38 \input{seminar.bg2}             % Unofficial bugs corrections
39
40 \articlemag{1}
41
42 \special{landscape}
43
44 % font
45 %\usepackage{cmbright}
46 %\renewcommand{\familydefault}{\sfdefault}
47 %\usepackage{mathptmx}
48
49 \usepackage{upgreek}
50
51 \begin{document}
52
53 \extraslideheight{10in}
54 \slideframe{none}
55
56 \pagestyle{empty}
57
58 % specify width and height
59 \slidewidth 27.7cm 
60 \slideheight 19.1cm 
61
62 % shift it into visual area properly
63 \def\slideleftmargin{3.3cm}
64 \def\slidetopmargin{0.6cm}
65
66 \newcommand{\ham}{\mathcal{H}}
67 \newcommand{\pot}{\mathcal{V}}
68 \newcommand{\foo}{\mathcal{U}}
69 \newcommand{\vir}{\mathcal{W}}
70
71 % itemize level ii
72 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
73
74 % colors
75 \newrgbcolor{si-yellow}{.6 .6 0}
76 \newrgbcolor{hb}{0.75 0.77 0.89}
77 \newrgbcolor{lbb}{0.75 0.8 0.88}
78 \newrgbcolor{hlbb}{0.825 0.88 0.968}
79 \newrgbcolor{lachs}{1.0 .93 .81}
80
81 % topic
82
83 \begin{slide}
84 \begin{center}
85
86  \vspace{16pt}
87
88  {\LARGE\bf
89   Atomistic simulation study of the silicon carbide precipitation
90   in silicon
91  }
92
93  \vspace{48pt}
94
95  \textsc{F. Zirkelbach}
96
97  \vspace{48pt}
98
99  Lehrstuhlseminar
100
101  \vspace{08pt}
102
103  17. Juni 2010
104
105 \end{center}
106 \end{slide}
107
108 % motivation / properties / applications of silicon carbide
109 \begin{slide}
110
111 \small
112
113 \begin{pspicture}(0,0)(13.5,5)
114
115
116
117  \psframe*[linecolor=hb](0,0)(13.5,5)
118
119  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
120  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
121
122  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
123
124  \rput[lt](0.5,4){wide band gap}
125  \rput[lt](0.5,3.5){high electric breakdown field}
126  \rput[lt](0.5,3){good electron mobility}
127  \rput[lt](0.5,2.5){high electron saturation drift velocity}
128  \rput[lt](0.5,2){high thermal conductivity}
129
130  \rput[lt](0.5,1.5){hard and mechanically stable}
131  \rput[lt](0.5,1){chemically inert}
132
133  \rput[lt](0.5,0.5){radiation hardness}
134
135  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
136
137  \rput[rt](13,3.85){high-temperature, high power}
138  \rput[rt](13,3.5){and high-frequency}
139  \rput[rt](13,3.15){electronic and optoelectronic devices}
140
141  \rput[rt](13,2.35){material suitable for extreme conditions}
142  \rput[rt](13,2){microelectromechanical systems}
143  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
144
145  \rput[rt](13,0.85){first wall reactor material, detectors}
146  \rput[rt](13,0.5){and electronic devices for space}
147
148 \end{pspicture}
149
150 \begin{picture}(0,0)(-10,68)
151 \includegraphics[width=2.6cm]{wide_band_gap.eps}
152 \end{picture}
153 \begin{picture}(0,0)(-295,-165)
154 \includegraphics[width=3cm]{sic_led.eps}
155 \end{picture}
156 \begin{picture}(0,0)(-215,-165)
157 \includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
158 \end{picture}
159 \begin{picture}(0,0)(-313,65)
160 \includegraphics[width=2.2cm]{infineon_schottky.eps}
161 \end{picture}
162 \begin{picture}(0,0)(-220,65)
163 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
164 \end{picture}
165
166 \end{slide}
167
168 % contents
169
170 \begin{slide}
171
172 {\large\bf
173  Outline
174 }
175
176  \begin{itemize}
177   \item Polyteps and fabrication of silicon carbide
178   \item Supposed precipitation mechanism of SiC in Si
179   \item Utilized simulation techniques
180         \begin{itemize}
181          \item Molecular dynamics (MD) simulations
182          \item Density functional theory (DFT) calculations
183         \end{itemize}
184   \item C and Si self-interstitial point defects in silicon
185   \item Silicon carbide precipitation simulations
186   \item Investigation of a silicon carbide precipitate in silicon
187   \item Summary / Conclusion / Outlook
188  \end{itemize}
189
190 \end{slide}
191
192 % start of contents
193
194 \begin{slide}
195
196  {\large\bf
197   Polytypes of SiC
198  }
199
200  \vspace{4cm}
201
202  \small
203
204 \begin{tabular}{l c c c c c c}
205 \hline
206  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
207 \hline
208 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
209 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
210 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
211 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
212 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
213 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
214 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
215 \hline
216 \end{tabular}
217
218 {\tiny
219  Values for $T=300$ K
220 }
221
222 \begin{picture}(0,0)(-160,-155)
223  \includegraphics[width=7cm]{polytypes.eps}
224 \end{picture}
225 \begin{picture}(0,0)(-10,-185)
226  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
227 \end{picture}
228 \begin{picture}(0,0)(-10,-175)
229  {\tiny cubic (twist)}
230 \end{picture}
231 \begin{picture}(0,0)(-60,-175)
232  {\tiny hexagonal (no twist)}
233 \end{picture}
234 \begin{pspicture}(0,0)(0,0)
235 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
236 \end{pspicture}
237 \begin{pspicture}(0,0)(0,0)
238 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
239 \end{pspicture}
240 \begin{pspicture}(0,0)(0,0)
241 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
242 \end{pspicture}
243
244 \end{slide}
245
246 \begin{slide}
247
248  {\large\bf
249   Fabrication of silicon carbide
250  }
251
252  \small
253  
254  \vspace{4pt}
255
256  SiC - \emph{Born from the stars, perfected on earth.}
257  
258  \vspace{4pt}
259
260  Conventional thin film SiC growth:
261  \begin{itemize}
262   \item \underline{Sublimation growth using the modified Lely method}
263         \begin{itemize}
264          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
265          \item Surrounded by polycrystalline SiC in a graphite crucible\\
266                at $T=2100-2400 \, ^{\circ} \text{C}$
267          \item Deposition of supersaturated vapor on cooler seed crystal
268         \end{itemize}
269   \item \underline{Homoepitaxial growth using CVD}
270         \begin{itemize}
271          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
272          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
273          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
274          \item High quality but limited in size of substrates
275         \end{itemize}
276   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
277         \begin{itemize}
278          \item Two steps: carbonization and growth
279          \item $T=650-1050 \, ^{\circ} \text{C}$
280          \item Quality and size not yet sufficient
281         \end{itemize}
282  \end{itemize}
283
284  \begin{picture}(0,0)(-280,-65)
285   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
286  \end{picture}
287  \begin{picture}(0,0)(-280,-55)
288   \begin{minipage}{5cm}
289   {\tiny
290    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
291    on 6H-SiC substrate
292   }
293   \end{minipage}
294  \end{picture}
295  \begin{picture}(0,0)(-265,-150)
296   \includegraphics[width=2.4cm]{m_lely.eps}
297  \end{picture}
298  \begin{picture}(0,0)(-333,-175)
299   \begin{minipage}{5cm}
300   {\tiny
301    1. Lid\\[-7pt]
302    2. Heating\\[-7pt]
303    3. Source\\[-7pt]
304    4. Crucible\\[-7pt]
305    5. Insulation\\[-7pt]
306    6. Seed crystal
307   }
308   \end{minipage}
309  \end{picture}
310
311 \end{slide}
312
313 \begin{slide}
314
315  {\large\bf
316   Fabrication of silicon carbide
317  }
318
319  \small
320
321  Alternative approach:
322  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
323  \begin{itemize}
324   \item \underline{Implantation step 1}\\
325         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
326         $\Rightarrow$ box-like distribution of equally sized
327                        and epitactically oriented SiC precipitates
328                        
329   \item \underline{Implantation step 2}\\
330         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
331         $\Rightarrow$ destruction of SiC nanocrystals
332                       in growing amorphous interface layers
333   \item \underline{Annealing}\\
334         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
335         $\Rightarrow$ homogeneous, stoichiometric SiC layer
336                       with sharp interfaces
337  \end{itemize}
338
339  \begin{minipage}{6.3cm}
340  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
341  {\tiny
342   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
343  }
344  \end{minipage}
345  \begin{minipage}{6.3cm}
346  \begin{center}
347  {\color{blue}
348   Precipitation mechanism not yet fully understood!
349  }
350  \renewcommand\labelitemi{$\Rightarrow$}
351  \small
352  \underline{Understanding the SiC precipitation}
353  \begin{itemize}
354   \item significant technological progress in SiC thin film formation
355   \item perspectives for processes relying upon prevention of SiC precipitation
356  \end{itemize}
357  \end{center}
358  \end{minipage}
359  
360 \end{slide}
361
362 \begin{slide}
363
364  {\large\bf
365   Supposed precipitation mechanism of SiC in Si
366  }
367
368  \scriptsize
369
370  \vspace{0.1cm}
371
372  \begin{minipage}{3.8cm}
373  Si \& SiC lattice structure\\[0.2cm]
374  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
375  \hrule
376  \end{minipage}
377  \hspace{0.6cm}
378  \begin{minipage}{3.8cm}
379  \begin{center}
380  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
381  \end{center}
382  \end{minipage}
383  \hspace{0.6cm}
384  \begin{minipage}{3.8cm}
385  \begin{center}
386  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
387  \end{center}
388  \end{minipage}
389
390  \begin{minipage}{4cm}
391  \begin{center}
392  C-Si dimers (dumbbells)\\[-0.1cm]
393  on Si interstitial sites
394  \end{center}
395  \end{minipage}
396  \hspace{0.2cm}
397  \begin{minipage}{4.2cm}
398  \begin{center}
399  Agglomeration of C-Si dumbbells\\[-0.1cm]
400  $\Rightarrow$ dark contrasts
401  \end{center}
402  \end{minipage}
403  \hspace{0.2cm}
404  \begin{minipage}{4cm}
405  \begin{center}
406  Precipitation of 3C-SiC in Si\\[-0.1cm]
407  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
408  \& release of Si self-interstitials
409  \end{center}
410  \end{minipage}
411
412  \begin{minipage}{3.8cm}
413  \begin{center}
414  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
415  \end{center}
416  \end{minipage}
417  \hspace{0.6cm}
418  \begin{minipage}{3.8cm}
419  \begin{center}
420  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
421  \end{center}
422  \end{minipage}
423  \hspace{0.6cm}
424  \begin{minipage}{3.8cm}
425  \begin{center}
426  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
427  \end{center}
428  \end{minipage}
429
430 \begin{pspicture}(0,0)(0,0)
431 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
432 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
433 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
434 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
435 \end{pspicture}
436  
437 \end{slide}
438
439 \begin{slide}
440
441  {\large\bf
442   Basics of molecular dynamics (MD) simulations
443  }
444
445  \vspace{12pt}
446
447  \small
448
449  {\bf MD basics:}
450  \begin{itemize}
451   \item Microscopic description of N particle system
452   \item Analytical interaction potential
453   \item Numerical integration using Newtons equation of motion\\
454         as a propagation rule in 6N-dimensional phase space
455   \item Observables obtained by time and/or ensemble averages
456  \end{itemize}
457  {\bf Details of the simulation:}
458  \begin{itemize}
459   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
460   \item Ensemble: NpT (isothermal-isobaric)
461         \begin{itemize}
462          \item Berendsen thermostat:
463                $\tau_{\text{T}}=100\text{ fs}$
464          \item Berendsen barostat:\\
465                $\tau_{\text{P}}=100\text{ fs}$,
466                $\beta^{-1}=100\text{ GPa}$
467         \end{itemize}
468   \item Potential: Tersoff-like bond order potential
469   \vspace*{12pt}
470         \[
471         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
472         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
473         \]
474  \end{itemize}
475
476  \begin{picture}(0,0)(-230,-30)
477   \includegraphics[width=5cm]{tersoff_angle.eps} 
478  \end{picture}
479  
480 \end{slide}
481
482 \begin{slide}
483
484  {\large\bf
485   Basics of density functional theory (DFT) calculations
486  }
487
488  \small
489
490  Ingredients
491  \begin{itemize}
492   \item Hohenberg-Kohn (HK) theorem
493   \item \underline{Born-Oppenheimer}
494         - $N$ moving electrons in an external potential of static nuclei\\
495 \[
496 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
497               +\sum_i^N V_{\text{ext}}(r_i)
498               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
499 \]
500   \item \underline{Effective potential}
501         - replace electrostatic potential by an average over e$^-$ positions\\
502 \[
503 V_{\text{eff}}=...
504 \]
505   \item Exchange correlation (EC) LDA / GGA
506   \item Self-consistent solution
507   \item Plane wave basis set
508   \item Pseudo potential
509  \end{itemize}
510
511 \end{slide}
512
513
514 \end{document}