finished prec model
[lectures/latex.git] / posic / talks / seminar_2010.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[greek,german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 %\usepackage{epic}
24 %\usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage{miller}
30
31 \usepackage[setpagesize=false]{hyperref}
32
33 \usepackage{semcolor}
34 \usepackage{semlayer}           % Seminar overlays
35 \usepackage{slidesec}           % Seminar sections and list of slides
36
37 \input{seminar.bug}             % Official bugs corrections
38 \input{seminar.bg2}             % Unofficial bugs corrections
39
40 \articlemag{1}
41
42 \special{landscape}
43
44 % font
45 %\usepackage{cmbright}
46 %\renewcommand{\familydefault}{\sfdefault}
47 %\usepackage{mathptmx}
48
49 \usepackage{upgreek}
50
51 \begin{document}
52
53 \extraslideheight{10in}
54 \slideframe{none}
55
56 \pagestyle{empty}
57
58 % specify width and height
59 \slidewidth 27.7cm 
60 \slideheight 19.1cm 
61
62 % shift it into visual area properly
63 \def\slideleftmargin{3.3cm}
64 \def\slidetopmargin{0.6cm}
65
66 \newcommand{\ham}{\mathcal{H}}
67 \newcommand{\pot}{\mathcal{V}}
68 \newcommand{\foo}{\mathcal{U}}
69 \newcommand{\vir}{\mathcal{W}}
70
71 % itemize level ii
72 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
73
74 % colors
75 \newrgbcolor{si-yellow}{.6 .6 0}
76 \newrgbcolor{hb}{0.75 0.77 0.89}
77 \newrgbcolor{lbb}{0.75 0.8 0.88}
78 \newrgbcolor{hlbb}{0.825 0.88 0.968}
79 \newrgbcolor{lachs}{1.0 .93 .81}
80
81 % topic
82
83 \begin{slide}
84 \begin{center}
85
86  \vspace{16pt}
87
88  {\LARGE\bf
89   Atomistic simulation study of the silicon carbide precipitation
90   in silicon
91  }
92
93  \vspace{48pt}
94
95  \textsc{F. Zirkelbach}
96
97  \vspace{48pt}
98
99  Lehrstuhlseminar
100
101  \vspace{08pt}
102
103  17. Juni 2010
104
105 \end{center}
106 \end{slide}
107
108 % motivation / properties / applications of silicon carbide
109 \begin{slide}
110
111 \small
112
113 \begin{pspicture}(0,0)(13.5,5)
114
115
116
117  \psframe*[linecolor=hb](0,0)(13.5,5)
118
119  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
120  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
121
122  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
123
124  \rput[lt](0.5,4){wide band gap}
125  \rput[lt](0.5,3.5){high electric breakdown field}
126  \rput[lt](0.5,3){good electron mobility}
127  \rput[lt](0.5,2.5){high electron saturation drift velocity}
128  \rput[lt](0.5,2){high thermal conductivity}
129
130  \rput[lt](0.5,1.5){hard and mechanically stable}
131  \rput[lt](0.5,1){chemically inert}
132
133  \rput[lt](0.5,0.5){radiation hardness}
134
135  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
136
137  \rput[rt](13,3.85){high-temperature, high power}
138  \rput[rt](13,3.5){and high-frequency}
139  \rput[rt](13,3.15){electronic and optoelectronic devices}
140
141  \rput[rt](13,2.35){material suitable for extreme conditions}
142  \rput[rt](13,2){microelectromechanical systems}
143  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
144
145  \rput[rt](13,0.85){first wall reactor material, detectors}
146  \rput[rt](13,0.5){and electronic devices for space}
147
148 \end{pspicture}
149
150 \begin{picture}(0,0)(-10,68)
151 \includegraphics[width=2.6cm]{wide_band_gap.eps}
152 \end{picture}
153 \begin{picture}(0,0)(-295,-165)
154 \includegraphics[width=3cm]{sic_led.eps}
155 \end{picture}
156 \begin{picture}(0,0)(-215,-165)
157 \includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
158 \end{picture}
159 \begin{picture}(0,0)(-313,65)
160 \includegraphics[width=2.2cm]{infineon_schottky.eps}
161 \end{picture}
162 \begin{picture}(0,0)(-220,65)
163 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
164 \end{picture}
165
166 \end{slide}
167
168 % contents
169
170 \begin{slide}
171
172 {\large\bf
173  Outline
174 }
175
176  \begin{itemize}
177   \item Polyteps and fabrication of silicon carbide
178   \item Supposed precipitation mechanism of SiC in Si
179   \item Utilized simulation techniques
180         \begin{itemize}
181          \item Molecular dynamics (MD) simulations
182          \item Density functional theory (DFT) calculations
183         \end{itemize}
184   \item C and Si self-interstitial point defects in silicon
185   \item Precipitation simulations
186   \item Summary / Conclusion / Outlook
187  \end{itemize}
188
189 \end{slide}
190
191 % start of contents
192
193 \begin{slide}
194
195  {\large\bf
196   Polytypes of SiC
197  }
198
199  \vspace{4cm}
200
201  \small
202
203 \begin{tabular}{l c c c c c c}
204 \hline
205  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
206 \hline
207 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
208 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
209 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
210 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
211 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
212 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
213 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
214 \hline
215 \end{tabular}
216
217 {\tiny
218  Values for $T=300$ K
219 }
220
221 \begin{picture}(0,0)(-160,-155)
222  \includegraphics[width=7cm]{polytypes.eps}
223 \end{picture}
224 \begin{picture}(0,0)(-10,-185)
225  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
226 \end{picture}
227 \begin{picture}(0,0)(-10,-175)
228  {\tiny cubic (twist)}
229 \end{picture}
230 \begin{picture}(0,0)(-60,-175)
231  {\tiny hexagonal (no twist)}
232 \end{picture}
233 \begin{pspicture}(0,0)(0,0)
234 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
235 \end{pspicture}
236 \begin{pspicture}(0,0)(0,0)
237 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
238 \end{pspicture}
239 \begin{pspicture}(0,0)(0,0)
240 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
241 \end{pspicture}
242
243 \end{slide}
244
245 \begin{slide}
246
247  {\large\bf
248   Fabrication of silicon carbide
249  }
250
251  \small
252  
253  \vspace{4pt}
254
255  SiC - \emph{Born from the stars, perfected on earth.}
256  
257  \vspace{4pt}
258
259  Conventional thin film SiC growth:
260  \begin{itemize}
261   \item \underline{Sublimation growth using the modified Lely method}
262         \begin{itemize}
263          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
264          \item Surrounded by polycrystalline SiC in a graphite crucible\\
265                at $T=2100-2400 \, ^{\circ} \text{C}$
266          \item Deposition of supersaturated vapor on cooler seed crystal
267         \end{itemize}
268   \item \underline{Homoepitaxial growth using CVD}
269         \begin{itemize}
270          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
271          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
272          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
273          \item High quality but limited in size of substrates
274         \end{itemize}
275   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
276         \begin{itemize}
277          \item Two steps: carbonization and growth
278          \item $T=650-1050 \, ^{\circ} \text{C}$
279          \item Quality and size not yet sufficient
280         \end{itemize}
281  \end{itemize}
282
283  \begin{picture}(0,0)(-280,-65)
284   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
285  \end{picture}
286  \begin{picture}(0,0)(-280,-55)
287   \begin{minipage}{5cm}
288   {\tiny
289    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
290    on 6H-SiC substrate
291   }
292   \end{minipage}
293  \end{picture}
294  \begin{picture}(0,0)(-265,-150)
295   \includegraphics[width=2.4cm]{m_lely.eps}
296  \end{picture}
297  \begin{picture}(0,0)(-333,-175)
298   \begin{minipage}{5cm}
299   {\tiny
300    1. Lid\\[-7pt]
301    2. Heating\\[-7pt]
302    3. Source\\[-7pt]
303    4. Crucible\\[-7pt]
304    5. Insulation\\[-7pt]
305    6. Seed crystal
306   }
307   \end{minipage}
308  \end{picture}
309
310 \end{slide}
311
312 \begin{slide}
313
314  {\large\bf
315   Fabrication of silicon carbide
316  }
317
318  \small
319
320  Alternative approach:
321  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
322  \begin{itemize}
323   \item \underline{Implantation step 1}\\
324         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
325         $\Rightarrow$ box-like distribution of equally sized
326                        and epitactically oriented SiC precipitates
327                        
328   \item \underline{Implantation step 2}\\
329         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
330         $\Rightarrow$ destruction of SiC nanocrystals
331                       in growing amorphous interface layers
332   \item \underline{Annealing}\\
333         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
334         $\Rightarrow$ homogeneous, stoichiometric SiC layer
335                       with sharp interfaces
336  \end{itemize}
337
338  \begin{minipage}{6.3cm}
339  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
340  {\tiny
341   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
342  }
343  \end{minipage}
344  \begin{minipage}{6.3cm}
345  \begin{center}
346  {\color{blue}\bf\normalsize
347   Precipitation mechanism not yet fully understood!
348  }
349  \renewcommand\labelitemi{$\Rightarrow$}
350  \small
351  \underline{Understanding the SiC precipitation}
352  \begin{itemize}
353   \item significant technological progress in SiC thin film formation
354   \item perspectives for processes relying upon prevention of SiC precipitation
355  \end{itemize}
356  \end{center}
357  \end{minipage}
358  
359 \end{slide}
360
361 \begin{slide}
362
363  {\large\bf
364   Supposed precipitation mechanism of SiC in Si
365  }
366
367  \scriptsize
368
369  \vspace{0.1cm}
370
371  \begin{minipage}{3.8cm}
372  Si \& SiC lattice structure\\[0.2cm]
373  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
374  \hrule
375  \end{minipage}
376  \hspace{0.6cm}
377  \begin{minipage}{3.8cm}
378  \begin{center}
379  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
380  \end{center}
381  \end{minipage}
382  \hspace{0.6cm}
383  \begin{minipage}{3.8cm}
384  \begin{center}
385  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
386  \end{center}
387  \end{minipage}
388
389  \begin{minipage}{4cm}
390  \begin{center}
391  C-Si dimers (dumbbells)\\[-0.1cm]
392  on Si interstitial sites
393  \end{center}
394  \end{minipage}
395  \hspace{0.2cm}
396  \begin{minipage}{4.2cm}
397  \begin{center}
398  Agglomeration of C-Si dumbbells\\[-0.1cm]
399  $\Rightarrow$ dark contrasts
400  \end{center}
401  \end{minipage}
402  \hspace{0.2cm}
403  \begin{minipage}{4cm}
404  \begin{center}
405  Precipitation of 3C-SiC in Si\\[-0.1cm]
406  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
407  \& release of Si self-interstitials
408  \end{center}
409  \end{minipage}
410
411  \begin{minipage}{3.8cm}
412  \begin{center}
413  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
414  \end{center}
415  \end{minipage}
416  \hspace{0.6cm}
417  \begin{minipage}{3.8cm}
418  \begin{center}
419  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
420  \end{center}
421  \end{minipage}
422  \hspace{0.6cm}
423  \begin{minipage}{3.8cm}
424  \begin{center}
425  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
426  \end{center}
427  \end{minipage}
428
429 \begin{pspicture}(0,0)(0,0)
430 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
431 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
432 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
433 %\rput{-20}{\psellipse[linecolor=blue](6,6.5)(0.3,0.5)}
434 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
435 \end{pspicture}
436  
437 \end{slide}
438
439 \end{document}