finisched limtation part
[lectures/latex.git] / posic / talks / seminar_2010.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv,draft]{seminar}
3 %\documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 \usepackage{semcolor}
35 \usepackage{semlayer}           % Seminar overlays
36 \usepackage{slidesec}           % Seminar sections and list of slides
37
38 \input{seminar.bug}             % Official bugs corrections
39 \input{seminar.bg2}             % Unofficial bugs corrections
40
41 \articlemag{1}
42
43 \special{landscape}
44
45 % font
46 %\usepackage{cmbright}
47 %\renewcommand{\familydefault}{\sfdefault}
48 %\usepackage{mathptmx}
49
50 \usepackage{upgreek}
51
52 \begin{document}
53
54 \extraslideheight{10in}
55 \slideframe{none}
56
57 \pagestyle{empty}
58
59 % specify width and height
60 \slidewidth 27.7cm 
61 \slideheight 19.1cm 
62
63 % shift it into visual area properly
64 \def\slideleftmargin{3.3cm}
65 \def\slidetopmargin{0.6cm}
66
67 \newcommand{\ham}{\mathcal{H}}
68 \newcommand{\pot}{\mathcal{V}}
69 \newcommand{\foo}{\mathcal{U}}
70 \newcommand{\vir}{\mathcal{W}}
71
72 % itemize level ii
73 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
74
75 % nice phi
76 \renewcommand{\phi}{\varphi}
77
78 % roman letters
79 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
80
81 % colors
82 \newrgbcolor{si-yellow}{.6 .6 0}
83 \newrgbcolor{hb}{0.75 0.77 0.89}
84 \newrgbcolor{lbb}{0.75 0.8 0.88}
85 \newrgbcolor{hlbb}{0.825 0.88 0.968}
86 \newrgbcolor{lachs}{1.0 .93 .81}
87
88 % topic
89
90 \begin{slide}
91 \begin{center}
92
93  \vspace{16pt}
94
95  {\LARGE\bf
96   Atomistic simulation study of the silicon carbide precipitation
97   in silicon
98  }
99
100  \vspace{48pt}
101
102  \textsc{F. Zirkelbach}
103
104  \vspace{48pt}
105
106  Lehrstuhlseminar
107
108  \vspace{08pt}
109
110  17. Juni 2010
111
112 \end{center}
113 \end{slide}
114
115 % motivation / properties / applications of silicon carbide
116 \begin{slide}
117
118 \small
119
120 \begin{pspicture}(0,0)(13.5,5)
121
122
123
124  \psframe*[linecolor=hb](0,0)(13.5,5)
125
126  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
127  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
128
129  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
130
131  \rput[lt](0.5,4){wide band gap}
132  \rput[lt](0.5,3.5){high electric breakdown field}
133  \rput[lt](0.5,3){good electron mobility}
134  \rput[lt](0.5,2.5){high electron saturation drift velocity}
135  \rput[lt](0.5,2){high thermal conductivity}
136
137  \rput[lt](0.5,1.5){hard and mechanically stable}
138  \rput[lt](0.5,1){chemically inert}
139
140  \rput[lt](0.5,0.5){radiation hardness}
141
142  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
143
144  \rput[rt](13,3.85){high-temperature, high power}
145  \rput[rt](13,3.5){and high-frequency}
146  \rput[rt](13,3.15){electronic and optoelectronic devices}
147
148  \rput[rt](13,2.35){material suitable for extreme conditions}
149  \rput[rt](13,2){microelectromechanical systems}
150  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
151
152  \rput[rt](13,0.85){first wall reactor material, detectors}
153  \rput[rt](13,0.5){and electronic devices for space}
154
155 \end{pspicture}
156
157 \begin{picture}(0,0)(-10,68)
158 \includegraphics[width=2.6cm]{wide_band_gap.eps}
159 \end{picture}
160 \begin{picture}(0,0)(-295,-165)
161 \includegraphics[width=3cm]{sic_led.eps}
162 \end{picture}
163 \begin{picture}(0,0)(-215,-165)
164 \includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
165 \end{picture}
166 \begin{picture}(0,0)(-313,65)
167 \includegraphics[width=2.2cm]{infineon_schottky.eps}
168 \end{picture}
169 \begin{picture}(0,0)(-220,65)
170 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
171 \end{picture}
172
173 \end{slide}
174
175 % contents
176
177 \begin{slide}
178
179 {\large\bf
180  Outline
181 }
182
183  \begin{itemize}
184   \item Polyteps and fabrication of silicon carbide
185   \item Supposed precipitation mechanism of SiC in Si
186   \item Utilized simulation techniques
187         \begin{itemize}
188          \item Molecular dynamics (MD) simulations
189          \item Density functional theory (DFT) calculations
190         \end{itemize}
191   \item C and Si self-interstitial point defects in silicon
192   \item Silicon carbide precipitation simulations
193   \item Investigation of a silicon carbide precipitate in silicon
194   \item Summary / Conclusion / Outlook
195  \end{itemize}
196
197 \end{slide}
198
199 % start of contents
200
201 \begin{slide}
202
203  {\large\bf
204   Polytypes of SiC
205  }
206
207  \vspace{4cm}
208
209  \small
210
211 \begin{tabular}{l c c c c c c}
212 \hline
213  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
214 \hline
215 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
216 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
217 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
218 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
219 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
220 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
221 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
222 \hline
223 \end{tabular}
224
225 {\tiny
226  Values for $T=300$ K
227 }
228
229 \begin{picture}(0,0)(-160,-155)
230  \includegraphics[width=7cm]{polytypes.eps}
231 \end{picture}
232 \begin{picture}(0,0)(-10,-185)
233  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
234 \end{picture}
235 \begin{picture}(0,0)(-10,-175)
236  {\tiny cubic (twist)}
237 \end{picture}
238 \begin{picture}(0,0)(-60,-175)
239  {\tiny hexagonal (no twist)}
240 \end{picture}
241 \begin{pspicture}(0,0)(0,0)
242 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
243 \end{pspicture}
244 \begin{pspicture}(0,0)(0,0)
245 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
246 \end{pspicture}
247 \begin{pspicture}(0,0)(0,0)
248 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
249 \end{pspicture}
250
251 \end{slide}
252
253 \begin{slide}
254
255  {\large\bf
256   Fabrication of silicon carbide
257  }
258
259  \small
260  
261  \vspace{4pt}
262
263  SiC - \emph{Born from the stars, perfected on earth.}
264  
265  \vspace{4pt}
266
267  Conventional thin film SiC growth:
268  \begin{itemize}
269   \item \underline{Sublimation growth using the modified Lely method}
270         \begin{itemize}
271          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
272          \item Surrounded by polycrystalline SiC in a graphite crucible\\
273                at $T=2100-2400 \, ^{\circ} \text{C}$
274          \item Deposition of supersaturated vapor on cooler seed crystal
275         \end{itemize}
276   \item \underline{Homoepitaxial growth using CVD}
277         \begin{itemize}
278          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
279          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
280          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
281          \item High quality but limited in size of substrates
282         \end{itemize}
283   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
284         \begin{itemize}
285          \item Two steps: carbonization and growth
286          \item $T=650-1050 \, ^{\circ} \text{C}$
287          \item Quality and size not yet sufficient
288         \end{itemize}
289  \end{itemize}
290
291  \begin{picture}(0,0)(-280,-65)
292   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
293  \end{picture}
294  \begin{picture}(0,0)(-280,-55)
295   \begin{minipage}{5cm}
296   {\tiny
297    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
298    on 6H-SiC substrate
299   }
300   \end{minipage}
301  \end{picture}
302  \begin{picture}(0,0)(-265,-150)
303   \includegraphics[width=2.4cm]{m_lely.eps}
304  \end{picture}
305  \begin{picture}(0,0)(-333,-175)
306   \begin{minipage}{5cm}
307   {\tiny
308    1. Lid\\[-7pt]
309    2. Heating\\[-7pt]
310    3. Source\\[-7pt]
311    4. Crucible\\[-7pt]
312    5. Insulation\\[-7pt]
313    6. Seed crystal
314   }
315   \end{minipage}
316  \end{picture}
317
318 \end{slide}
319
320 \begin{slide}
321
322  {\large\bf
323   Fabrication of silicon carbide
324  }
325
326  \small
327
328  Alternative approach:
329  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
330  \begin{itemize}
331   \item \underline{Implantation step 1}\\
332         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
333         $\Rightarrow$ box-like distribution of equally sized
334                        and epitactically oriented SiC precipitates
335                        
336   \item \underline{Implantation step 2}\\
337         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
338         $\Rightarrow$ destruction of SiC nanocrystals
339                       in growing amorphous interface layers
340   \item \underline{Annealing}\\
341         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
342         $\Rightarrow$ homogeneous, stoichiometric SiC layer
343                       with sharp interfaces
344  \end{itemize}
345
346  \begin{minipage}{6.3cm}
347  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
348  {\tiny
349   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
350  }
351  \end{minipage}
352 \framebox{
353  \begin{minipage}{6.3cm}
354  \begin{center}
355  {\color{blue}
356   Precipitation mechanism not yet fully understood!
357  }
358  \renewcommand\labelitemi{$\Rightarrow$}
359  \small
360  \underline{Understanding the SiC precipitation}
361  \begin{itemize}
362   \item significant technological progress in SiC thin film formation
363   \item perspectives for processes relying upon prevention of SiC precipitation
364  \end{itemize}
365  \end{center}
366  \end{minipage}
367 }
368  
369 \end{slide}
370
371 \begin{slide}
372
373  {\large\bf
374   Supposed precipitation mechanism of SiC in Si
375  }
376
377  \scriptsize
378
379  \vspace{0.1cm}
380
381  \begin{minipage}{3.8cm}
382  Si \& SiC lattice structure\\[0.2cm]
383  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
384  \hrule
385  \end{minipage}
386  \hspace{0.6cm}
387  \begin{minipage}{3.8cm}
388  \begin{center}
389  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
390  \end{center}
391  \end{minipage}
392  \hspace{0.6cm}
393  \begin{minipage}{3.8cm}
394  \begin{center}
395  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
396  \end{center}
397  \end{minipage}
398
399  \begin{minipage}{4cm}
400  \begin{center}
401  C-Si dimers (dumbbells)\\[-0.1cm]
402  on Si interstitial sites
403  \end{center}
404  \end{minipage}
405  \hspace{0.2cm}
406  \begin{minipage}{4.2cm}
407  \begin{center}
408  Agglomeration of C-Si dumbbells\\[-0.1cm]
409  $\Rightarrow$ dark contrasts
410  \end{center}
411  \end{minipage}
412  \hspace{0.2cm}
413  \begin{minipage}{4cm}
414  \begin{center}
415  Precipitation of 3C-SiC in Si\\[-0.1cm]
416  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
417  \& release of Si self-interstitials
418  \end{center}
419  \end{minipage}
420
421  \begin{minipage}{3.8cm}
422  \begin{center}
423  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
424  \end{center}
425  \end{minipage}
426  \hspace{0.6cm}
427  \begin{minipage}{3.8cm}
428  \begin{center}
429  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
430  \end{center}
431  \end{minipage}
432  \hspace{0.6cm}
433  \begin{minipage}{3.8cm}
434  \begin{center}
435  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
436  \end{center}
437  \end{minipage}
438
439 \begin{pspicture}(0,0)(0,0)
440 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
441 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
442 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
443 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
444 \end{pspicture}
445  
446 \end{slide}
447
448 \begin{slide}
449
450  {\large\bf
451   Molecular dynamics (MD) simulations
452  }
453
454  \vspace{12pt}
455
456  \small
457
458  {\bf MD basics:}
459  \begin{itemize}
460   \item Microscopic description of N particle system
461   \item Analytical interaction potential
462   \item Numerical integration using Newtons equation of motion\\
463         as a propagation rule in 6N-dimensional phase space
464   \item Observables obtained by time and/or ensemble averages
465  \end{itemize}
466  {\bf Details of the simulation:}
467  \begin{itemize}
468   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
469   \item Ensemble: NpT (isothermal-isobaric)
470         \begin{itemize}
471          \item Berendsen thermostat:
472                $\tau_{\text{T}}=100\text{ fs}$
473          \item Berendsen barostat:\\
474                $\tau_{\text{P}}=100\text{ fs}$,
475                $\beta^{-1}=100\text{ GPa}$
476         \end{itemize}
477   \item Erhart/Albe potential: Tersoff-like bond order potential
478   \vspace*{12pt}
479         \[
480         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
481         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
482         \]
483  \end{itemize}
484
485  \begin{picture}(0,0)(-230,-30)
486   \includegraphics[width=5cm]{tersoff_angle.eps} 
487  \end{picture}
488  
489 \end{slide}
490
491 \begin{slide}
492
493  {\large\bf
494   Density functional theory (DFT) calculations
495  }
496
497  \small
498
499  Basic ingredients necessary for DFT
500
501  \begin{itemize}
502   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
503         \begin{itemize}
504          \item ... uniquely determines the ground state potential
505                / wavefunctions
506          \item ... minimizes the systems total energy
507         \end{itemize}
508   \item \underline{Born-Oppenheimer}
509         - $N$ moving electrons in an external potential of static nuclei
510 \[
511 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
512               +\sum_i^N V_{\text{ext}}(r_i)
513               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
514 \]
515   \item \underline{Effective potential}
516         - averaged electrostatic potential \& exchange and correlation
517 \[
518 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
519                  +V_{\text{XC}}[n(r)]
520 \]
521   \item \underline{Kohn-Sham system}
522         - Schr\"odinger equation of N non-interacting particles
523 \[
524 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
525 =\epsilon_i\Phi_i(r)
526 \quad
527 \Rightarrow
528 \quad
529 n(r)=\sum_i^N|\Phi_i(r)|^2
530 \]
531   \item \underline{Self-consistent solution}\\
532 $n(r)$ depends on $\Phi_i$, which depends on $V_{\text{eff}}$,
533 which in turn depends on $n(r)$
534   \item \underline{Variational principle}
535         - minimize total energy with respect to $n(r)$
536  \end{itemize}
537
538 \end{slide}
539
540 \begin{slide}
541
542  {\large\bf
543   Density functional theory (DFT) calculations
544  }
545
546  \small
547
548  \vspace*{0.2cm}
549
550  Details of applied DFT calculations in this work
551
552  \begin{itemize}
553   \item \underline{Exchange correlation functional}
554         - approximations for the inhomogeneous electron gas
555         \begin{itemize}
556          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
557          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
558         \end{itemize}
559   \item \underline{Plane wave basis set}
560         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
561 \[
562 \rightarrow
563 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
564 \]
565   \item \underline{$k$-point sampling} - $\Gamma$-point only calculations
566   \item \underline{Pseudo potential} 
567         - consider only the valence electrons
568   \item \underline{Code} - VASP 4.6
569  \end{itemize}
570
571  \vspace*{0.2cm}
572
573  MD and structural optimization
574
575  \begin{itemize}
576   \item MD integration: Gear predictor corrector algorithm
577   \item Pressure control: Parrinello-Rahman pressure control
578   \item Structural optimization: Conjugate gradient method
579  \end{itemize}
580
581 \end{slide}
582
583 \begin{slide}
584
585  {\large\bf
586   C and Si self-interstitial point defects in silicon
587  }
588
589  \small
590
591  \vspace*{0.3cm}
592
593 \begin{minipage}{8cm}
594 Procedure:\\[0.3cm]
595   \begin{pspicture}(0,0)(7,5)
596   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
597    \parbox{7cm}{
598    \begin{itemize}
599     \item Creation of c-Si simulation volume
600     \item Periodic boundary conditions
601     \item $T=0\text{ K}$, $p=0\text{ bar}$
602    \end{itemize}
603   }}}}
604 \rput(3.5,2.1){\rnode{insert}{\psframebox{
605  \parbox{7cm}{
606   \begin{center}
607   Insertion of interstitial C/Si atoms
608   \end{center}
609   }}}}
610   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
611    \parbox{7cm}{
612    \begin{center}
613    Relaxation / structural energy minimization
614    \end{center}
615   }}}}
616   \ncline[]{->}{init}{insert}
617   \ncline[]{->}{insert}{cool}
618  \end{pspicture}
619 \end{minipage}
620 \begin{minipage}{5cm}
621   \includegraphics[width=5cm]{unit_cell_e.eps}\\
622 \end{minipage}
623
624 \begin{minipage}{9cm}
625  \begin{tabular}{l c c}
626  \hline
627  & size [unit cells] & \# atoms\\
628 \hline
629 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
630 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
631 \hline
632  \end{tabular}
633 \end{minipage}
634 \begin{minipage}{4cm}
635 {\color{red}$\bullet$} Tetrahedral\\
636 {\color{green}$\bullet$} Hexagonal\\
637 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
638 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
639 {\color{cyan}$\bullet$} Bond-centered\\
640 {\color{black}$\bullet$} Vacancy / Substitutional
641 \end{minipage}
642
643 \end{slide}
644
645 \begin{slide}
646
647  \footnotesize
648
649 \begin{minipage}{9.5cm}
650
651  {\large\bf
652   Si self-interstitial point defects in silicon\\
653  }
654
655 \begin{tabular}{l c c c c c}
656 \hline
657  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
658 \hline
659  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
660  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
661 \hline
662 \end{tabular}\\[0.2cm]
663
664 \begin{minipage}{4.7cm}
665 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
666 \end{minipage}
667 \begin{minipage}{4.7cm}
668 \begin{center}
669 {\tiny nearly T $\rightarrow$ T}\\
670 \end{center}
671 \includegraphics[width=4.7cm]{nhex_tet.ps}
672 \end{minipage}\\
673
674 \underline{Hexagonal} \hspace{2pt}
675 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
676 \framebox{
677 \begin{minipage}{2.7cm}
678 $E_{\text{f}}^*=4.48\text{ eV}$\\
679 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
680 \end{minipage}
681 \begin{minipage}{0.4cm}
682 \begin{center}
683 $\Rightarrow$
684 \end{center}
685 \end{minipage}
686 \begin{minipage}{2.7cm}
687 $E_{\text{f}}=3.96\text{ eV}$\\
688 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
689 \end{minipage}
690 }
691 \begin{minipage}{2.9cm}
692 \begin{flushright}
693 \underline{Vacancy}\\
694 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
695 \end{flushright}
696 \end{minipage}
697
698 \end{minipage}
699 \begin{minipage}{3.5cm}
700
701 \begin{flushright}
702 \underline{\hkl<1 1 0> dumbbell}\\
703 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
704 \underline{Tetrahedral}\\
705 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
706 \underline{\hkl<1 0 0> dumbbell}\\
707 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
708 \end{flushright}
709
710 \end{minipage}
711
712 \end{slide}
713
714 \begin{slide}
715
716 \footnotesize
717
718  {\large\bf
719   C interstitial point defects in silicon\\[-0.1cm]
720  }
721
722 \begin{tabular}{l c c c c c c}
723 \hline
724  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B \\
725 \hline
726  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 \\
727  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & 0.75 & 5.59$^*$ \\
728 \hline
729 \end{tabular}\\[0.1cm]
730
731 \framebox{
732 \begin{minipage}{2.7cm}
733 \underline{Hexagonal} \hspace{2pt}
734 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
735 $E_{\text{f}}^*=9.05\text{ eV}$\\
736 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
737 \end{minipage}
738 \begin{minipage}{0.4cm}
739 \begin{center}
740 $\Rightarrow$
741 \end{center}
742 \end{minipage}
743 \begin{minipage}{2.7cm}
744 \underline{\hkl<1 0 0>}\\
745 $E_{\text{f}}=3.88\text{ eV}$\\
746 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
747 \end{minipage}
748 }
749 \begin{minipage}{2cm}
750 \hfill
751 \end{minipage}
752 \begin{minipage}{3cm}
753 \begin{flushright}
754 \underline{Tetrahedral}\\
755 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
756 \end{flushright}
757 \end{minipage}
758
759 \framebox{
760 \begin{minipage}{2.7cm}
761 \underline{Bond-centered}\\
762 $E_{\text{f}}^*=5.59\text{ eV}$\\
763 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
764 \end{minipage}
765 \begin{minipage}{0.4cm}
766 \begin{center}
767 $\Rightarrow$
768 \end{center}
769 \end{minipage}
770 \begin{minipage}{2.7cm}
771 \underline{\hkl<1 1 0> dumbbell}\\
772 $E_{\text{f}}=5.18\text{ eV}$\\
773 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
774 \end{minipage}
775 }
776 \begin{minipage}{2cm}
777 \hfill
778 \end{minipage}
779 \begin{minipage}{3cm}
780 \begin{flushright}
781 \underline{Substitutional}\\
782 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
783 \end{flushright}
784 \end{minipage}
785
786 \end{slide}
787
788 \begin{slide}
789
790 \footnotesize
791
792  {\large\bf\boldmath
793   C \hkl<1 0 0> dumbbell interstitial configuration\\
794  }
795
796 {\tiny
797 \begin{tabular}{l c c c c c c c c}
798 \hline
799  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
800 \hline
801 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
802 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
803 \hline
804 \end{tabular}\\[0.2cm]
805 \begin{tabular}{l c c c c }
806 \hline
807  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
808 \hline
809 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
810 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
811 \hline
812 \end{tabular}\\[0.2cm]
813 \begin{tabular}{l c c c}
814 \hline
815  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
816 \hline
817 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
818 VASP & 0.109 & -0.065 & 0.174 \\
819 \hline
820 \end{tabular}\\[0.6cm]
821 }
822
823 \begin{minipage}{3.0cm}
824 \begin{center}
825 \underline{Erhart/Albe}
826 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
827 \end{center}
828 \end{minipage}
829 \begin{minipage}{3.0cm}
830 \begin{center}
831 \underline{VASP}
832 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
833 \end{center}
834 \end{minipage}\\
835
836 \begin{picture}(0,0)(-185,10)
837 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
838 \end{picture}
839 \begin{picture}(0,0)(-280,-150)
840 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
841 \end{picture}
842
843 \begin{pspicture}(0,0)(0,0)
844 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
845 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
846 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
847 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
848 \end{pspicture}
849
850 \end{slide}
851
852 \begin{slide}
853
854 \small
855
856 \begin{minipage}{8.5cm}
857
858  {\large\bf
859   Bond-centered interstitial configuration\\[-0.1cm]
860  }
861
862 \begin{minipage}{3.0cm}
863 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
864 \end{minipage}
865 \begin{minipage}{5.2cm}
866 \begin{itemize}
867  \item Linear Si-C-Si bond
868  \item Si: one C \& 3 Si neighbours
869  \item Spin polarized calculations
870  \item No saddle point!\\
871        Real local minimum!
872 \end{itemize}
873 \end{minipage}
874
875 \framebox{
876  \tiny
877  \begin{minipage}[t]{6.5cm}
878   \begin{minipage}[t]{1.2cm}
879   {\color{red}Si}\\
880   {\tiny sp$^3$}\\[0.8cm]
881   \underline{${\color{black}\uparrow}$}
882   \underline{${\color{black}\uparrow}$}
883   \underline{${\color{black}\uparrow}$}
884   \underline{${\color{red}\uparrow}$}\\
885   sp$^3$
886   \end{minipage}
887   \begin{minipage}[t]{1.4cm}
888   \begin{center}
889   {\color{red}M}{\color{blue}O}\\[0.8cm]
890   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
891   $\sigma_{\text{ab}}$\\[0.5cm]
892   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
893   $\sigma_{\text{b}}$
894   \end{center}
895   \end{minipage}
896   \begin{minipage}[t]{1.0cm}
897   \begin{center}
898   {\color{blue}C}\\
899   {\tiny sp}\\[0.2cm]
900   \underline{${\color{white}\uparrow\uparrow}$}
901   \underline{${\color{white}\uparrow\uparrow}$}\\
902   2p\\[0.4cm]
903   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
904   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
905   sp
906   \end{center}
907   \end{minipage}
908   \begin{minipage}[t]{1.4cm}
909   \begin{center}
910   {\color{blue}M}{\color{green}O}\\[0.8cm]
911   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
912   $\sigma_{\text{ab}}$\\[0.5cm]
913   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
914   $\sigma_{\text{b}}$
915   \end{center}
916   \end{minipage}
917   \begin{minipage}[t]{1.2cm}
918   \begin{flushright}
919   {\color{green}Si}\\
920   {\tiny sp$^3$}\\[0.8cm]
921   \underline{${\color{green}\uparrow}$}
922   \underline{${\color{black}\uparrow}$}
923   \underline{${\color{black}\uparrow}$}
924   \underline{${\color{black}\uparrow}$}\\
925   sp$^3$
926   \end{flushright}
927   \end{minipage}
928  \end{minipage}
929 }\\[0.1cm]
930
931 \framebox{
932 \begin{minipage}{4.5cm}
933 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
934 \end{minipage}
935 \begin{minipage}{3.5cm}
936 {\color{gray}$\bullet$} Spin up\\
937 {\color{green}$\bullet$} Spin down\\
938 {\color{blue}$\bullet$} Resulting spin up\\
939 {\color{yellow}$\bullet$} Si atoms\\
940 {\color{red}$\bullet$} C atom
941 \end{minipage}
942 }
943
944 \end{minipage}
945 \begin{minipage}{4.2cm}
946 \begin{flushright}
947 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
948 {\color{green}$\Box$} {\tiny unoccupied}\\
949 {\color{red}$\bullet$} {\tiny occupied}
950 \end{flushright}
951 \end{minipage}
952
953 \end{slide}
954
955 \begin{slide}
956
957  {\large\bf\boldmath
958   Migration of the C \hkl<1 0 0> dumbbell interstitial
959  }
960
961 \scriptsize
962
963  {\small Investigated pathways}
964
965 \begin{minipage}{8.5cm}
966 \begin{minipage}{8.3cm}
967 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
968 \begin{minipage}{2.4cm}
969 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
970 \end{minipage}
971 \begin{minipage}{0.4cm}
972 $\rightarrow$
973 \end{minipage}
974 \begin{minipage}{2.4cm}
975 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
976 \end{minipage}
977 \begin{minipage}{0.4cm}
978 $\rightarrow$
979 \end{minipage}
980 \begin{minipage}{2.4cm}
981 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
982 \end{minipage}
983 \end{minipage}\\
984 \begin{minipage}{8.3cm}
985 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
986 \begin{minipage}{2.4cm}
987 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
988 \end{minipage}
989 \begin{minipage}{0.4cm}
990 $\rightarrow$
991 \end{minipage}
992 \begin{minipage}{2.4cm}
993 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
994 \end{minipage}
995 \begin{minipage}{0.4cm}
996 $\rightarrow$
997 \end{minipage}
998 \begin{minipage}{2.4cm}
999 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1000 \end{minipage}
1001 \end{minipage}\\
1002 \begin{minipage}{8.3cm}
1003 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1004 \begin{minipage}{2.4cm}
1005 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1006 \end{minipage}
1007 \begin{minipage}{0.4cm}
1008 $\rightarrow$
1009 \end{minipage}
1010 \begin{minipage}{2.4cm}
1011 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1012 \end{minipage}
1013 \begin{minipage}{0.4cm}
1014 $\rightarrow$
1015 \end{minipage}
1016 \begin{minipage}{2.4cm}
1017 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1018 \end{minipage}
1019 \end{minipage}
1020 \end{minipage}
1021 \framebox{
1022 \begin{minipage}{4.2cm}
1023  {\small Constrained relaxation\\
1024          technique (CRT) method}\\
1025 \includegraphics[width=4cm]{crt_orig.eps}
1026 \begin{itemize}
1027  \item Constrain diffusing atom
1028  \item Static constraints 
1029 \end{itemize}
1030 \vspace*{0.3cm}
1031  {\small Modifications}\\
1032 \includegraphics[width=4cm]{crt_mod.eps}
1033 \begin{itemize}
1034  \item Constrain all atoms
1035  \item Update individual\\
1036        constraints
1037 \end{itemize}
1038 \end{minipage}
1039 }
1040
1041 \end{slide}
1042
1043 \begin{slide}
1044
1045  {\large\bf\boldmath
1046   Migration of the C \hkl<1 0 0> dumbbell interstitial
1047  }
1048
1049 \scriptsize
1050
1051 \framebox{
1052 \begin{minipage}{5.9cm}
1053 \begin{flushleft}
1054 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1055 \end{flushleft}
1056 \begin{center}
1057 \begin{picture}(0,0)(60,0)
1058 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1059 \end{picture}
1060 \begin{picture}(0,0)(-5,0)
1061 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1062 \end{picture}
1063 \begin{picture}(0,0)(-55,0)
1064 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1065 \end{picture}
1066 \begin{picture}(0,0)(12.5,10)
1067 \includegraphics[width=1cm]{110_arrow.eps}
1068 \end{picture}
1069 \begin{picture}(0,0)(90,0)
1070 \includegraphics[height=0.9cm]{001_arrow.eps}
1071 \end{picture}
1072 \end{center}
1073 \vspace*{0.35cm}
1074 \end{minipage}
1075 }
1076 \begin{minipage}{0.3cm}
1077 \hfill
1078 \end{minipage}
1079 \framebox{
1080 \begin{minipage}{5.9cm}
1081 \begin{flushright}
1082 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1083 \end{flushright}
1084 \begin{center}
1085 \begin{picture}(0,0)(60,0)
1086 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1087 \end{picture}
1088 \begin{picture}(0,0)(5,0)
1089 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1090 \end{picture}
1091 \begin{picture}(0,0)(-55,0)
1092 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1093 \end{picture}
1094 \begin{picture}(0,0)(12.5,10)
1095 \includegraphics[width=1cm]{100_arrow.eps}
1096 \end{picture}
1097 \begin{picture}(0,0)(90,0)
1098 \includegraphics[height=0.9cm]{001_arrow.eps}
1099 \end{picture}
1100 \end{center}
1101 \vspace*{0.3cm}
1102 \end{minipage}\\
1103 }
1104
1105 \vspace*{0.05cm}
1106
1107 \framebox{
1108 \begin{minipage}{5.9cm}
1109 \begin{flushleft}
1110 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1111 \end{flushleft}
1112 \begin{center}
1113 \begin{picture}(0,0)(60,0)
1114 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1115 \end{picture}
1116 \begin{picture}(0,0)(10,0)
1117 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1118 \end{picture}
1119 \begin{picture}(0,0)(-60,0)
1120 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1121 \end{picture}
1122 \begin{picture}(0,0)(12.5,10)
1123 \includegraphics[width=1cm]{100_arrow.eps}
1124 \end{picture}
1125 \begin{picture}(0,0)(90,0)
1126 \includegraphics[height=0.9cm]{001_arrow.eps}
1127 \end{picture}
1128 \end{center}
1129 \vspace*{0.3cm}
1130 \end{minipage}
1131 }
1132 \begin{minipage}{0.3cm}
1133 \hfill
1134 \end{minipage}
1135 \begin{minipage}{6.5cm}
1136 VASP results
1137 \begin{itemize}
1138  \item Energetically most favorable path
1139        \begin{itemize}
1140         \item Path 2
1141         \item Activation energy: $\approx$ 0.9 eV 
1142         \item Experimental values: 0.73 ... 0.87 eV
1143        \end{itemize}
1144        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1145  \item Reorientation (path 3)
1146        \begin{itemize}
1147         \item More likely composed of two consecutive steps of type 2
1148         \item Experimental values: 0.77 ... 0.88 eV
1149        \end{itemize}
1150        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1151 \end{itemize}
1152 \end{minipage}
1153
1154 \end{slide}
1155
1156 \begin{slide}
1157
1158  {\large\bf\boldmath
1159   Migration of the C \hkl<1 0 0> dumbbell interstitial
1160  }
1161
1162 \scriptsize
1163
1164 \begin{minipage}{6.5cm}
1165
1166 \framebox{
1167 \begin{minipage}{5.9cm}
1168 \begin{flushleft}
1169 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1170 \end{flushleft}
1171 \begin{center}
1172 \begin{pspicture}(0,0)(0,0)
1173 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1174 \end{pspicture}
1175 \begin{picture}(0,0)(60,-50)
1176 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1177 \end{picture}
1178 \begin{picture}(0,0)(5,-50)
1179 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1180 \end{picture}
1181 \begin{picture}(0,0)(-55,-50)
1182 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1183 \end{picture}
1184 \begin{picture}(0,0)(12.5,-40)
1185 \includegraphics[width=1cm]{110_arrow.eps}
1186 \end{picture}
1187 \begin{picture}(0,0)(90,-45)
1188 \includegraphics[height=0.9cm]{001_arrow.eps}
1189 \end{picture}\\
1190 \begin{pspicture}(0,0)(0,0)
1191 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1192 \end{pspicture}
1193 \begin{picture}(0,0)(60,-15)
1194 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1195 \end{picture}
1196 \begin{picture}(0,0)(35,-15)
1197 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1198 \end{picture}
1199 \begin{picture}(0,0)(-5,-15)
1200 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1201 \end{picture}
1202 \begin{picture}(0,0)(-55,-15)
1203 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1204 \end{picture}
1205 \begin{picture}(0,0)(12.5,-5)
1206 \includegraphics[width=1cm]{100_arrow.eps}
1207 \end{picture}
1208 \begin{picture}(0,0)(90,-15)
1209 \includegraphics[height=0.9cm]{010_arrow.eps}
1210 \end{picture}
1211 \end{center}
1212 \end{minipage}
1213 }\\[0.1cm]
1214
1215 \begin{minipage}{5.9cm}
1216 Erhart/Albe results
1217 \begin{itemize}
1218  \item Lowest activation energy: $\approx$ 2.2 eV
1219  \item 2.4 times higher than VASP
1220  \item Different pathway
1221  \item Transition minima ($\rightarrow$ \hkl<1 1 0> dumbbell)
1222 \end{itemize}
1223 \end{minipage}
1224
1225 \end{minipage}
1226 \begin{minipage}{6.5cm}
1227
1228 \framebox{
1229 \begin{minipage}{5.9cm}
1230 \begin{flushright}
1231 \includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1232 \end{flushright}
1233 \begin{center}
1234 \begin{pspicture}(0,0)(0,0)
1235 \psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1236 \end{pspicture}
1237 \begin{picture}(0,0)(60,-5)
1238 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1239 \end{picture}
1240 \begin{picture}(0,0)(0,-5)
1241 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1242 \end{picture}
1243 \begin{picture}(0,0)(-55,-5)
1244 \includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1245 \end{picture}
1246 \begin{picture}(0,0)(12.5,5)
1247 \includegraphics[width=1cm]{100_arrow.eps}
1248 \end{picture}
1249 \begin{picture}(0,0)(90,0)
1250 \includegraphics[height=0.9cm]{001_arrow.eps}
1251 \end{picture}
1252 \end{center}
1253 \vspace{0.2cm}
1254 \end{minipage}
1255 }\\[0.2cm]
1256
1257 \framebox{
1258 \begin{minipage}{5.9cm}
1259 \includegraphics[width=5.9cm]{00-1_ip0-10.ps}
1260 \end{minipage}
1261 }
1262
1263 \end{minipage}
1264
1265 \end{slide}
1266
1267 \begin{slide}
1268
1269  {\large\bf\boldmath
1270   Migrations involving the C \hkl<1 1 0> dumbbell interstitial
1271  }
1272
1273 \small
1274
1275 \vspace*{0.1cm}
1276
1277 VASP
1278
1279 \begin{minipage}{6.0cm}
1280 \includegraphics[width=6cm]{vasp_mig/110_mig_vasp.ps}
1281 \end{minipage}
1282 \begin{minipage}{7cm}
1283 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1284 \hkl<0 -1 0> $\stackrel{0.7}{{\color{red}\longrightarrow}}$
1285 \hkl<1 1 0> $\stackrel{0.95}{{\color{blue}\longrightarrow}}$
1286 BC $\stackrel{0.25}{\longrightarrow}$ \hkl<0 0 -1>\\[0.3cm]
1287 Composed of three single transitions\\[0.3cm]
1288 Activation energy of second transition slightly\\
1289 higher than direct transition (path 2)\\[0.3cm]
1290 $\Rightarrow$ very unlikely to happen
1291 \end{minipage}\\[0.2cm]
1292
1293 Erhart/Albe
1294
1295 \begin{minipage}{6.0cm}
1296 \includegraphics[width=6cm]{110_mig.ps}
1297 \end{minipage}
1298 \begin{minipage}{7cm}
1299 \underline{Alternative pathway and energies [eV]}\\[0.1cm]
1300 \hkl<0 0 -1> $\stackrel{2.2}{{\color{green}\longrightarrow}}$
1301 \hkl<1 1 0> $\stackrel{0.9}{{\color{red}\longrightarrow}}$
1302 \hkl<0 0 -1>\\[0.3cm]
1303 Composed of two single transitions\\[0.3cm]
1304 Compared to direct transition: (2.2 eV \& 0.5 eV)\\[0.3cm]
1305 $\Rightarrow$ more readily constituting a probable transition
1306 \end{minipage}
1307
1308 \end{slide}
1309
1310 \begin{slide}
1311
1312  {\large\bf\boldmath
1313   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1314  }
1315
1316 \small
1317
1318 \vspace*{0.1cm}
1319
1320 Binding energy: 
1321 $
1322 E_{\text{b}}=
1323 E_{\text{f}}^{\text{defect combination}}-
1324 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1325 E_{\text{f}}^{\text{2nd defect}}
1326 $
1327
1328 \vspace*{0.1cm}
1329
1330 {\scriptsize
1331 \begin{tabular}{l c c c c c c}
1332 \hline
1333  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1334  \hline
1335  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1336  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1337  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1338  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1339  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1340  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1341  \hline
1342  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1343  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1344 \hline
1345 \end{tabular}
1346 }
1347
1348 \vspace*{0.3cm}
1349
1350 \footnotesize
1351
1352 \begin{minipage}[t]{3.8cm}
1353 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1354 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1355 \end{minipage}
1356 \begin{minipage}[t]{3.5cm}
1357 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1358 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1359 \end{minipage}
1360 \begin{minipage}[t]{5.5cm}
1361 \begin{itemize}
1362  \item Restricted to VASP simulations
1363  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1364  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1365  \item Stress compensation / increase
1366  \item Most favorable: C clustering
1367  \item Unfavored: antiparallel orientations
1368  \item Indication of energetically favored\\
1369        agglomeration
1370 \end{itemize}
1371 \end{minipage}
1372
1373 \begin{picture}(0,0)(-295,-130)
1374 \includegraphics[width=3.5cm]{comb_pos.eps}
1375 \end{picture}
1376
1377 \end{slide}
1378
1379 \begin{slide}
1380
1381  {\large\bf\boldmath
1382   Combinations of C-Si \hkl<1 0 0>-type interstitials
1383  }
1384
1385 \small
1386
1387 \vspace*{0.1cm}
1388
1389 Energetically most favorable combinations along \hkl<1 1 0>
1390
1391 \vspace*{0.1cm}
1392
1393 {\scriptsize
1394 \begin{tabular}{l c c c c c c}
1395 \hline
1396  & 1 & 2 & 3 & 4 & 5 & 6\\
1397 \hline
1398 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1399 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1400 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1401 \hline
1402 \end{tabular}
1403 }
1404
1405 \vspace*{0.3cm}
1406
1407 \begin{minipage}{7.0cm}
1408 \includegraphics[width=7cm]{db_along_110_cc.ps}
1409 \end{minipage}
1410 \begin{minipage}{6.0cm}
1411 \begin{center}
1412 {\color{blue}
1413  Interaction proportional to reciprocal cube of C-C distance
1414 }\\[0.2cm]
1415  Saturation in the immediate vicinity
1416 \end{center}
1417 \end{minipage}
1418
1419 \vspace{0.2cm}
1420
1421 \end{slide}
1422
1423 \begin{slide}
1424
1425  {\large\bf\boldmath
1426   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1427  }
1428
1429  \scriptsize
1430
1431 \begin{center}
1432 \begin{minipage}{3.2cm}
1433 \includegraphics[width=3cm]{sub_110_combo.eps}
1434 \end{minipage}
1435 \begin{minipage}{7.8cm}
1436 \begin{tabular}{l c c c c c c}
1437 \hline
1438 C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1439                    \hkl<1 0 1> & \hkl<-1 0 1> \\
1440 \hline
1441 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1442 2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1443 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1444 4 & \RM{4} & B & D & E & E & D \\
1445 5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1446 \hline
1447 \end{tabular}
1448 \end{minipage}
1449 \end{center}
1450
1451 \begin{center}
1452 \begin{tabular}{l c c c c c c c c c c}
1453 \hline
1454 Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1455 \hline
1456 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1457 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1458 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1459 \hline
1460 \end{tabular}
1461 \end{center}
1462
1463 \begin{minipage}{6.0cm}
1464 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1465 \end{minipage}
1466 \begin{minipage}{7cm}
1467 \small
1468 \begin{itemize}
1469  \item IBS: C may displace Si\\
1470        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1471  \item Assumption:\\
1472        \hkl<1 1 0>-type $\rightarrow$ favored combination
1473  \renewcommand\labelitemi{$\Rightarrow$}
1474  \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
1475        ($E_{\text{f}}=3.88\text{ eV}$)
1476  \item Interaction drops quickly to zero\\
1477        (low interaction capture radius)
1478 \end{itemize}
1479 \end{minipage}
1480
1481 \end{slide}
1482
1483 \begin{slide}
1484
1485  {\large\bf\boldmath
1486   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1487  }
1488
1489  \footnotesize
1490
1491 \vspace{0.1cm}
1492
1493 \begin{minipage}[t]{3cm}
1494 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1495 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1496 \end{minipage}
1497 \begin{minipage}[t]{7cm}
1498 \vspace{0.2cm}
1499 \begin{center}
1500  Low activation energies\\
1501  High activation energies for reverse processes\\
1502  $\Downarrow$\\
1503  {\color{blue}C$_{\text{sub}}$ very stable}\\
1504 \vspace*{0.1cm}
1505  \hrule
1506 \vspace*{0.1cm}
1507  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1508  $\Downarrow$\\
1509  {\color{blue}Formation of SiC by successive substitution by C}
1510
1511 \end{center}
1512 \end{minipage}
1513 \begin{minipage}[t]{3cm}
1514 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1515 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1516 \end{minipage}
1517
1518
1519 \framebox{
1520 \begin{minipage}{5.9cm}
1521 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1522 \begin{center}
1523 \begin{picture}(0,0)(70,0)
1524 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1525 \end{picture}
1526 \begin{picture}(0,0)(30,0)
1527 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1528 \end{picture}
1529 \begin{picture}(0,0)(-10,0)
1530 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1531 \end{picture}
1532 \begin{picture}(0,0)(-48,0)
1533 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1534 \end{picture}
1535 \begin{picture}(0,0)(12.5,5)
1536 \includegraphics[width=1cm]{100_arrow.eps}
1537 \end{picture}
1538 \begin{picture}(0,0)(97,-10)
1539 \includegraphics[height=0.9cm]{001_arrow.eps}
1540 \end{picture}
1541 \end{center}
1542 \vspace{0.1cm}
1543 \end{minipage}
1544 }
1545 \begin{minipage}{0.3cm}
1546 \hfill
1547 \end{minipage}
1548 \framebox{
1549 \begin{minipage}{5.9cm}
1550 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1551 \begin{center}
1552 \begin{picture}(0,0)(60,0)
1553 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1554 \end{picture}
1555 \begin{picture}(0,0)(25,0)
1556 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1557 \end{picture}
1558 \begin{picture}(0,0)(-20,0)
1559 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1560 \end{picture}
1561 \begin{picture}(0,0)(-55,0)
1562 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1563 \end{picture}
1564 \begin{picture}(0,0)(12.5,5)
1565 \includegraphics[width=1cm]{100_arrow.eps}
1566 \end{picture}
1567 \begin{picture}(0,0)(95,0)
1568 \includegraphics[height=0.9cm]{001_arrow.eps}
1569 \end{picture}
1570 \end{center}
1571 \vspace{0.1cm}
1572 \end{minipage}
1573 }
1574
1575 \end{slide}
1576
1577 \begin{slide}
1578
1579  {\large\bf
1580   Conclusion of defect / migration / combined defect simulations
1581  }
1582
1583  \small
1584
1585 \vspace*{0.1cm}
1586
1587 Defect structures
1588 \begin{itemize}
1589  \item Accurately described by quantum-mechanical simulations
1590  \item Less correct description by classical potential simulations
1591 \end{itemize}
1592 \vspace*{0.2cm}
1593 \begin{itemize}
1594  \item Consistent with solubility data of C in Si
1595  \item \hkl<1 0 0> C-Si dumbbell interstitial ground state configuration
1596  \item Consistent with reorientation and diffusion experiments
1597  \item C migration pathway in Si identified
1598 \end{itemize} 
1599
1600 \vspace*{0.2cm}
1601
1602 Concerning the precipitation mechanism
1603 \begin{itemize}
1604  \item Agglomeration of C-Si dumbbells energetically favorable
1605  \item C-Si indeed favored compared to
1606        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1607  \item Possible low interaction capture radius of
1608        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1609  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1610        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1611 \end{itemize} 
1612
1613 \vspace*{0.1cm}
1614 \begin{center}
1615 {\color{blue}Some results point to a different precipitation mechanism!}
1616 \end{center}
1617
1618 \end{slide}
1619
1620 \begin{slide}
1621
1622  {\large\bf
1623   Silicon carbide precipitation simulations
1624  }
1625
1626  \small
1627
1628 {\scriptsize
1629  \begin{pspicture}(0,0)(12,6.5)
1630   % nodes
1631   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1632    \parbox{7cm}{
1633    \begin{itemize}
1634     \item Create c-Si volume
1635     \item Periodc boundary conditions
1636     \item Set requested $T$ and $p=0\text{ bar}$
1637     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1638    \end{itemize}
1639   }}}}
1640   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1641    \parbox{7cm}{
1642    Insertion of C atoms at constant T
1643    \begin{itemize}
1644     \item total simulation volume {\pnode{in1}}
1645     \item volume of minimal SiC precipitate {\pnode{in2}}
1646     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1647           precipitate
1648    \end{itemize} 
1649   }}}}
1650   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1651    \parbox{7.0cm}{
1652    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1653   }}}}
1654   \ncline[]{->}{init}{insert}
1655   \ncline[]{->}{insert}{cool}
1656   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1657   \rput(7.8,6){\footnotesize $V_1$}
1658   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1659   \rput(9.2,4.85){\tiny $V_2$}
1660   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1661   \rput(9.55,4.45){\footnotesize $V_3$}
1662   \rput(7.9,3.2){\pnode{ins1}}
1663   \rput(9.22,2.8){\pnode{ins2}}
1664   \rput(11.0,2.4){\pnode{ins3}}
1665   \ncline[]{->}{in1}{ins1}
1666   \ncline[]{->}{in2}{ins2}
1667   \ncline[]{->}{in3}{ins3}
1668  \end{pspicture}
1669 }
1670
1671 \begin{itemize}
1672  \item Restricted to classical potential simulations
1673  \item $V_2$ and $V_3$ considered due to low diffusion
1674  \item Amount of C atoms: 6000
1675        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1676  \item Simulation volume: $31\times 31\times 31$ unit cells
1677        (238328 Si atoms)
1678 \end{itemize}
1679
1680 \end{slide}
1681
1682 \begin{slide}
1683
1684  {\large\bf\boldmath
1685   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1686  }
1687
1688  \small
1689
1690 \begin{minipage}{6.5cm}
1691 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1692 \end{minipage} 
1693 \begin{minipage}{6.5cm}
1694 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1695 \end{minipage} 
1696
1697 \begin{minipage}{6.5cm}
1698 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1699 \end{minipage} 
1700 \begin{minipage}{6.5cm}
1701 \scriptsize
1702 \underline{Low C concentration ($V_1$)}\\
1703 \hkl<1 0 0> C-Si dumbbell dominated structure
1704 \begin{itemize}
1705  \item Si-C bumbs around 0.19 nm
1706  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1707        concatenated dumbbells of various orientation
1708  \item Si-Si NN distance stretched to 0.3 nm
1709 \end{itemize}
1710 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1711 \underline{High C concentration ($V_2$, $V_3$)}\\
1712 High amount of strongly bound C-C bonds\\
1713 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1714 Only short range order observable\\
1715 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1716 \end{minipage} 
1717
1718 \end{slide}
1719
1720 \begin{slide}
1721
1722  {\large\bf
1723   Limitations of molecular dynamics and short range potentials
1724  }
1725
1726 \footnotesize
1727
1728 \vspace{0.2cm}
1729
1730 \underline{Time scale problem of MD}\\[0.2cm]
1731 Minimize integration error\\
1732 $\Rightarrow$ discretization considerably smaller than
1733               reciprocal of fastest vibrational mode\\[0.1cm]
1734 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
1735 $\Rightarrow$ suitable choice of time step:
1736               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
1737 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
1738 Several local minima in energy surface separated by large energy barriers\\
1739 $\Rightarrow$ transition event corresponds to a multiple
1740               of vibrational periods\\
1741 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
1742               infrequent transition events\\[0.1cm]
1743 {\color{blue}Accelerated methods:}
1744 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1745
1746 \vspace{0.3cm}
1747
1748 \underline{Limitations related to the short range potential}\\[0.2cm]
1749 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
1750 and 2$^{\text{nd}}$ next neighbours\\
1751 $\Rightarrow$ overestimated unphysical high forces of next neighbours
1752
1753 \vspace{0.3cm}
1754
1755 \framebox{
1756 \color{red}
1757 Potential enhanced problem of slow phase space propagation
1758 }
1759
1760 \vspace{0.3cm}
1761
1762 \underline{Approach to the (twofold) problem}\\[0.2cm]
1763 Increased temperature simulations without TAD corrections\\
1764 (accelerated methods or higher time scales exclusively not sufficient)
1765
1766 \begin{picture}(0,0)(-262,-10)
1767 \frame{
1768 \begin{minipage}{4.3cm}
1769 \tiny
1770 \begin{center}
1771 \vspace{0.03cm}
1772 \underline{IBS}
1773 \end{center}
1774 \begin{itemize}
1775 \item 3C-SiC also observed for higher T
1776 \item higher T inside sample
1777 \item structural evolution vs.\\
1778       equilibrium properties
1779 \end{itemize}
1780 \end{minipage}
1781 }
1782 \end{picture}
1783
1784 \begin{picture}(0,0)(-305,-152)
1785 \frame{
1786 \begin{minipage}{2.6cm}
1787 \tiny
1788 \begin{center}
1789 retain proper\\
1790 thermodynmic sampling
1791 \end{center}
1792 \end{minipage}
1793 }
1794 \end{picture}
1795
1796 \end{slide}
1797
1798 \begin{slide}
1799
1800  {\large\bf
1801   Increased temperature simulations
1802  }
1803
1804 \small
1805
1806 Low concentration simulation
1807
1808
1809
1810
1811 \end{slide}
1812
1813 \begin{slide}
1814
1815  {\large\bf
1816   Increased temperature simulations
1817  }
1818
1819 \small
1820
1821 High concentration simulation
1822
1823
1824
1825
1826 \end{slide}
1827
1828 \begin{slide}
1829
1830  {\large\bf
1831   Silicon carbide precipitation simulations
1832  }
1833
1834  \small
1835  
1836  4. temperature limit
1837
1838
1839 \end{slide}
1840
1841 \begin{slide}
1842
1843  {\large\bf
1844   Silicon carbide precipitation simulations
1845  }
1846
1847  \small
1848  
1849  5. final TODO
1850
1851 \end{slide}
1852
1853 \begin{slide}
1854
1855  {\large\bf
1856   Silicon carbide precipitation simulations
1857  }
1858
1859  \small
1860
1861 \end{slide}
1862
1863 \begin{slide}
1864
1865  {\large\bf
1866   Investigation of a silicon carbide precipitate in silicon
1867  }
1868
1869  \small
1870
1871  
1872
1873 \end{slide}
1874
1875 \end{document}