140f81f536016226b025a0e4f9e8db1acdde3371
[lectures/latex.git] / posic / talks / seminar_2011.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{latexsym}
11 \usepackage{ae}
12
13 \usepackage{calc}               % Simple computations with LaTeX variables
14 \usepackage{caption}            % Improved captions
15 \usepackage{fancybox}           % To have several backgrounds
16
17 \usepackage{fancyhdr}           % Headers and footers definitions
18 \usepackage{fancyvrb}           % Fancy verbatim environments
19 \usepackage{pstricks}           % PSTricks with the standard color package
20
21 \usepackage{pstricks}
22 \usepackage{pst-node}
23
24 %\usepackage{epic}
25 %\usepackage{eepic}
26
27 \usepackage{graphicx}
28 \graphicspath{{../img/}}
29
30 \usepackage{miller}
31
32 \usepackage[setpagesize=false]{hyperref}
33
34 % units
35 \usepackage{units}
36
37 \usepackage{semcolor}
38 \usepackage{semlayer}           % Seminar overlays
39 \usepackage{slidesec}           % Seminar sections and list of slides
40
41 \input{seminar.bug}             % Official bugs corrections
42 \input{seminar.bg2}             % Unofficial bugs corrections
43
44 \articlemag{1}
45
46 \special{landscape}
47
48 % font
49 %\usepackage{cmbright}
50 %\renewcommand{\familydefault}{\sfdefault}
51 %\usepackage{mathptmx}
52
53 \usepackage{upgreek}
54
55 \begin{document}
56
57 \extraslideheight{10in}
58 \slideframe{none}
59
60 \pagestyle{empty}
61
62 % specify width and height
63 \slidewidth 27.7cm 
64 \slideheight 19.1cm 
65
66 % shift it into visual area properly
67 \def\slideleftmargin{3.3cm}
68 \def\slidetopmargin{0.6cm}
69
70 \newcommand{\ham}{\mathcal{H}}
71 \newcommand{\pot}{\mathcal{V}}
72 \newcommand{\foo}{\mathcal{U}}
73 \newcommand{\vir}{\mathcal{W}}
74
75 % itemize level ii
76 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
77
78 % nice phi
79 \renewcommand{\phi}{\varphi}
80
81 % roman letters
82 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
83
84 % colors
85 \newrgbcolor{si-yellow}{.6 .6 0}
86 \newrgbcolor{hb}{0.75 0.77 0.89}
87 \newrgbcolor{lbb}{0.75 0.8 0.88}
88 \newrgbcolor{hlbb}{0.825 0.88 0.968}
89 \newrgbcolor{lachs}{1.0 .93 .81}
90
91 % shortcuts
92 \newcommand{\si}{Si$_{\text{i}}${}}
93 \newcommand{\ci}{C$_{\text{i}}${}}
94 \newcommand{\cs}{C$_{\text{sub}}${}}
95 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
96 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
97 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
98 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
99
100 % topic
101
102 \begin{slide}
103 \begin{center}
104
105  \vspace{16pt}
106
107  {\LARGE\bf
108   Atomistic simulation study on the silicon carbide precipitation
109   in silicon
110  }
111
112  \vspace{48pt}
113
114  \textsc{F. Zirkelbach}
115
116  \vspace{48pt}
117
118 Yet another seminar talk
119
120  \vspace{08pt}
121
122  Augsburg, 26. Mai 2011
123
124 \end{center}
125 \end{slide}
126
127 % motivation / properties / applications of silicon carbide
128 \begin{slide}
129
130 \small
131
132 \begin{pspicture}(0,0)(13.5,5)
133
134
135
136  \psframe*[linecolor=hb](0,0)(13.5,5)
137
138  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
139  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
140
141  \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
142
143  \rput[lt](0.5,4){wide band gap}
144  \rput[lt](0.5,3.5){high electric breakdown field}
145  \rput[lt](0.5,3){good electron mobility}
146  \rput[lt](0.5,2.5){high electron saturation drift velocity}
147  \rput[lt](0.5,2){high thermal conductivity}
148
149  \rput[lt](0.5,1.5){hard and mechanically stable}
150  \rput[lt](0.5,1){chemically inert}
151
152  \rput[lt](0.5,0.5){radiation hardness}
153
154  \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
155
156  \rput[rt](13,3.85){high-temperature, high power}
157  \rput[rt](13,3.5){and high-frequency}
158  \rput[rt](13,3.15){electronic and optoelectronic devices}
159
160  \rput[rt](13,2.35){material suitable for extreme conditions}
161  \rput[rt](13,2){microelectromechanical systems}
162  \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
163
164  \rput[rt](13,0.85){first wall reactor material, detectors}
165  \rput[rt](13,0.5){and electronic devices for space}
166
167 \end{pspicture}
168
169 \begin{picture}(0,0)(-3,68)
170 \includegraphics[width=2.6cm]{wide_band_gap.eps}
171 \end{picture}
172 \begin{picture}(0,0)(-285,-162)
173 \includegraphics[width=3.38cm]{sic_led.eps}
174 \end{picture}
175 \begin{picture}(0,0)(-195,-162)
176 \includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
177 \end{picture}
178 \begin{picture}(0,0)(-313,65)
179 \includegraphics[width=2.2cm]{infineon_schottky.eps}
180 \end{picture}
181 \begin{picture}(0,0)(-220,65)
182 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
183 \end{picture}
184 \begin{picture}(0,0)(0,-160)
185 \includegraphics[width=3.0cm]{sic_proton.eps}
186 \end{picture}
187 \begin{picture}(0,0)(-60,65)
188 \includegraphics[width=3.4cm]{sic_switch.eps}
189 \end{picture}
190
191 \end{slide}
192
193 % start of contents
194
195 \begin{slide}
196
197  {\large\bf
198   Polytypes of SiC
199  }
200
201  \vspace{4cm}
202
203  \small
204
205 \begin{tabular}{l c c c c c c}
206 \hline
207  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
208 \hline
209 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
210 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
211 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
212 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
213 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
214 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
215 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
216 \hline
217 \end{tabular}
218
219 {\tiny
220  Values for $T=300$ K
221 }
222
223 \begin{picture}(0,0)(-160,-155)
224  \includegraphics[width=7cm]{polytypes.eps}
225 \end{picture}
226 \begin{picture}(0,0)(-10,-185)
227  \includegraphics[width=3.8cm]{cubic_hex.eps}\\
228 \end{picture}
229 \begin{picture}(0,0)(-10,-175)
230  {\tiny cubic (twist)}
231 \end{picture}
232 \begin{picture}(0,0)(-60,-175)
233  {\tiny hexagonal (no twist)}
234 \end{picture}
235 \begin{pspicture}(0,0)(0,0)
236 \psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
237 \end{pspicture}
238 \begin{pspicture}(0,0)(0,0)
239 \psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
240 \end{pspicture}
241 \begin{pspicture}(0,0)(0,0)
242 \psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
243 \end{pspicture}
244
245 \end{slide}
246
247 \begin{slide}
248
249  {\large\bf
250   Fabrication of silicon carbide
251  }
252
253  \small
254  
255  \vspace{4pt}
256
257  SiC - \emph{Born from the stars, perfected on earth.}
258  
259  \vspace{4pt}
260
261  Conventional thin film SiC growth:
262  \begin{itemize}
263   \item \underline{Sublimation growth using the modified Lely method}
264         \begin{itemize}
265          \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
266          \item Surrounded by polycrystalline SiC in a graphite crucible\\
267                at $T=2100-2400 \, ^{\circ} \text{C}$
268          \item Deposition of supersaturated vapor on cooler seed crystal
269         \end{itemize}
270   \item \underline{Homoepitaxial growth using CVD}
271         \begin{itemize}
272          \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
273          \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
274          \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
275         \end{itemize}
276   \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
277         \begin{itemize}
278          \item Two steps: carbonization and growth
279          \item $T=650-1050 \, ^{\circ} \text{C}$
280          \item SiC/Si lattice mismatch $\approx$ 20 \%
281          \item Quality and size not yet sufficient
282         \end{itemize}
283  \end{itemize}
284
285  \begin{picture}(0,0)(-280,-65)
286   \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
287  \end{picture}
288  \begin{picture}(0,0)(-280,-55)
289   \begin{minipage}{5cm}
290   {\tiny
291    NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
292    on 6H-SiC substrate
293   }
294   \end{minipage}
295  \end{picture}
296  \begin{picture}(0,0)(-265,-150)
297   \includegraphics[width=2.4cm]{m_lely.eps}
298  \end{picture}
299  \begin{picture}(0,0)(-333,-175)
300   \begin{minipage}{5cm}
301   {\tiny
302    1. Lid\\[-7pt]
303    2. Heating\\[-7pt]
304    3. Source\\[-7pt]
305    4. Crucible\\[-7pt]
306    5. Insulation\\[-7pt]
307    6. Seed crystal
308   }
309   \end{minipage}
310  \end{picture}
311  \begin{picture}(0,0)(-230,-35)
312  \framebox{
313  {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
314  }
315  \end{picture}
316  \begin{picture}(0,0)(-230,-10)
317  \framebox{
318  \begin{minipage}{3cm}
319  {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
320                                less advanced}
321  \end{minipage}
322  }
323  \end{picture}
324
325 \end{slide}
326
327 \begin{slide}
328
329  {\large\bf
330   Fabrication of silicon carbide
331  }
332
333  \small
334
335  Alternative approach:
336  Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
337  \begin{itemize}
338   \item \underline{Implantation step 1}\\
339         180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
340         $\Rightarrow$ box-like distribution of equally sized
341                        and epitactically oriented SiC precipitates
342                        
343   \item \underline{Implantation step 2}\\
344         180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
345         $\Rightarrow$ destruction of SiC nanocrystals
346                       in growing amorphous interface layers
347   \item \underline{Annealing}\\
348         $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
349         $\Rightarrow$ homogeneous, stoichiometric SiC layer
350                       with sharp interfaces
351  \end{itemize}
352
353  \begin{minipage}{6.3cm}
354  \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
355  {\tiny
356   XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
357  }
358  \end{minipage}
359 \framebox{
360  \begin{minipage}{6.3cm}
361  \begin{center}
362  {\color{blue}
363   Precipitation mechanism not yet fully understood!
364  }
365  \renewcommand\labelitemi{$\Rightarrow$}
366  \small
367  \underline{Understanding the SiC precipitation}
368  \begin{itemize}
369   \item significant technological progress in SiC thin film formation
370   \item perspectives for processes relying upon prevention of SiC precipitation
371  \end{itemize}
372  \end{center}
373  \end{minipage}
374 }
375  
376 \end{slide}
377
378 % contents
379
380 \begin{slide}
381
382 {\large\bf
383  Outline
384 }
385
386  \begin{itemize}
387   \item Supposed precipitation mechanism of SiC in Si
388   \item Utilized simulation techniques
389         \begin{itemize}
390          \item Molecular dynamics (MD) simulations
391          \item Density functional theory (DFT) calculations
392         \end{itemize}
393   \item C and Si self-interstitial point defects in silicon
394   \item Silicon carbide precipitation simulations
395   \item Summary / Conclusion / Outlook
396  \end{itemize}
397
398 \end{slide}
399
400 \begin{slide}
401
402  {\large\bf
403   Supposed precipitation mechanism of SiC in Si
404  }
405
406  \scriptsize
407
408  \vspace{0.1cm}
409
410  \begin{minipage}{3.8cm}
411  Si \& SiC lattice structure\\[0.2cm]
412  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
413  \hrule
414  \end{minipage}
415  \hspace{0.6cm}
416  \begin{minipage}{3.8cm}
417  \begin{center}
418  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
419  \end{center}
420  \end{minipage}
421  \hspace{0.6cm}
422  \begin{minipage}{3.8cm}
423  \begin{center}
424  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
425  \end{center}
426  \end{minipage}
427
428  \begin{minipage}{4cm}
429  \begin{center}
430  C-Si dimers (dumbbells)\\[-0.1cm]
431  on Si interstitial sites
432  \end{center}
433  \end{minipage}
434  \hspace{0.2cm}
435  \begin{minipage}{4.2cm}
436  \begin{center}
437  Agglomeration of C-Si dumbbells\\[-0.1cm]
438  $\Rightarrow$ dark contrasts
439  \end{center}
440  \end{minipage}
441  \hspace{0.2cm}
442  \begin{minipage}{4cm}
443  \begin{center}
444  Precipitation of 3C-SiC in Si\\[-0.1cm]
445  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
446  \& release of Si self-interstitials
447  \end{center}
448  \end{minipage}
449
450  \begin{minipage}{3.8cm}
451  \begin{center}
452  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
453  \end{center}
454  \end{minipage}
455  \hspace{0.6cm}
456  \begin{minipage}{3.8cm}
457  \begin{center}
458  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
459  \end{center}
460  \end{minipage}
461  \hspace{0.6cm}
462  \begin{minipage}{3.8cm}
463  \begin{center}
464  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
465  \end{center}
466  \end{minipage}
467
468 \begin{pspicture}(0,0)(0,0)
469 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
470 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
471 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
472 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
473 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
474  $4a_{\text{Si}}=5a_{\text{SiC}}$
475  }}}
476 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
477 \hkl(h k l) planes match
478  }}}
479 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
480 r = 2 - 4 nm
481  }}}
482 \end{pspicture}
483
484 \end{slide}
485
486 \begin{slide}
487
488  {\large\bf
489   Supposed precipitation mechanism of SiC in Si
490  }
491
492  \scriptsize
493
494  \vspace{0.1cm}
495
496  \begin{minipage}{3.8cm}
497  Si \& SiC lattice structure\\[0.2cm]
498  \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
499  \hrule
500  \end{minipage}
501  \hspace{0.6cm}
502  \begin{minipage}{3.8cm}
503  \begin{center}
504  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
505  \end{center}
506  \end{minipage}
507  \hspace{0.6cm}
508  \begin{minipage}{3.8cm}
509  \begin{center}
510  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
511  \end{center}
512  \end{minipage}
513
514  \begin{minipage}{4cm}
515  \begin{center}
516  C-Si dimers (dumbbells)\\[-0.1cm]
517  on Si interstitial sites
518  \end{center}
519  \end{minipage}
520  \hspace{0.2cm}
521  \begin{minipage}{4.2cm}
522  \begin{center}
523  Agglomeration of C-Si dumbbells\\[-0.1cm]
524  $\Rightarrow$ dark contrasts
525  \end{center}
526  \end{minipage}
527  \hspace{0.2cm}
528  \begin{minipage}{4cm}
529  \begin{center}
530  Precipitation of 3C-SiC in Si\\[-0.1cm]
531  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
532  \& release of Si self-interstitials
533  \end{center}
534  \end{minipage}
535
536  \begin{minipage}{3.8cm}
537  \begin{center}
538  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
539  \end{center}
540  \end{minipage}
541  \hspace{0.6cm}
542  \begin{minipage}{3.8cm}
543  \begin{center}
544  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
545  \end{center}
546  \end{minipage}
547  \hspace{0.6cm}
548  \begin{minipage}{3.8cm}
549  \begin{center}
550  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
551  \end{center}
552  \end{minipage}
553
554 \begin{pspicture}(0,0)(0,0)
555 \psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
556 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
557 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
558 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
559 \rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
560  $4a_{\text{Si}}=5a_{\text{SiC}}$
561  }}}
562 \rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
563 \hkl(h k l) planes match
564  }}}
565 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
566 r = 2 - 4 nm
567  }}}
568 \rput(4.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=red]{
569 \begin{minipage}{8cm}
570 \small
571 \vspace*{0.1cm}
572 IBS studies revealing controversial views\\
573 \begin{itemize}
574 \item Nejim et al.
575  \begin{itemize}
576   \item Topotactic transformation based on \cs
577   \item \si as supply reacting with further C in cleared volume
578  \end{itemize}
579 \item Serre, Reeson, Lindner ...
580  \begin{itemize}
581   \item RT implants: highly mobile C
582   \item elevated T implants: no/low C redistribution/migration
583  \end{itemize}
584 \end{itemize}
585 \end{minipage}
586  }}}
587 \end{pspicture}
588
589 \end{slide}
590
591 \begin{slide}
592
593  {\large\bf
594   Molecular dynamics (MD) simulations
595  }
596
597  \vspace{12pt}
598
599  \small
600
601  {\bf MD basics:}
602  \begin{itemize}
603   \item Microscopic description of N particle system
604   \item Analytical interaction potential
605   \item Numerical integration using Newtons equation of motion\\
606         as a propagation rule in 6N-dimensional phase space
607   \item Observables obtained by time and/or ensemble averages
608  \end{itemize}
609  {\bf Details of the simulation:}
610  \begin{itemize}
611   \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
612   \item Ensemble: NpT (isothermal-isobaric)
613         \begin{itemize}
614          \item Berendsen thermostat:
615                $\tau_{\text{T}}=100\text{ fs}$
616          \item Berendsen barostat:\\
617                $\tau_{\text{P}}=100\text{ fs}$,
618                $\beta^{-1}=100\text{ GPa}$
619         \end{itemize}
620   \item Erhart/Albe potential: Tersoff-like bond order potential
621   \vspace*{12pt}
622         \[
623         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
624         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
625         \]
626  \end{itemize}
627
628  \begin{picture}(0,0)(-230,-30)
629   \includegraphics[width=5cm]{tersoff_angle.eps} 
630  \end{picture}
631  
632 \end{slide}
633
634 \begin{slide}
635
636  {\large\bf
637   Density functional theory (DFT) calculations
638  }
639
640  \small
641
642  Basic ingredients necessary for DFT
643
644  \begin{itemize}
645   \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
646         \begin{itemize}
647          \item ... uniquely determines the ground state potential
648                / wavefunctions
649          \item ... minimizes the systems total energy
650         \end{itemize}
651   \item \underline{Born-Oppenheimer}
652         - $N$ moving electrons in an external potential of static nuclei
653 \[
654 H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
655               +\sum_i^N V_{\text{ext}}(r_i)
656               +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
657 \]
658   \item \underline{Effective potential}
659         - averaged electrostatic potential \& exchange and correlation
660 \[
661 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
662                  +V_{\text{XC}}[n(r)]
663 \]
664   \item \underline{Kohn-Sham system}
665         - Schr\"odinger equation of N non-interacting particles
666 \[
667 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
668 =\epsilon_i\Phi_i(r)
669 \quad
670 \Rightarrow
671 \quad
672 n(r)=\sum_i^N|\Phi_i(r)|^2
673 \]
674   \item \underline{Self-consistent solution}\\
675 $n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
676 which in turn depends on $n(r)$
677   \item \underline{Variational principle}
678         - minimize total energy with respect to $n(r)$
679  \end{itemize}
680
681 \end{slide}
682
683 \begin{slide}
684
685  {\large\bf
686   Density functional theory (DFT) calculations
687  }
688
689  \small
690
691  \vspace*{0.2cm}
692
693  Details of applied DFT calculations in this work
694
695  \begin{itemize}
696   \item \underline{Exchange correlation functional}
697         - approximations for the inhomogeneous electron gas
698         \begin{itemize}
699          \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
700          \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
701         \end{itemize}
702   \item \underline{Plane wave basis set}
703         - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
704 \[
705 \rightarrow
706 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
707 \qquad ({\color{blue}300\text{ eV}})
708 \]
709   \item \underline{Brillouin zone sampling} -
710         {\color{blue}$\Gamma$-point only} calculations
711   \item \underline{Pseudo potential} 
712         - consider only the valence electrons
713   \item \underline{Code} - VASP 4.6
714  \end{itemize}
715
716  \vspace*{0.2cm}
717
718  MD and structural optimization
719
720  \begin{itemize}
721   \item MD integration: Gear predictor corrector algorithm
722   \item Pressure control: Parrinello-Rahman pressure control
723   \item Structural optimization: Conjugate gradient method
724  \end{itemize}
725
726 \begin{pspicture}(0,0)(0,0)
727 \psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
728 \end{pspicture}
729
730 \end{slide}
731
732 \begin{slide}
733
734  {\large\bf
735   C and Si self-interstitial point defects in silicon
736  }
737
738  \small
739
740  \vspace*{0.3cm}
741
742 \begin{minipage}{8cm}
743 Procedure:\\[0.3cm]
744   \begin{pspicture}(0,0)(7,5)
745   \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
746    \parbox{7cm}{
747    \begin{itemize}
748     \item Creation of c-Si simulation volume
749     \item Periodic boundary conditions
750     \item $T=0\text{ K}$, $p=0\text{ bar}$
751    \end{itemize}
752   }}}}
753 \rput(3.5,2.1){\rnode{insert}{\psframebox{
754  \parbox{7cm}{
755   \begin{center}
756   Insertion of interstitial C/Si atoms
757   \end{center}
758   }}}}
759   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
760    \parbox{7cm}{
761    \begin{center}
762    Relaxation / structural energy minimization
763    \end{center}
764   }}}}
765   \ncline[]{->}{init}{insert}
766   \ncline[]{->}{insert}{cool}
767  \end{pspicture}
768 \end{minipage}
769 \begin{minipage}{5cm}
770   \includegraphics[width=5cm]{unit_cell_e.eps}\\
771 \end{minipage}
772
773 \begin{minipage}{9cm}
774  \begin{tabular}{l c c}
775  \hline
776  & size [unit cells] & \# atoms\\
777 \hline
778 VASP & $3\times 3\times 3$ & $216\pm 1$ \\
779 Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
780 \hline
781  \end{tabular}
782 \end{minipage}
783 \begin{minipage}{4cm}
784 {\color{red}$\bullet$} Tetrahedral\\
785 {\color{green}$\bullet$} Hexagonal\\
786 {\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
787 {\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
788 {\color{cyan}$\bullet$} Bond-centered\\
789 {\color{black}$\bullet$} Vacancy / Substitutional
790 \end{minipage}
791
792 \end{slide}
793
794 \begin{slide}
795
796  \footnotesize
797
798 \begin{minipage}{9.5cm}
799
800  {\large\bf
801   Si self-interstitial point defects in silicon\\
802  }
803
804 \begin{tabular}{l c c c c c}
805 \hline
806  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
807 \hline
808  VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
809  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
810 \hline
811 \end{tabular}\\[0.2cm]
812
813 \begin{minipage}{4.7cm}
814 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
815 \end{minipage}
816 \begin{minipage}{4.7cm}
817 \begin{center}
818 {\tiny nearly T $\rightarrow$ T}\\
819 \end{center}
820 \includegraphics[width=4.7cm]{nhex_tet.ps}
821 \end{minipage}\\
822
823 \underline{Hexagonal} \hspace{2pt}
824 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
825 \framebox{
826 \begin{minipage}{2.7cm}
827 $E_{\text{f}}^*=4.48\text{ eV}$\\
828 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
829 \end{minipage}
830 \begin{minipage}{0.4cm}
831 \begin{center}
832 $\Rightarrow$
833 \end{center}
834 \end{minipage}
835 \begin{minipage}{2.7cm}
836 $E_{\text{f}}=3.96\text{ eV}$\\
837 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
838 \end{minipage}
839 }
840 \begin{minipage}{2.9cm}
841 \begin{flushright}
842 \underline{Vacancy}\\
843 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
844 \end{flushright}
845 \end{minipage}
846
847 \end{minipage}
848 \begin{minipage}{3.5cm}
849
850 \begin{flushright}
851 \underline{\hkl<1 1 0> dumbbell}\\
852 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
853 \underline{Tetrahedral}\\
854 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
855 \underline{\hkl<1 0 0> dumbbell}\\
856 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
857 \end{flushright}
858
859 \end{minipage}
860
861 \end{slide}
862
863 \begin{slide}
864
865 \footnotesize
866
867  {\large\bf
868   C interstitial point defects in silicon\\[-0.1cm]
869  }
870
871 \begin{tabular}{l c c c c c c r}
872 \hline
873  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
874 \hline
875  VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
876  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
877 \hline
878 \end{tabular}\\[0.1cm]
879
880 \framebox{
881 \begin{minipage}{2.7cm}
882 \underline{Hexagonal} \hspace{2pt}
883 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
884 $E_{\text{f}}^*=9.05\text{ eV}$\\
885 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
886 \end{minipage}
887 \begin{minipage}{0.4cm}
888 \begin{center}
889 $\Rightarrow$
890 \end{center}
891 \end{minipage}
892 \begin{minipage}{2.7cm}
893 \underline{\hkl<1 0 0>}\\
894 $E_{\text{f}}=3.88\text{ eV}$\\
895 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
896 \end{minipage}
897 }
898 \begin{minipage}{2cm}
899 \hfill
900 \end{minipage}
901 \begin{minipage}{3cm}
902 \begin{flushright}
903 \underline{Tetrahedral}\\
904 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
905 \end{flushright}
906 \end{minipage}
907
908 \framebox{
909 \begin{minipage}{2.7cm}
910 \underline{Bond-centered}\\
911 $E_{\text{f}}^*=5.59\text{ eV}$\\
912 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
913 \end{minipage}
914 \begin{minipage}{0.4cm}
915 \begin{center}
916 $\Rightarrow$
917 \end{center}
918 \end{minipage}
919 \begin{minipage}{2.7cm}
920 \underline{\hkl<1 1 0> dumbbell}\\
921 $E_{\text{f}}=5.18\text{ eV}$\\
922 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
923 \end{minipage}
924 }
925 \begin{minipage}{2cm}
926 \hfill
927 \end{minipage}
928 \begin{minipage}{3cm}
929 \begin{flushright}
930 \underline{Substitutional}\\
931 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
932 \end{flushright}
933 \end{minipage}
934
935 \end{slide}
936
937 \begin{slide}
938
939 \footnotesize
940
941  {\large\bf\boldmath
942   C \hkl<1 0 0> dumbbell interstitial configuration\\
943  }
944
945 {\tiny
946 \begin{tabular}{l c c c c c c c c}
947 \hline
948  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
949 \hline
950 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
951 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
952 \hline
953 \end{tabular}\\[0.2cm]
954 \begin{tabular}{l c c c c }
955 \hline
956  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
957 \hline
958 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
959 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
960 \hline
961 \end{tabular}\\[0.2cm]
962 \begin{tabular}{l c c c}
963 \hline
964  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
965 \hline
966 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
967 VASP & 0.109 & -0.065 & 0.174 \\
968 \hline
969 \end{tabular}\\[0.6cm]
970 }
971
972 \begin{minipage}{3.0cm}
973 \begin{center}
974 \underline{Erhart/Albe}
975 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
976 \end{center}
977 \end{minipage}
978 \begin{minipage}{3.0cm}
979 \begin{center}
980 \underline{VASP}
981 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
982 \end{center}
983 \end{minipage}\\
984
985 \begin{picture}(0,0)(-185,10)
986 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
987 \end{picture}
988 \begin{picture}(0,0)(-280,-150)
989 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
990 \end{picture}
991
992 \begin{pspicture}(0,0)(0,0)
993 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
994 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
995 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
996 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
997 \end{pspicture}
998
999 \end{slide}
1000
1001 \begin{slide}
1002
1003 \small
1004
1005 \begin{minipage}{8.5cm}
1006
1007  {\large\bf
1008   Bond-centered interstitial configuration\\[-0.1cm]
1009  }
1010
1011 \begin{minipage}{3.0cm}
1012 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1013 \end{minipage}
1014 \begin{minipage}{5.2cm}
1015 \begin{itemize}
1016  \item Linear Si-C-Si bond
1017  \item Si: one C \& 3 Si neighbours
1018  \item Spin polarized calculations
1019  \item No saddle point!\\
1020        Real local minimum!
1021 \end{itemize}
1022 \end{minipage}
1023
1024 \framebox{
1025  \tiny
1026  \begin{minipage}[t]{6.5cm}
1027   \begin{minipage}[t]{1.2cm}
1028   {\color{red}Si}\\
1029   {\tiny sp$^3$}\\[0.8cm]
1030   \underline{${\color{black}\uparrow}$}
1031   \underline{${\color{black}\uparrow}$}
1032   \underline{${\color{black}\uparrow}$}
1033   \underline{${\color{red}\uparrow}$}\\
1034   sp$^3$
1035   \end{minipage}
1036   \begin{minipage}[t]{1.4cm}
1037   \begin{center}
1038   {\color{red}M}{\color{blue}O}\\[0.8cm]
1039   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1040   $\sigma_{\text{ab}}$\\[0.5cm]
1041   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1042   $\sigma_{\text{b}}$
1043   \end{center}
1044   \end{minipage}
1045   \begin{minipage}[t]{1.0cm}
1046   \begin{center}
1047   {\color{blue}C}\\
1048   {\tiny sp}\\[0.2cm]
1049   \underline{${\color{white}\uparrow\uparrow}$}
1050   \underline{${\color{white}\uparrow\uparrow}$}\\
1051   2p\\[0.4cm]
1052   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1053   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1054   sp
1055   \end{center}
1056   \end{minipage}
1057   \begin{minipage}[t]{1.4cm}
1058   \begin{center}
1059   {\color{blue}M}{\color{green}O}\\[0.8cm]
1060   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1061   $\sigma_{\text{ab}}$\\[0.5cm]
1062   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1063   $\sigma_{\text{b}}$
1064   \end{center}
1065   \end{minipage}
1066   \begin{minipage}[t]{1.2cm}
1067   \begin{flushright}
1068   {\color{green}Si}\\
1069   {\tiny sp$^3$}\\[0.8cm]
1070   \underline{${\color{green}\uparrow}$}
1071   \underline{${\color{black}\uparrow}$}
1072   \underline{${\color{black}\uparrow}$}
1073   \underline{${\color{black}\uparrow}$}\\
1074   sp$^3$
1075   \end{flushright}
1076   \end{minipage}
1077  \end{minipage}
1078 }\\[0.1cm]
1079
1080 \framebox{
1081 \begin{minipage}{4.5cm}
1082 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1083 \end{minipage}
1084 \begin{minipage}{3.5cm}
1085 {\color{gray}$\bullet$} Spin up\\
1086 {\color{green}$\bullet$} Spin down\\
1087 {\color{blue}$\bullet$} Resulting spin up\\
1088 {\color{yellow}$\bullet$} Si atoms\\
1089 {\color{red}$\bullet$} C atom
1090 \end{minipage}
1091 }
1092
1093 \end{minipage}
1094 \begin{minipage}{4.2cm}
1095 \begin{flushright}
1096 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1097 {\color{green}$\Box$} {\tiny unoccupied}\\
1098 {\color{red}$\bullet$} {\tiny occupied}
1099 \end{flushright}
1100 \end{minipage}
1101
1102 \end{slide}
1103
1104 \begin{slide}
1105
1106  {\large\bf\boldmath
1107   Migration of the C \hkl<1 0 0> dumbbell interstitial
1108  }
1109
1110 \scriptsize
1111
1112  {\small Investigated pathways}
1113
1114 \begin{minipage}{8.5cm}
1115 \begin{minipage}{8.3cm}
1116 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1117 \begin{minipage}{2.4cm}
1118 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1119 \end{minipage}
1120 \begin{minipage}{0.4cm}
1121 $\rightarrow$
1122 \end{minipage}
1123 \begin{minipage}{2.4cm}
1124 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1125 \end{minipage}
1126 \begin{minipage}{0.4cm}
1127 $\rightarrow$
1128 \end{minipage}
1129 \begin{minipage}{2.4cm}
1130 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1131 \end{minipage}
1132 \end{minipage}\\
1133 \begin{minipage}{8.3cm}
1134 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1135 \begin{minipage}{2.4cm}
1136 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1137 \end{minipage}
1138 \begin{minipage}{0.4cm}
1139 $\rightarrow$
1140 \end{minipage}
1141 \begin{minipage}{2.4cm}
1142 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1143 \end{minipage}
1144 \begin{minipage}{0.4cm}
1145 $\rightarrow$
1146 \end{minipage}
1147 \begin{minipage}{2.4cm}
1148 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1149 \end{minipage}
1150 \end{minipage}\\
1151 \begin{minipage}{8.3cm}
1152 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1153 \begin{minipage}{2.4cm}
1154 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1155 \end{minipage}
1156 \begin{minipage}{0.4cm}
1157 $\rightarrow$
1158 \end{minipage}
1159 \begin{minipage}{2.4cm}
1160 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1161 \end{minipage}
1162 \begin{minipage}{0.4cm}
1163 $\rightarrow$
1164 \end{minipage}
1165 \begin{minipage}{2.4cm}
1166 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1167 \end{minipage}
1168 \end{minipage}
1169 \end{minipage}
1170 \framebox{
1171 \begin{minipage}{4.2cm}
1172  {\small Constrained relaxation\\
1173          technique (CRT) method}\\
1174 \includegraphics[width=4cm]{crt_orig.eps}
1175 \begin{itemize}
1176  \item Constrain diffusing atom
1177  \item Static constraints 
1178 \end{itemize}
1179 \vspace*{0.3cm}
1180  {\small Modifications}\\
1181 \includegraphics[width=4cm]{crt_mod.eps}
1182 \begin{itemize}
1183  \item Constrain all atoms
1184  \item Update individual\\
1185        constraints
1186 \end{itemize}
1187 \end{minipage}
1188 }
1189
1190 \end{slide}
1191
1192 \begin{slide}
1193
1194  {\large\bf\boldmath
1195   Migration of the C \hkl<1 0 0> dumbbell interstitial
1196  }
1197
1198 \scriptsize
1199
1200 \framebox{
1201 \begin{minipage}{5.9cm}
1202 \begin{flushleft}
1203 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1204 \end{flushleft}
1205 \begin{center}
1206 \begin{picture}(0,0)(60,0)
1207 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1208 \end{picture}
1209 \begin{picture}(0,0)(-5,0)
1210 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1211 \end{picture}
1212 \begin{picture}(0,0)(-55,0)
1213 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1214 \end{picture}
1215 \begin{picture}(0,0)(12.5,10)
1216 \includegraphics[width=1cm]{110_arrow.eps}
1217 \end{picture}
1218 \begin{picture}(0,0)(90,0)
1219 \includegraphics[height=0.9cm]{001_arrow.eps}
1220 \end{picture}
1221 \end{center}
1222 \vspace*{0.35cm}
1223 \end{minipage}
1224 }
1225 \begin{minipage}{0.3cm}
1226 \hfill
1227 \end{minipage}
1228 \framebox{
1229 \begin{minipage}{5.9cm}
1230 \begin{flushright}
1231 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1232 \end{flushright}
1233 \begin{center}
1234 \begin{picture}(0,0)(60,0)
1235 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1236 \end{picture}
1237 \begin{picture}(0,0)(5,0)
1238 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1239 \end{picture}
1240 \begin{picture}(0,0)(-55,0)
1241 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1242 \end{picture}
1243 \begin{picture}(0,0)(12.5,10)
1244 \includegraphics[width=1cm]{100_arrow.eps}
1245 \end{picture}
1246 \begin{picture}(0,0)(90,0)
1247 \includegraphics[height=0.9cm]{001_arrow.eps}
1248 \end{picture}
1249 \end{center}
1250 \vspace*{0.3cm}
1251 \end{minipage}\\
1252 }
1253
1254 \vspace*{0.05cm}
1255
1256 \framebox{
1257 \begin{minipage}{5.9cm}
1258 \begin{flushleft}
1259 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1260 \end{flushleft}
1261 \begin{center}
1262 \begin{picture}(0,0)(60,0)
1263 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1264 \end{picture}
1265 \begin{picture}(0,0)(10,0)
1266 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1267 \end{picture}
1268 \begin{picture}(0,0)(-60,0)
1269 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1270 \end{picture}
1271 \begin{picture}(0,0)(12.5,10)
1272 \includegraphics[width=1cm]{100_arrow.eps}
1273 \end{picture}
1274 \begin{picture}(0,0)(90,0)
1275 \includegraphics[height=0.9cm]{001_arrow.eps}
1276 \end{picture}
1277 \end{center}
1278 \vspace*{0.3cm}
1279 \end{minipage}
1280 }
1281 \begin{minipage}{0.3cm}
1282 \hfill
1283 \end{minipage}
1284 \begin{minipage}{6.5cm}
1285 VASP results
1286 \begin{itemize}
1287  \item Energetically most favorable path
1288        \begin{itemize}
1289         \item Path 2
1290         \item Activation energy: $\approx$ 0.9 eV 
1291         \item Experimental values: 0.73 ... 0.87 eV
1292        \end{itemize}
1293        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1294  \item Reorientation (path 3)
1295        \begin{itemize}
1296         \item More likely composed of two consecutive steps of type 2
1297         \item Experimental values: 0.77 ... 0.88 eV
1298        \end{itemize}
1299        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1300 \end{itemize}
1301 \end{minipage}
1302
1303 \end{slide}
1304
1305 \begin{slide}
1306
1307  {\large\bf\boldmath
1308   Migration of the C \hkl<1 0 0> dumbbell interstitial
1309  }
1310
1311 \scriptsize
1312
1313  \vspace{0.1cm}
1314
1315 \begin{minipage}{6.5cm}
1316
1317 \framebox{
1318 \begin{minipage}[t]{5.9cm}
1319 \begin{flushleft}
1320 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1321 \end{flushleft}
1322 \begin{center}
1323 \begin{pspicture}(0,0)(0,0)
1324 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1325 \end{pspicture}
1326 \begin{picture}(0,0)(60,-50)
1327 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1328 \end{picture}
1329 \begin{picture}(0,0)(5,-50)
1330 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1331 \end{picture}
1332 \begin{picture}(0,0)(-55,-50)
1333 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1334 \end{picture}
1335 \begin{picture}(0,0)(12.5,-40)
1336 \includegraphics[width=1cm]{110_arrow.eps}
1337 \end{picture}
1338 \begin{picture}(0,0)(90,-45)
1339 \includegraphics[height=0.9cm]{001_arrow.eps}
1340 \end{picture}\\
1341 \begin{pspicture}(0,0)(0,0)
1342 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1343 \end{pspicture}
1344 \begin{picture}(0,0)(60,-15)
1345 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1346 \end{picture}
1347 \begin{picture}(0,0)(35,-15)
1348 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1349 \end{picture}
1350 \begin{picture}(0,0)(-5,-15)
1351 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1352 \end{picture}
1353 \begin{picture}(0,0)(-55,-15)
1354 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1355 \end{picture}
1356 \begin{picture}(0,0)(12.5,-5)
1357 \includegraphics[width=1cm]{100_arrow.eps}
1358 \end{picture}
1359 \begin{picture}(0,0)(90,-15)
1360 \includegraphics[height=0.9cm]{010_arrow.eps}
1361 \end{picture}
1362 \end{center}
1363 \end{minipage}
1364 }\\[0.1cm]
1365
1366 \begin{minipage}{5.9cm}
1367 Erhart/Albe results
1368 \begin{itemize}
1369  \item Lowest activation energy: $\approx$ 2.2 eV
1370  \item 2.4 times higher than VASP
1371  \item Different pathway
1372 \end{itemize}
1373 \end{minipage}
1374
1375 \end{minipage}
1376 \begin{minipage}{6.5cm}
1377
1378 \framebox{
1379 \begin{minipage}{5.9cm}
1380 %\begin{flushright}
1381 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1382 %\end{flushright}
1383 %\begin{center}
1384 %\begin{pspicture}(0,0)(0,0)
1385 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1386 %\end{pspicture}
1387 %\begin{picture}(0,0)(60,-5)
1388 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1389 %\end{picture}
1390 %\begin{picture}(0,0)(0,-5)
1391 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1392 %\end{picture}
1393 %\begin{picture}(0,0)(-55,-5)
1394 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1395 %\end{picture}
1396 %\begin{picture}(0,0)(12.5,5)
1397 %\includegraphics[width=1cm]{100_arrow.eps}
1398 %\end{picture}
1399 %\begin{picture}(0,0)(90,0)
1400 %\includegraphics[height=0.9cm]{001_arrow.eps}
1401 %\end{picture}
1402 %\end{center}
1403 %\vspace{0.2cm}
1404 %\end{minipage}
1405 %}\\[0.2cm]
1406 %
1407 %\framebox{
1408 %\begin{minipage}{5.9cm}
1409 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1410 \end{minipage}
1411 }\\[0.1cm]
1412
1413 \begin{minipage}{5.9cm}
1414 Transition involving \ci{} \hkl<1 1 0>
1415 \begin{itemize}
1416  \item Bond-centered configuration unstable\\
1417        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1418  \item Transition minima of path 2 \& 3\\
1419        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1420  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1421  \item 2.4 - 3.4 times higher than VASP
1422  \item Rotation of dumbbell orientation
1423 \end{itemize}
1424 \end{minipage}
1425
1426 \end{minipage}
1427
1428 \end{slide}
1429
1430 \begin{slide}
1431
1432  {\large\bf\boldmath
1433   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1434  }
1435
1436 \small
1437
1438 \vspace*{0.1cm}
1439
1440 Binding energy: 
1441 $
1442 E_{\text{b}}=
1443 E_{\text{f}}^{\text{defect combination}}-
1444 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1445 E_{\text{f}}^{\text{2nd defect}}
1446 $
1447
1448 \vspace*{0.1cm}
1449
1450 {\scriptsize
1451 \begin{tabular}{l c c c c c c}
1452 \hline
1453  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1454  \hline
1455  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1456  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1457  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1458  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1459  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1460  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1461  \hline
1462  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1463  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1464 \hline
1465 \end{tabular}
1466 }
1467
1468 \vspace*{0.3cm}
1469
1470 \footnotesize
1471
1472 \begin{minipage}[t]{3.8cm}
1473 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1474 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1475 \end{minipage}
1476 \begin{minipage}[t]{3.5cm}
1477 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1478 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1479 \end{minipage}
1480 \begin{minipage}[t]{5.5cm}
1481 \begin{itemize}
1482  \item Restricted to VASP simulations
1483  \item $E_{\text{b}}=0$ for isolated non-interacting defects
1484  \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1485  \item Stress compensation / increase
1486  \item Most favorable: C clustering
1487  \item Unfavored: antiparallel orientations
1488  \item Indication of energetically favored\\
1489        agglomeration
1490 \end{itemize}
1491 \end{minipage}
1492
1493 \begin{picture}(0,0)(-295,-130)
1494 \includegraphics[width=3.5cm]{comb_pos.eps}
1495 \end{picture}
1496
1497 \end{slide}
1498
1499 \begin{slide}
1500
1501  {\large\bf\boldmath
1502   Combinations of C-Si \hkl<1 0 0>-type interstitials
1503  }
1504
1505 \small
1506
1507 \vspace*{0.1cm}
1508
1509 Energetically most favorable combinations along \hkl<1 1 0>
1510
1511 \vspace*{0.1cm}
1512
1513 {\scriptsize
1514 \begin{tabular}{l c c c c c c}
1515 \hline
1516  & 1 & 2 & 3 & 4 & 5 & 6\\
1517 \hline
1518 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1519 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1520 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1521 \hline
1522 \end{tabular}
1523 }
1524
1525 \vspace*{0.3cm}
1526
1527 \begin{minipage}{7.0cm}
1528 \includegraphics[width=7cm]{db_along_110_cc.ps}
1529 \end{minipage}
1530 \begin{minipage}{6.0cm}
1531 \begin{center}
1532 {\color{blue}
1533  Interaction proportional to reciprocal cube of C-C distance
1534 }\\[0.2cm]
1535  Saturation in the immediate vicinity
1536 \end{center}
1537 \end{minipage}
1538
1539 \vspace{0.2cm}
1540
1541 \end{slide}
1542
1543 \begin{slide}
1544
1545  {\large\bf\boldmath
1546   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1547  }
1548
1549  \scriptsize
1550
1551 \begin{center}
1552 \begin{minipage}{3.2cm}
1553 \includegraphics[width=3cm]{sub_110_combo.eps}
1554 \end{minipage}
1555 \begin{minipage}{7.8cm}
1556 \begin{tabular}{l c c c c c c}
1557 \hline
1558 C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1559                    \hkl<1 0 1> & \hkl<-1 0 1> \\
1560 \hline
1561 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1562 2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1563 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1564 4 & \RM{4} & B & D & E & E & D \\
1565 5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1566 \hline
1567 \end{tabular}
1568 \end{minipage}
1569 \end{center}
1570
1571 \begin{center}
1572 \begin{tabular}{l c c c c c c c c c c}
1573 \hline
1574 Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1575 \hline
1576 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1577 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1578 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1579 \hline
1580 \end{tabular}
1581 \end{center}
1582
1583 \begin{minipage}{6.0cm}
1584 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1585 \end{minipage}
1586 \begin{minipage}{7cm}
1587 \small
1588 \begin{itemize}
1589  \item IBS: C may displace Si\\
1590        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1591  \item Assumption:\\
1592        \hkl<1 1 0>-type $\rightarrow$ favored combination
1593  \renewcommand\labelitemi{$\Rightarrow$}
1594  \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
1595        ($E_{\text{f}}=3.88\text{ eV}$)
1596  \item Interaction drops quickly to zero\\
1597        (low interaction capture radius)
1598 \end{itemize}
1599 \end{minipage}
1600
1601 \end{slide}
1602
1603 \begin{slide}
1604
1605  {\large\bf\boldmath
1606   Migration in C-Si \hkl<1 0 0> and vacancy combinations
1607  }
1608
1609  \footnotesize
1610
1611 \vspace{0.1cm}
1612
1613 \begin{minipage}[t]{3cm}
1614 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
1615 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
1616 \end{minipage}
1617 \begin{minipage}[t]{7cm}
1618 \vspace{0.2cm}
1619 \begin{center}
1620  Low activation energies\\
1621  High activation energies for reverse processes\\
1622  $\Downarrow$\\
1623  {\color{blue}C$_{\text{sub}}$ very stable}\\
1624 \vspace*{0.1cm}
1625  \hrule
1626 \vspace*{0.1cm}
1627  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
1628  $\Downarrow$\\
1629  {\color{blue}Formation of SiC by successive substitution by C}
1630
1631 \end{center}
1632 \end{minipage}
1633 \begin{minipage}[t]{3cm}
1634 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
1635 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
1636 \end{minipage}
1637
1638
1639 \framebox{
1640 \begin{minipage}{5.9cm}
1641 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
1642 \begin{center}
1643 \begin{picture}(0,0)(70,0)
1644 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
1645 \end{picture}
1646 \begin{picture}(0,0)(30,0)
1647 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
1648 \end{picture}
1649 \begin{picture}(0,0)(-10,0)
1650 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
1651 \end{picture}
1652 \begin{picture}(0,0)(-48,0)
1653 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
1654 \end{picture}
1655 \begin{picture}(0,0)(12.5,5)
1656 \includegraphics[width=1cm]{100_arrow.eps}
1657 \end{picture}
1658 \begin{picture}(0,0)(97,-10)
1659 \includegraphics[height=0.9cm]{001_arrow.eps}
1660 \end{picture}
1661 \end{center}
1662 \vspace{0.1cm}
1663 \end{minipage}
1664 }
1665 \begin{minipage}{0.3cm}
1666 \hfill
1667 \end{minipage}
1668 \framebox{
1669 \begin{minipage}{5.9cm}
1670 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
1671 \begin{center}
1672 \begin{picture}(0,0)(60,0)
1673 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
1674 \end{picture}
1675 \begin{picture}(0,0)(25,0)
1676 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
1677 \end{picture}
1678 \begin{picture}(0,0)(-20,0)
1679 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
1680 \end{picture}
1681 \begin{picture}(0,0)(-55,0)
1682 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
1683 \end{picture}
1684 \begin{picture}(0,0)(12.5,5)
1685 \includegraphics[width=1cm]{100_arrow.eps}
1686 \end{picture}
1687 \begin{picture}(0,0)(95,0)
1688 \includegraphics[height=0.9cm]{001_arrow.eps}
1689 \end{picture}
1690 \end{center}
1691 \vspace{0.1cm}
1692 \end{minipage}
1693 }
1694
1695 \end{slide}
1696
1697 \begin{slide}
1698
1699  {\large\bf
1700   Conclusion of defect / migration / combined defect simulations
1701  }
1702
1703  \footnotesize
1704
1705 \vspace*{0.1cm}
1706
1707 Defect structures
1708 \begin{itemize}
1709  \item Accurately described by quantum-mechanical simulations
1710  \item Less accurate description by classical potential simulations
1711  \item Underestimated formation energy of \cs{} by classical approach
1712  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
1713 \end{itemize}
1714
1715 Migration
1716 \begin{itemize}
1717  \item C migration pathway in Si identified
1718  \item Consistent with reorientation and diffusion experiments
1719 \end{itemize} 
1720 \begin{itemize}
1721  \item Different path and ...
1722  \item overestimated barrier by classical potential calculations
1723 \end{itemize} 
1724
1725 Concerning the precipitation mechanism
1726 \begin{itemize}
1727  \item Agglomeration of C-Si dumbbells energetically favorable
1728        (stress compensation)
1729  \item C-Si indeed favored compared to
1730        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1731  \item Possible low interaction capture radius of
1732        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
1733  \item Low barrier for
1734        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
1735  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
1736        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
1737 \end{itemize} 
1738 \begin{center}
1739 {\color{blue}Results suggest increased participation of \cs}
1740 \end{center}
1741
1742 \end{slide}
1743
1744 \begin{slide}
1745
1746  {\large\bf
1747   Silicon carbide precipitation simulations
1748  }
1749
1750  \small
1751
1752 {\scriptsize
1753  \begin{pspicture}(0,0)(12,6.5)
1754   % nodes
1755   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1756    \parbox{7cm}{
1757    \begin{itemize}
1758     \item Create c-Si volume
1759     \item Periodc boundary conditions
1760     \item Set requested $T$ and $p=0\text{ bar}$
1761     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1762    \end{itemize}
1763   }}}}
1764   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1765    \parbox{7cm}{
1766    Insertion of C atoms at constant T
1767    \begin{itemize}
1768     \item total simulation volume {\pnode{in1}}
1769     \item volume of minimal SiC precipitate {\pnode{in2}}
1770     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1771           precipitate
1772    \end{itemize} 
1773   }}}}
1774   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1775    \parbox{7.0cm}{
1776    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1777   }}}}
1778   \ncline[]{->}{init}{insert}
1779   \ncline[]{->}{insert}{cool}
1780   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
1781   \rput(7.8,6){\footnotesize $V_1$}
1782   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
1783   \rput(9.2,4.85){\tiny $V_2$}
1784   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
1785   \rput(9.55,4.45){\footnotesize $V_3$}
1786   \rput(7.9,3.2){\pnode{ins1}}
1787   \rput(9.22,2.8){\pnode{ins2}}
1788   \rput(11.0,2.4){\pnode{ins3}}
1789   \ncline[]{->}{in1}{ins1}
1790   \ncline[]{->}{in2}{ins2}
1791   \ncline[]{->}{in3}{ins3}
1792  \end{pspicture}
1793 }
1794
1795 \begin{itemize}
1796  \item Restricted to classical potential simulations
1797  \item $V_2$ and $V_3$ considered due to low diffusion
1798  \item Amount of C atoms: 6000
1799        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
1800  \item Simulation volume: $31\times 31\times 31$ unit cells
1801        (238328 Si atoms)
1802 \end{itemize}
1803
1804 \end{slide}
1805
1806 \begin{slide}
1807
1808  {\large\bf\boldmath
1809   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
1810  }
1811
1812  \small
1813
1814 \begin{minipage}{6.5cm}
1815 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
1816 \end{minipage} 
1817 \begin{minipage}{6.5cm}
1818 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
1819 \end{minipage} 
1820
1821 \begin{minipage}{6.5cm}
1822 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
1823 \end{minipage} 
1824 \begin{minipage}{6.5cm}
1825 \scriptsize
1826 \underline{Low C concentration ($V_1$)}\\
1827 \hkl<1 0 0> C-Si dumbbell dominated structure
1828 \begin{itemize}
1829  \item Si-C bumbs around 0.19 nm
1830  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
1831        concatenated dumbbells of various orientation
1832  \item Si-Si NN distance stretched to 0.3 nm
1833 \end{itemize}
1834 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
1835 \underline{High C concentration ($V_2$, $V_3$)}\\
1836 High amount of strongly bound C-C bonds\\
1837 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
1838 Only short range order observable\\
1839 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
1840 \end{minipage} 
1841
1842 \end{slide}
1843
1844 \begin{slide}
1845
1846  {\large\bf
1847   Limitations of molecular dynamics and short range potentials
1848  }
1849
1850 \footnotesize
1851
1852 \vspace{0.2cm}
1853
1854 \underline{Time scale problem of MD}\\[0.2cm]
1855 Minimize integration error\\
1856 $\Rightarrow$ discretization considerably smaller than
1857               reciprocal of fastest vibrational mode\\[0.1cm]
1858 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
1859 $\Rightarrow$ suitable choice of time step:
1860               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
1861 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
1862 Several local minima in energy surface separated by large energy barriers\\
1863 $\Rightarrow$ transition event corresponds to a multiple
1864               of vibrational periods\\
1865 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
1866               infrequent transition events\\[0.1cm]
1867 {\color{blue}Accelerated methods:}
1868 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1869
1870 \vspace{0.3cm}
1871
1872 \underline{Limitations related to the short range potential}\\[0.2cm]
1873 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
1874 and 2$^{\text{nd}}$ next neighbours\\
1875 $\Rightarrow$ overestimated unphysical high forces of next neighbours
1876
1877 \vspace{0.3cm}
1878
1879 \framebox{
1880 \color{red}
1881 Potential enhanced problem of slow phase space propagation
1882 }
1883
1884 \vspace{0.3cm}
1885
1886 \underline{Approach to the (twofold) problem}\\[0.2cm]
1887 Increased temperature simulations without TAD corrections\\
1888 (accelerated methods or higher time scales exclusively not sufficient)
1889
1890 \begin{picture}(0,0)(-260,-30)
1891 \framebox{
1892 \begin{minipage}{4.2cm}
1893 \tiny
1894 \begin{center}
1895 \vspace{0.03cm}
1896 \underline{IBS}
1897 \end{center}
1898 \begin{itemize}
1899 \item 3C-SiC also observed for higher T
1900 \item higher T inside sample
1901 \item structural evolution vs.\\
1902       equilibrium properties
1903 \end{itemize}
1904 \end{minipage}
1905 }
1906 \end{picture}
1907
1908 \begin{picture}(0,0)(-305,-155)
1909 \framebox{
1910 \begin{minipage}{2.5cm}
1911 \tiny
1912 \begin{center}
1913 retain proper\\
1914 thermodynmic sampling
1915 \end{center}
1916 \end{minipage}
1917 }
1918 \end{picture}
1919
1920 \end{slide}
1921
1922 \begin{slide}
1923
1924  {\large\bf
1925   Increased temperature simulations at low C concentration
1926  }
1927
1928 \small
1929
1930 \begin{minipage}{6.5cm}
1931 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
1932 \end{minipage}
1933 \begin{minipage}{6.5cm}
1934 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
1935 \end{minipage}
1936
1937 \begin{minipage}{6.5cm}
1938 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
1939 \end{minipage}
1940 \begin{minipage}{6.5cm}
1941 \scriptsize
1942  \underline{Si-C bonds:}
1943  \begin{itemize}
1944   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1945   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
1946  \end{itemize}
1947  \underline{Si-Si bonds:}
1948  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1949  ($\rightarrow$ 0.325 nm)\\[0.1cm]
1950  \underline{C-C bonds:}
1951  \begin{itemize}
1952   \item C-C next neighbour pairs reduced (mandatory)
1953   \item Peak at 0.3 nm slightly shifted
1954         \begin{itemize}
1955          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
1956                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
1957                combinations (|)\\
1958                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
1959                ($\downarrow$)
1960          \item Range [|-$\downarrow$]:
1961                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
1962                with nearby Si$_{\text{I}}$}
1963         \end{itemize}
1964  \end{itemize}
1965 \end{minipage}
1966
1967 \begin{picture}(0,0)(-330,-74)
1968 \color{blue}
1969 \framebox{
1970 \begin{minipage}{1.6cm}
1971 \tiny
1972 \begin{center}
1973 stretched SiC\\[-0.1cm]
1974 in c-Si
1975 \end{center}
1976 \end{minipage}
1977 }
1978 \end{picture}
1979
1980 \end{slide}
1981
1982 \begin{slide}
1983
1984  {\large\bf
1985   Increased temperature simulations at high C concentration
1986  }
1987
1988 \footnotesize
1989
1990 \begin{minipage}{6.5cm}
1991 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
1992 \end{minipage}
1993 \begin{minipage}{6.5cm}
1994 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
1995 \end{minipage}
1996
1997 \begin{center}
1998 Decreasing cut-off artifact\\
1999 High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2000 $\Rightarrow$ hard to categorize
2001 \end{center}
2002
2003 \vspace{0.1cm}
2004
2005 \framebox{
2006 \begin{minipage}[t]{6.0cm}
2007 0.186 nm: Si-C pairs $\uparrow$\\
2008 (as expected in 3C-SiC)\\[0.2cm]
2009 0.282 nm: Si-C-C\\[0.2cm]
2010 $\approx$0.35 nm: C-Si-Si
2011 \end{minipage}
2012 }
2013 \begin{minipage}{0.2cm}
2014 \hfill
2015 \end{minipage}
2016 \framebox{
2017 \begin{minipage}[t]{6.0cm}
2018 0.15 nm: C-C pairs $\uparrow$\\
2019 (as expected in graphite/diamond)\\[0.2cm]
2020 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2021 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2022 \end{minipage}
2023 }
2024
2025 \vspace{0.1cm}
2026
2027 \begin{center}
2028 {\color{red}Amorphous} SiC-like phase remains\\
2029 Slightly sharper peaks
2030 $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
2031 due to temperature\\[0.1cm]
2032 \framebox{
2033 \bf
2034 Actual SiC precipitation not accessible by MD
2035 }
2036 \end{center}
2037
2038 \end{slide}
2039
2040 \begin{slide}
2041
2042  {\large\bf
2043   Summary and Conclusions
2044  }
2045
2046  \scriptsize
2047
2048 \vspace{0.1cm}
2049
2050 \framebox{
2051 \begin{minipage}{12.9cm}
2052  \underline{Defects}
2053  \begin{itemize}
2054    \item DFT / EA
2055         \begin{itemize}
2056          \item Point defects excellently / fairly well described
2057                by DFT / EA
2058          \item C$_{\text{sub}}$ drastically underestimated by EA
2059          \item EA predicts correct ground state:
2060                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2061          \item Identified migration path explaining
2062                diffusion and reorientation experiments by DFT
2063          \item EA fails to describe \ci{} migration:
2064                Wrong path \& overestimated barrier
2065         \end{itemize}
2066    \item Combinations of defects
2067          \begin{itemize}
2068           \item Agglomeration of point defects energetically favorable
2069                 by compensation of stress
2070           \item Formation of C-C unlikely
2071           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2072           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2073                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2074         \end{itemize}
2075  \end{itemize}
2076 \end{minipage}
2077 }
2078
2079 \vspace{0.2cm}
2080
2081 \framebox{
2082 \begin{minipage}[t]{12.9cm}
2083  \underline{Pecipitation simulations}
2084  \begin{itemize}
2085   \item High C concentration $\rightarrow$ amorphous SiC like phase
2086   \item Problem of potential enhanced slow phase space propagation
2087   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2088   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2089   \item High T necessary to simulate IBS conditions (far from equilibrium)
2090   \item Precipitation by successive agglomeration of \cs (epitaxy)
2091   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2092         (stretched SiC, interface)
2093  \end{itemize}
2094 \end{minipage}
2095 }
2096
2097 \end{slide}
2098
2099 \begin{slide}
2100
2101  {\large\bf
2102   Acknowledgements
2103  }
2104
2105  \vspace{0.1cm}
2106
2107  \small
2108
2109  Thanks to \ldots
2110
2111  \underline{Augsburg}
2112  \begin{itemize}
2113   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2114   \item Ralf Utermann (EDV)
2115  \end{itemize}
2116  
2117  \underline{Helsinki}
2118  \begin{itemize}
2119   \item Prof. K. Nordlund (MD)
2120  \end{itemize}
2121  
2122  \underline{Munich}
2123  \begin{itemize}
2124   \item Bayerische Forschungsstiftung (financial support)
2125  \end{itemize}
2126  
2127  \underline{Paderborn}
2128  \begin{itemize}
2129   \item Prof. J. Lindner (SiC)
2130   \item Prof. G. Schmidt (DFT + financial support)
2131   \item Dr. E. Rauls (DFT + SiC)
2132   \item Dr. S. Sanna (VASP)
2133  \end{itemize}
2134
2135 \vspace{0.2cm}
2136
2137 \begin{center}
2138 \framebox{
2139 \bf Thank you for your attention!
2140 }
2141 \end{center}
2142
2143 \end{slide}
2144
2145 \end{document}