weekend commit :)
[lectures/latex.git] / posic / talks / upb-ua-xc.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[greek,german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 %\usepackage{epic}
24 %\usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage[setpagesize=false]{hyperref}
30
31 \usepackage{semcolor}
32 \usepackage{semlayer}           % Seminar overlays
33 \usepackage{slidesec}           % Seminar sections and list of slides
34
35 \input{seminar.bug}             % Official bugs corrections
36 \input{seminar.bg2}             % Unofficial bugs corrections
37
38 \articlemag{1}
39
40 \special{landscape}
41
42 % font
43 %\usepackage{cmbright}
44 %\renewcommand{\familydefault}{\sfdefault}
45 %\usepackage{mathptmx}
46
47 \usepackage{upgreek}
48
49 \begin{document}
50
51 \extraslideheight{10in}
52 \slideframe{none}
53
54 \pagestyle{empty}
55
56 % specify width and height
57 \slidewidth 27.7cm 
58 \slideheight 19.1cm 
59
60 % shift it into visual area properly
61 \def\slideleftmargin{3.3cm}
62 \def\slidetopmargin{0.6cm}
63
64 \newcommand{\ham}{\mathcal{H}}
65 \newcommand{\pot}{\mathcal{V}}
66 \newcommand{\foo}{\mathcal{U}}
67 \newcommand{\vir}{\mathcal{W}}
68
69 % itemize level ii
70 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
71
72 % colors
73 \newrgbcolor{si-yellow}{.6 .6 0}
74 \newrgbcolor{hb}{0.75 0.77 0.89}
75 \newrgbcolor{lbb}{0.75 0.8 0.88}
76 \newrgbcolor{lachs}{1.0 .93 .81}
77
78 % topic
79
80 \begin{slide}
81 \begin{center}
82
83  \vspace{16pt}
84
85  {\LARGE\bf
86   Atomistic simulation study\\[0.2cm]
87   of the SiC precipitation in Si
88  }
89
90  \vspace{48pt}
91
92  \textsc{F. Zirkelbach}
93
94  \vspace{48pt}
95
96  For the exchange among Paderborn and Augsburg
97
98  \vspace{08pt}
99
100  July 2009
101
102 \end{center}
103 \end{slide}
104
105 % start of contents
106
107 \begin{slide}
108
109  {\large\bf
110   VASP parameters
111  }
112
113  \small
114  \begin{minipage}{6.5cm}
115  \begin{itemize}
116   \item Start from scratch
117   \item $V_{xc}$: US LDA (out of ./pot directory)
118   \item $k$-points: Monkhorst $4\times 4\times 4$
119   \item Ionic relaxation
120         \begin{itemize}
121          \item Conjugate gradient method
122          \item Scaling constant of 0.1 for forces
123          \item Default break condition ($0.1 \cdot 10^{-2}$ eV)
124          \item Maximum of 100 steps
125         \end{itemize}
126         {\color{blue} NVT}:
127         \begin{itemize}
128          \item No change in volume
129         \end{itemize}
130         {\color{red} NPT}:
131         \begin{itemize}
132          \item Change of cell volume and shape\\
133                allowed
134         \end{itemize}
135  \end{itemize}
136  \end{minipage}
137  \hspace*{0.5cm}
138  \begin{minipage}{6.0cm}
139 {\scriptsize\color{blue}
140  Example INCAR file (NVT):
141 }
142 \begin{verbatim}
143 System = C 100 interstitial in Si
144
145 ISTART = 0
146
147 NSW = 100
148 IBRION = 2
149 ISIF = 2
150 POTIM = 0.1
151 \end{verbatim}
152 {\scriptsize\color{red}
153  Example INCAR file (NPT):
154 }
155 \begin{verbatim}
156 System = C hexagonal interstitial in Si
157
158 ISTART = 0
159
160 NSW = 100
161 IBRION = 2
162 ISIF = 3
163 POTIM = 0.1
164 \end{verbatim}
165  \end{minipage}
166
167 \end{slide}
168
169 \begin{slide}
170
171  {\large\bf
172   Silicon bulk properties
173  }
174
175  \small
176
177  Simulations (NPT, $\textrm{EDIFFG}=0.1\cdot 10^{-3}$ eV):
178  \begin{enumerate}
179   \item Supercell: $x_1=(0,0.5,0.5),\, x_2=(0.5,0,0.5),\, x_3=(0.5,0.5,0)$;
180         2 atoms (1 {\bf p}rimitive {\bf c}ell)
181   \item Supercell: $x_1=(0.5,-0.5,0),\, x_2=(0.5,0.5,0),\, x_3=(0,0,1)$;
182         4 atoms (2 pc)
183   \item Supercell: $x_1=(1,0,0),\, x_2=(0,1,0),\, x_3=(0,0,1)$;
184         8 atoms (4 pc)
185   \item Supercell: $x_1=(2,0,0),\, x_2=(0,2,0),\, x_3=(0,0,2)$;
186         64 atoms (32 pc)
187  \end{enumerate}
188  \begin{minipage}{6cm}
189  Cohesive energy / Lattice constant:
190  \begin{enumerate}
191   \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.955 eV / 5.378 \AA\\
192         $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.975 eV / 5.387 \AA
193   \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.989 eV / 5.356 \AA
194   \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.955 eV / 5.380 \AA\\
195         $E_{\textrm{cut-off}}=200\, \textrm{eV}$: 5.972 eV / 5.388 \AA\\
196         $E_{\textrm{cut-off}}=250\, \textrm{eV}$: 5.975 eV / 5.389 \AA\\
197         $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.975 eV / 5.389 \AA\\
198         $E_{\textrm{cut-off}}=300\, \textrm{eV}^{*}$: 5.975 eV / 5.390 \AA
199   \item $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.977 eV / 5.389 \AA
200  \end{enumerate}
201  \end{minipage}
202  \begin{minipage}{7cm}
203  \includegraphics[width=7cm]{si_lc_and_ce.ps}
204  \end{minipage}\\[0.3cm]
205  {\scriptsize
206   $^*$special settings (p. 138, VASP manual):
207   spin polarization, no symmetry, ...
208  }
209  
210 \end{slide}
211
212 \begin{slide}
213
214  {\large\bf
215   Silicon bulk properties
216  }
217
218  \begin{itemize}
219   \item Calculation of cohesive energies for different lattice constants
220   \item No ionic update
221   \item Tetrahedron method with Blöchl corrections for
222         the partial occupancies $f_{nk}$
223   \item Supercell 3 (8 atoms, 4 primitive cells)
224  \end{itemize}
225  \vspace*{0.6cm}
226  \begin{minipage}{6.5cm}
227  \begin{center}
228  $E_{\textrm{cut-off}}=150$ eV\\
229  \includegraphics[width=6.5cm]{si_lc_fit.ps}
230  \end{center}
231  \end{minipage}
232  \begin{minipage}{6.5cm}
233  \begin{center}
234  $E_{\textrm{cut-off}}=250$ eV\\
235  \includegraphics[width=6.5cm]{si_lc_fit_250.ps}
236  \end{center}
237  \end{minipage}
238
239 \end{slide}
240
241 \begin{slide}
242
243  {\large\bf
244   3C-SiC bulk properties\\[0.2cm]
245  }
246
247  \begin{minipage}{6.5cm}
248  \includegraphics[width=6.5cm]{sic_lc_and_ce2.ps}
249  \end{minipage}
250  \begin{minipage}{6.5cm}
251  \includegraphics[width=6.5cm]{sic_lc_and_ce.ps}
252  \end{minipage}\\[0.3cm]
253  \begin{itemize}
254   \item Supercell 3 (4 primitive cells, 4+4 atoms)
255   \item Error in equilibrium lattice constant: {\color{green} $0.9\,\%$}
256   \item Error in cohesive energy: {\color{red} $31.6\,\%$}
257  \end{itemize}
258  
259 \end{slide}
260
261 \begin{slide}
262
263  {\large\bf
264   3C-SiC bulk properties\\[0.2cm]
265  }
266
267  \small
268
269  \begin{itemize}
270   \item Calculation of cohesive energies for different lattice constants
271   \item No ionic update
272   \item Tetrahedron method with Blöchl corrections for
273         the partial occupancies $f_{nk}$
274  \end{itemize}
275  \vspace*{0.6cm}
276  \begin{minipage}{6.5cm}
277  \begin{center}
278  Supercell 3, $4\times 4\times 4$ k-points\\
279  \includegraphics[width=6.5cm]{sic_lc_fit.ps}
280  \end{center}
281  \end{minipage}
282  \begin{minipage}{6.5cm}
283  \begin{center}
284  {\color{red}
285   Non-continuous energies\\
286   for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!
287  }
288  \end{center}
289  \end{minipage}
290
291 \end{slide}
292
293 \begin{slide}
294
295  {\large\bf
296   3C-SiC bulk properties\\[0.2cm]
297  }
298
299  \footnotesize
300
301 \begin{picture}(0,0)(-188,80)
302  %Supercell 1, $3\times 3\times 3$ k-points\\
303  \includegraphics[width=6.5cm]{sic_lc_fit_k3.ps}
304 \end{picture}
305
306  \begin{minipage}{6.5cm}
307  \begin{itemize}
308   \item Supercell 1 simulations
309   \item Variation of k-points
310   \item Continuous energies for
311         $E_{\textrm{cut-off}} > 550\,\textrm{eV}$
312   \item Critical $E_{\textrm{cut-off}}$ for
313         different k-points\\
314         depending on supercell?
315  \end{itemize}
316  \end{minipage}\\[1.0cm]
317  \begin{minipage}{6.5cm}
318  \begin{center}
319  \includegraphics[width=6.5cm]{sic_lc_fit_k5.ps}
320  \end{center}
321  \end{minipage}
322  \begin{minipage}{6.5cm}
323  \begin{center}
324  \includegraphics[width=6.5cm]{sic_lc_fit_k7.ps}
325  \end{center}
326  \end{minipage}
327
328 \end{slide}
329
330 \begin{slide}
331
332  {\large\bf
333   Cohesive energies
334  }
335
336  {\bf\color{red} From now on ...}
337
338  {\small Energies used: free energy without entropy ($\sigma \rightarrow 0$)}
339
340  \small
341
342  \begin{itemize}
343   \item $E_{\textrm{free,sp}}$:
344         energy of spin polarized free atom
345         \begin{itemize}
346          \item $k$-points: Monkhorst $1\times 1\times 1$
347          \item Symmetry switched off
348          \item Spin polarized calculation
349          \item Interpolation formula according to Vosko Wilk and Nusair
350                for the correlation part of the exchange correlation functional
351          \item Gaussian smearing for the partial occupancies $f_{nk}$
352                ($\sigma=0.05$)
353          \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
354          \item Supercell: one atom in cubic
355                $10\times 10\times 10$ \AA$^3$ box
356         \end{itemize}
357         {\color{blue}
358         $E_{\textrm{free,sp}}(\textrm{Si},250\, \textrm{eV})=
359          -0.70036911\,\textrm{eV}$
360         },
361         {\color{gray}
362         $E_{\textrm{free,sp}}(\textrm{C},xxx\, \textrm{eV})=
363          yyy\,\textrm{eV}$
364         }
365   \item $E$:
366         energy (non-polarized) of system of interest composed of\\
367         n atoms of type N, m atoms of type M, \ldots
368  \end{itemize}
369  \vspace*{0.3cm}
370  {\color{red}
371  \[
372  \Rightarrow
373  E_{\textrm{coh}}=\frac{
374  -\Big(E(N_nM_m\ldots)-nE_{\textrm{free,sp}}(N)-mE_{\textrm{free,sp}}(M)
375  -\ldots\Big)}
376  {n+m+\ldots}
377  \]
378  }
379
380 \end{slide}
381
382 \begin{slide}
383
384  {\large\bf
385   Used types of supercells\\
386  }
387
388  \footnotesize
389
390  \begin{minipage}{4.3cm}
391   \includegraphics[width=4cm]{sc_type0.eps}\\[0.3cm]
392   \underline{Type 0}\\[0.2cm]
393   Basis: fcc\\
394   $x_1=(0.5,0.5,0)$\\
395   $x_2=(0,0.5,0.5)$\\
396   $x_3=(0.5,0,0.5)$\\
397   1 primitive cell / 2 atoms
398  \end{minipage}
399  \begin{minipage}{4.3cm}
400   \includegraphics[width=4cm]{sc_type1.eps}\\[0.3cm]
401   \underline{Type 1}\\[0.2cm]
402   Basis:\\
403   $x_1=(0.5,-0.5,0)$\\
404   $x_2=(0.5,0.5,0)$\\
405   $x_3=(0,0,1)$\\
406   2 primitive cells / 4 atoms
407  \end{minipage}
408  \begin{minipage}{4.3cm}
409   \includegraphics[width=4cm]{sc_type2.eps}\\[0.3cm]
410   \underline{Type 2}\\[0.2cm]
411   Basis: sc\\
412   $x_1=(1,0,0)$\\
413   $x_2=(0,1,0)$\\
414   $x_3=(0,0,1)$\\
415   4 primitive cells / 8 atoms
416  \end{minipage}\\[0.4cm]
417
418  {\bf\color{blue}
419  In the following these types of supercells are used and
420  are possibly scaled by integers in the different directions!
421  }
422
423 \end{slide}
424
425 \begin{slide}
426
427  {\large\bf
428   Silicon point defects\\
429  }
430
431  \small
432
433  Calculation of formation energy $E_{\textrm{f}}$
434  \begin{itemize}
435   \item $E_{\textrm{coh}}^{\textrm{initial conf}}$:
436         cohesive energy per atom of the initial system
437   \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$:
438         cohesive energy per atom of the interstitial system
439   \item N: amount of atoms in the interstitial system
440  \end{itemize}
441  \vspace*{0.2cm}
442  {\color{blue}
443  \[
444  \Rightarrow
445  E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}}
446                -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
447  \]
448  }
449  Influence of supercell size\\
450  \begin{minipage}{8cm}
451  \includegraphics[width=7.0cm]{si_self_int.ps}
452  \end{minipage}
453  \begin{minipage}{5cm}
454  $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\
455  $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
456  $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
457  $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$
458  \end{minipage}
459
460 \end{slide}
461
462 \begin{slide}
463
464  {\large\bf
465   Questions so far ...\\
466  }
467
468  What configuration to chose for C in Si simulations?
469  \begin{itemize}
470   \item Switch to another method for the XC approximation (GGA, PAW)?
471   \item Reasonable cut-off energy
472   \item Switch off symmetry? (especially for defect simulations)
473   \item $k$-points
474         (Monkhorst? $\Gamma$-point only if cell is large enough?)
475   \item Switch to tetrahedron method or Gaussian smearing ($\sigma$?)
476   \item Size and type of supercell
477         \begin{itemize}
478          \item connected to choice of $k$-point mesh?
479          \item hence also connected to choice of smearing method?
480          \item constraints can only be applied to the lattice vectors!
481         \end{itemize}
482   \item \ldots
483  \end{itemize}
484
485 \end{slide}
486
487 \begin{slide}
488
489  {\large\bf
490   Review (so far) ...\\
491  }
492
493  
494  
495
496 \end{slide}
497
498 \end{document}
499