dbc798a03652ff775ab082c9b0e7fcd9ff626349
[lectures/latex.git] / posic / thesis / d_tersoff.tex
1 \chapter{Derivative of the three body Tersoff potential}
2 \label{app:d_tersoff}
3
4   \section{Form of the Tersoff potential and its derivative}
5
6 The Tersoff potential is of the form
7 \begin{eqnarray}
8 E & = & \sum_i E_i = \frac{1}{2} \sum_{i \ne j} V_{ij} \textrm{ ,} \\
9 V_{ij} & = & f_C(r_{ij}) [ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) ] \textrm{ .}
10 \end{eqnarray}
11 The repulsive $f_R$ and attractive $f_A$ part is given by
12 \begin{eqnarray}
13 f_R(r_{ij}) & = & A_{ij} \exp (- \lambda_{ij} r_{ij} ) \textrm{ ,} \\
14 f_A(r_{ij}) & = & -B_{ij} \exp (- \mu_{ij} r_{ij} ) \textrm{ .}
15 \end{eqnarray}
16 The bond order function $b_{ij}$ is
17 \begin{equation}
18 b_{ij} = \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i}
19 \end{equation}
20 with
21 \begin{eqnarray}
22 \zeta_{ij} & = & \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} g(\theta_{ijk}) \textrm{ ,}\\
23 g(\theta_{ijk}) & = & 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] \textrm{ .}
24 \end{eqnarray}
25 The cutoff function $f_C$ is taken to be
26 \begin{equation}
27 f_C(r_{ij}) = \left\{
28   \begin{array}{ll}
29     1, & r_{ij} < R_{ij} \\
30     \frac{1}{2} + \frac{1}{2} \cos \Big[ \pi (r_{ij} - R_{ij})/(S_{ij} - R_{ij}) \Big], &
31  R_{ij} < r_{ij} < S_{ij} \\
32     0, & r_{ij} > S_{ij}
33   \end{array} \right.
34 \end{equation}
35 with $\theta_{ijk}$ being the bond angle between bonds $ij$ and $ik$ as shown in Figure \ref{img:tersoff_angle}.\\
36 \\
37 For a three body potential, if $V_{ij}$ is not equal to $V_{ji}$, the derivative is of the form
38 \begin{equation}
39 \nabla_{{\bf r}_i} E = \frac{1}{2} \big[ \sum_j ( \nabla_{{\bf r}_i} V_{ij} + \nabla_{{\bf r}_i} V_{ji} ) + \sum_k \sum_j \nabla_{{\bf r}_i} V_{jk} \big] \textrm{ .}
40 \end{equation}
41 In the following all the necessary derivatives to calculate $\nabla_{{\bf r}_i} E$ are done.
42
43   \section{Derivative of $V_{ij}$ with respect to ${\bf r}_i$}
44
45 \begin{eqnarray}
46 \nabla_{{\bf r}_i} V_{ij} & = & \nabla_{{\bf r}_i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \big] + \nonumber \\
47  & & + f_C(r_{ij}) \big[ \nabla_{{\bf r}_i} f_R(r_{ij}) + b_{ij} \nabla_{{\bf r}_i} f_A(r_{ij}) + f_A(r_{ij}) \nabla_{{\bf r}_i} b_{ij} \big]
48 \end{eqnarray}
49 \begin{eqnarray}
50 \nabla_{{\bf r}_i} f_R(r_{ij}) & = & A_{ij} \lambda_{ij} \frac{{\bf r}_{ij}}{r_{ij}} \exp(-\lambda_{ij} r_{ij}) \\
51 \nabla_{{\bf r}_i} f_A(r_{ij}) & = & - B_{ij} \mu_{ij} \frac{{\bf r}_{ij}}{r_{ij}} \exp(-\mu_{ij} r_{ij})
52 \end{eqnarray}
53 \begin{equation}
54 \nabla_{{\bf r}_i} f_C(r_{ij}) = \left\{
55   \begin{array}{ll}
56     \frac{1}{2} \sin \Big( \frac{\pi(r_{ij}-R_{ij})}{S_{ij}-R_{ij}} \Big) \frac{\pi}{S_{ij}-R_{ij}} \frac{{\bf r}_{ij}}{r_{ij}}, & R_{ij} < r_{ij} < S_{ij} \\
57     0, & \textrm{else.}
58   \end{array} \right.
59 \end{equation}
60 \begin{eqnarray}
61 \nabla_{{\bf r}_i} b_{ij} &= & - \frac{\chi_{ij}}{2} (1+\beta^{n_i} \zeta_{ij}^{n_i})^{-\frac{1}{2n_i}-1} \beta^{n_i} \zeta_{ij}^{n_i-1} \nabla_{{\bf r}_i} \zeta_{ij} \\
62 \nabla_{{\bf r}_i} \zeta_{ij} & = & \sum_{k \neq i,j} \big( g(\theta_{ijk}) \nabla_{{\bf r}_i} f_C(r_{ik}) + f_C(r_{ik}) \nabla_{{\bf r}_i} g(\theta_{ijk}) \big) \\
63 \nabla_{{\bf r}_i} g(\theta_{ijk}) & = & - \frac{2(h_i-\cos\theta_{ijk})c_i^2}{\big[d_i^2 + (h_i - \cos\theta_{ijk})^2\big]^2} \nabla_{{\bf r}_i} (\cos\theta_{ijk})
64 \end{eqnarray}
65 \begin{eqnarray}
66 \nabla_{{\bf r}_i} \cos \theta_{ijk} & = & \nabla_{{\bf r}_i} \Big( \frac{{\bf r}_{ij} {\bf r}_{ik}}{r_{ij} r_{ik}} \Big) \nonumber \\
67  & = & \Big[ \frac{\cos\theta_{ijk}}{r_{ij}^2} - \frac{1}{r_{ij} r_{ik}} \Big] {\bf r}_{ij} + \Big[ \frac{\cos\theta_{ijk}}{r_{ik}^2} - \frac{1}{r_{ij} r_{ik}} \Big] {\bf r}_{ik}
68 \end{eqnarray}
69
70   \section{Derivative of $V_{ji}$ with respect to ${\bf r}_i$}
71
72 \begin{eqnarray}
73 \nabla_{{\bf r}_i} V_{ji} & = & \nabla_{{\bf r}_i} f_C(r_{ji}) \big[ f_R(r_{ji}) + b_{ji} f_A(r_{ji}) \big] + \nonumber \\
74  & & + f_C(r_{ji}) \big[ \nabla_{{\bf r}_i} f_R(r_{ji}) + b_{ji} \nabla_{{\bf r}_i} f_A(r_{ji}) + f_A(r_{ji}) \nabla_{{\bf r}_i} b_{ji} \big]
75 \end{eqnarray}
76 \begin{eqnarray}
77 \nabla_{{\bf r}_i} f_R(r_{ji}) & = & - A_{ji} \lambda_{ji} \frac{{\bf r}_{ji}}{r_{ji}} \exp(-\lambda_{ji} r_{ji}) = \nabla_{{\bf r}_i} f_R(r_{ij}) \\
78 \nabla_{{\bf r}_i} f_A(r_{ji}) & = & + B_{ji} \mu_{ji} \frac{{\bf r}_{ji}}{r_{ji}} \exp(-\mu_{ji} r_{ji}) = \nabla_{{\bf r}_i} f_A(r_{ij})
79 \end{eqnarray}
80 \begin{equation}
81 \nabla_{{\bf r}_i} f_C(r_{ij}) = \nabla_{{\bf r}_i} f_C(r_{ij}) = \left\{
82   \begin{array}{ll}
83     - \frac{1}{2} \sin \Big( \frac{\pi(r_{ji}-R_{ji})}{S_{ji}-R_{ji}} \Big) \frac{\pi}{S_{ji}-R_{ji}} \frac{{\bf r}_{ji}}{r_{ji}}, & R_{ji} < r_{ji} < S_{ji} \\
84     0, & \textrm{else.}
85   \end{array} \right.
86 \end{equation}
87 \begin{eqnarray}
88 \nabla_{{\bf r}_i} b_{ji} &= & - \frac{\chi_{ji}}{2} (1+\beta^{n_j} \zeta_{ji}^{n_j})^{-\frac{1}{2n_j}-1} \beta^{n_j} \zeta_{ji}^{n_j-1} \nabla_{{\bf r}_i} \zeta_{ji} \\
89 \nabla_{{\bf r}_i} \zeta_{ji} & = & \sum_{k \neq j,i} \big( g(\theta_{jik}) \nabla_{{\bf r}_i} f_C(r_{jk}) + f_C(r_{jk}) \nabla_{{\bf r}_i} g(\theta_{jik}) \big) \nonumber \\
90  & = & \sum_{k \neq j,i} f_C(r_{jk}) \nabla_{{\bf r}_i} g(\theta_{jik}) \quad \Big(\textrm{Reason: }\nabla_{{\bf r}_i} f_C(r_{jk}) = 0\Big) \\
91 \nabla_{{\bf r}_i} g(\theta_{jik}) & = & - \frac{2(h_j-\cos\theta_{jik})c_j^2}{\big[d_j^2 + (h_j - \cos\theta_{jik})^2\big]^2} \nabla_{{\bf r}_i} (\cos\theta_{jik})
92 \end{eqnarray}
93 \begin{eqnarray}
94 \nabla_{{\bf r}_i} \cos \theta_{jik} & = & \nabla_{{\bf r}_i} \Big( \frac{{\bf r}_{ji} {\bf r}_{jk}}{r_{ji} r_{jk}} \Big) \nonumber \\
95  & = & \frac{1}{r_{ji} r_{jk}} {\bf r}_{jk} - \frac{\cos\theta_{jik}}{r_{ji}^2} {\bf r}_{ji}
96 \end{eqnarray}
97
98   \section{Derivative of $V_{jk}$ with respect to ${\bf r}_i$}
99
100 \begin{eqnarray}
101 \nabla_{{\bf r}_i} V_{jk} & = & f_C(r_{jk}) f_A(r_{jk}) \nabla_{{\bf r}_i} b_{jk} \\
102 \nabla_{{\bf r}_i} b_{jk} & = & - \frac{\chi_{jk}}{2} (1+\beta^{n_j} \zeta_{jk}^{n_j})^{-\frac{1}{2n_j}-1} \beta^{n_j} \zeta_{jk}^{n_j-1} \nabla_{{\bf r}_i} \zeta_{jk} \\
103 \nabla_{{\bf r}_i} \zeta_{jk} & = & \sum_{l \neq j,k} \big( g(\theta_{jkl}) \nabla_{{\bf r}_i} f_C(r_{jl}) + f_C(r_{jl}) \nabla_{{\bf r}_i} g(\theta_{jkp}) \big) \nonumber \\
104  & = & f_C(r_{ji}) \nabla_{{\bf r}_i} g(\theta_{jki}) + g(\theta_{jki}) \nabla_{{\bf r}_i} f_C(r_{ji}) \\
105 \nabla_{{\bf r}_i} g(\theta_{jki}) & = & - \frac{2(h_j-\cos\theta_{jki})c_j^2}{\big[d_j^2 + (h_j - \cos\theta_{jki})^2\big]^2} \nabla_{{\bf r}_i} (\cos\theta_{jki}) \\
106 \nabla_{{\bf r}_i} \cos \theta_{jki} & = & \nabla_{{\bf r}_i} \Big( \frac{{\bf r}_{jk} {\bf r}_{ji}}{r_{jk} r_{ji}} \Big) \nonumber \\
107  & = & \frac{1}{r_{jk} r_{ji}} {\bf r}_{jk} - \frac{\cos\theta_{jki}}{r_{ji}^2} {\bf r}_{ji}
108 \end{eqnarray}