finished excercise 1
[lectures/latex.git] / solid_state_physics / tutorial / 2_03.tex
1 \pdfoutput=0
2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
4 \usepackage{verbatim}
5 \usepackage{a4}
6 \usepackage{a4wide}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
10 \usepackage{amsmath}
11 \usepackage{ae}
12 \usepackage{aecompl}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
15 \usepackage{color}
16 \usepackage{pstricks}
17 \usepackage{pst-node}
18 \usepackage{rotating}
19
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
25
26 \renewcommand{\labelenumi}{(\alph{enumi})}
27 \renewcommand{\labelenumii}{\arabic{enumii})}
28 \renewcommand{\labelenumiii}{\roman{enumiii})}
29
30 \begin{document}
31
32 % header
33 \begin{center}
34  {\LARGE {\bf Materials Physics II}\\}
35  \vspace{8pt}
36  Prof. B. Stritzker\\
37  SS 2008\\
38  \vspace{8pt}
39  {\Large\bf Tutorial 3}
40 \end{center}
41
42 \vspace{8pt}
43
44 The specific heat (capacity) is the measure of the energy
45 required to increase the temperature of a unit quantity of a substance
46 by a certain temperature interval.
47 Thus, the specific heat at constant volume $V$ is given by
48 \[
49 c_V = \frac{\partial w}{\partial T}
50 \]
51 in which $w$ is the energy density of the system.
52
53 \section{Specific heat in the classical theory of the harmonic crystal -\\
54          The law of Dulong and Petit}
55
56 In the classical theory of the harmonic crystal equilibrium properties
57 can no longer be evaluated by simply assuming that each ion sits quitly at
58 its Bravais lattice site {\bf R}.
59 From now on expectation values have to be claculated by
60 integrating over all possible ionic configurations weighted by
61 $\exp(-E/k_{\text{B}}T)$, where $E$ is the energy of the configuration.
62 Thus, the energy density $w$ is given by
63 \[
64 w=\frac{1}{V} \frac{\int d\Gamma\exp(-\beta H)H}{\int d\Gamma\exp(-\beta H)},
65 \qquad \beta=\frac{1}{k_{\text{B}}T}
66 \]
67 in which $d\Gamma=\Pi_{\bf R} d{\bf u}({\bf R})d{\bf P}({\bf R})$
68 is the volume elemnt in crystal phase space.
69 ${\bf u}({\bf R})$ and ${\bf P}({\bf R})$  are the 3N canonical coordinates
70 (here: deviations from equlibrium sites)
71 and 3N canonical momenta
72 of the ions whose equlibrium sites are ${\bf R}$.
73 \begin{enumerate}
74  \item Show that the energy density can be rewritten to read:
75        \[
76    u=-\frac{1}{V}\frac{\partial}{\partial \beta} ln \int d\Gamma \exp(-\beta H).
77        \]
78  \item Show that the potential contribution to the energy
79        in the harmonic approximation is given by
80        \begin{eqnarray}
81        U&=&U_{\text{eq}}+U_{\text{harm}} \nonumber \\
82        U_{\text{eq}}&=&\frac{1}{2}\sum_{{\bf R R'}} \Phi({\bf R}-{\bf R'})
83        \nonumber \\
84        U_{\text{harm}}&=&\frac{1}{4}\sum_{\stackrel{{\bf R R'}}{\mu,v=x,y,z}}
85        [u_{\mu}({\bf R})-u_{\mu}({\bf R'})]\Phi_{\mu v}({\bf R}-{\bf R'})
86        [u_v({\bf R})-u_v({\bf R'})] \nonumber
87        \end{eqnarray}
88        in which
89 $\Phi_{\mu v}({\bf r})=
90  \frac{\partial^2 \Phi({\bf r})}{\partial r_{\mu}\partial r_v}$
91        and $\Phi({\bf r})$ is the potential contribution of two atoms
92        separated by ${\bf r}$.
93        {\bf Hint:}
94        Write down the potential energy for the instantaneous positions
95        ${\bf r}({\bf R})$, with ${\bf u}({\bf R})={\bf r}({\bf R})-{\bf R}$.
96        Apply Taylor approximation to $\Phi({\bf r}+{\bf a})$ with
97        ${\bf r}={\bf R}-{\bf R'}$ and
98        ${\bf a}={\bf u}({\bf R})-{\bf u}({\bf R'})$
99        and only retain terms quadratic in $u$.
100  \item Use the evaluated potential to calculate the energy density
101        (do not forget the kinetic contribution to energy) and
102        the specific heat $c_{\text{V}}$.
103        {\bf Hint:}
104        Use the following change of variables
105        \[
106        {\bf u}({\bf R})=\beta^{-1/2}\bar{{\bf u}}({\bf R}), \qquad
107        {\bf P}({\bf R})=\beta^{-1/2}\bar{{\bf P}}({\bf R})
108        \]
109        to extract the temperature dependence of the integral.
110        Does this also work for anharmonic terms?
111        Which parts of the integral do not contribute to $w$ and why?
112 \end{enumerate}
113
114
115 \section{Specific heat in the quantum theory of the harmonic crystal -\\
116          Models of Debye and Einstein}
117
118 \begin{enumerate}
119  \item
120  \item
121 \end{enumerate}
122
123 \end{document}