882df74cd1bc5948767a36a30ebfe765a6e4f176
[lectures/latex.git] / solid_state_physics / tutorial / 2_03s.tex
1 \pdfoutput=0
2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
4 \usepackage{verbatim}
5 \usepackage{a4}
6 \usepackage{a4wide}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
10 \usepackage{amsmath}
11 \usepackage{ae}
12 \usepackage{aecompl}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
15 \usepackage{color}
16 \usepackage{pstricks}
17 \usepackage{pst-node}
18 \usepackage{rotating}
19
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
25
26 \renewcommand{\labelenumi}{(\alph{enumi})}
27 \renewcommand{\labelenumii}{\arabic{enumii})}
28 \renewcommand{\labelenumiii}{\roman{enumiii})}
29
30 \begin{document}
31
32 % header
33 \begin{center}
34  {\LARGE {\bf Materials Physics II}\\}
35  \vspace{8pt}
36  Prof. B. Stritzker\\
37  SS 2008\\
38  \vspace{8pt}
39  {\Large\bf Tutorial 3 - proposed solutions}
40 \end{center}
41
42 \vspace{8pt}
43
44 \section{Specific heat in the classical theory of the harmonic crystal -\\
45          The law of Dulong and Petit}
46
47 \begin{enumerate}
48  \item Energy:
49        \begin{eqnarray}
50        w&=&-\frac{1}{V}\frac{\partial}{\partial \beta}
51        ln \int d\Gamma \exp(-\beta H)
52        =-\frac{1}{V}\frac{1}{\int d\Gamma \exp(-\beta H)}
53        \frac{\partial}{\partial \beta} \int d\Gamma \exp(-\beta H)\nonumber\\
54        &=&-\frac{1}{V}\frac{1}{\int d\Gamma \exp(-\beta H)}
55        \int d\Gamma \frac{\partial}{\partial \beta} \exp(-\beta H)\nonumber\\
56        &=&-\frac{1}{V}\frac{1}{\int d\Gamma \exp(-\beta H)}
57        \int d\Gamma \exp(-\beta H) (-H) \qquad \textrm{ q.e.d.} \nonumber
58        \end{eqnarray}
59  \item Potential energy:
60        \[
61        U=\frac{1}{2}\sum_{{\bf RR'}}\Phi({\bf r}({\bf R})-{\bf r}({\bf R'}))
62         =\frac{1}{2}\sum_{{\bf RR'}}
63          \Phi({\bf R}-{\bf R'}+{\bf u}({\bf R})-{\bf u}({\bf R'}))
64        \]
65        Using Taylor and
66        $U_{\text{eq}}=\frac{1}{2}\sum_{{\bf R R'}} \Phi({\bf R}-{\bf R'})$:
67        \[
68        U=U_{\text{eq}}+
69          \frac{1}{2}\sum_{{\bf RR'}}({\bf u}({\bf R})-{\bf u}({\bf R'}))
70          \nabla\Phi({\bf R}-{\bf R'})+
71          \frac{1}{4}\sum_{{\bf RR'}}
72          [({\bf u}({\bf R})-{\bf u}({\bf R'})) \nabla]^2
73          \Phi({\bf R}-{\bf R'}) + \mathcal{O}(u^3)
74        \]
75        Linear term:\\
76        The coefficient of ${\bf u}({\bf R})$ is
77        $\sum_{\bf R'}\nabla\Phi({\bf R}-{\bf R'})$
78        which is minus the force excerted on atom ${\bf R}$
79        by all other atoms in equlibrium positions.
80        There is no net force on any atom in equlibrium.
81        The linear term is zero.\\\\
82        Harmonic term:\\
83        $(a\nabla)^2 \Phi=
84         a\nabla a\nabla \Phi=
85         a\nabla \sum_u a_u \frac{\partial\Phi}{\partial r_u}=
86         \sum_v \frac{\partial \sum_u a_u
87         \frac{\partial\Phi}{\partial r_u}}{\partial r_v} a_v=
88         \sum_{uv}\frac{\partial}{\partial r_v} a_u
89         \frac{\partial \Phi}{\partial r_u} a_v=
90         \sum_{uv}a_u \frac{\partial^2\Phi}{\partial r_u \partial r_v} a_v$\\
91        \[\Rightarrow
92        U_{\text{harm}}=\frac{1}{4}\sum_{\stackrel{{\bf R R'}}{\mu,v=x,y,z}}
93        [u_{\mu}({\bf R})-u_{\mu}({\bf R'})]\Phi_{\mu v}({\bf R}-{\bf R'})
94        [u_v({\bf R})-u_v({\bf R'})],
95        \quad \Phi_{\mu v}({\bf r})=
96         \frac{\partial^2 \Phi({\bf r})}{\partial r_{\mu}\partial r_v}.
97        \]
98  \item Change of variables:
99        \[
100        {\bf u}({\bf R})=\beta^{-1/2}\bar{{\bf u}}({\bf R}), \qquad
101        {\bf P}({\bf R})=\beta^{-1/2}\bar{{\bf P}}({\bf R})
102        \]
103        \[
104        \Rightarrow
105        d{\bf u}({\bf R})=\beta^{-3/2}d\bar{{\bf u}}({\bf R}), \qquad
106        d{\bf P}({\bf R})=\beta^{-3/2}d\bar{{\bf P}}({\bf R}), \qquad
107        \]
108        Kinetic energy contribution:
109        \[
110        H_{\text{kin}}=\frac{{\bf P}({\bf R})^2}{2M}
111        \]
112        Integral (using change of variables):
113        \begin{eqnarray}
114        \int d\Gamma \exp(-\beta H)&=&
115        \int d\Gamma \exp\left[-\beta\left(\sum \frac{{\bf P}({\bf R})^2}{2M}+
116        U_{\text{eq}} + U_{\text{harm}}\right)\right]\nonumber\\
117        &=&
118        \exp(-\beta U_{\text{eq}})\beta^{-3N}
119        \LARGE(\int\prod_{{\bf R}}d\bar{{\bf u}}({\bf R})d\bar{{\bf P}}({\bf R})
120        \nonumber\\
121        &&\times \exp\left[
122        -\sum\frac{1}{2M}{\bf P}({\bf R})^2
123        -\frac{1}{4}\sum
124        [\bar{u}_{\mu}({\bf R})-\bar{u}_{\mu}({\bf R'})]
125        \Phi_{\mu v}({\bf R}-{\bf R'})
126        [\bar{u}_v({\bf R})-\bar{u}_v({\bf R'})]
127        \right]\LARGE)\nonumber
128        \end{eqnarray}
129        \[
130        \Rightarrow w=-\frac{1}{V}\frac{\partial}{\partial \beta}
131        ln\left((\exp(-\beta U_{\text{eq}})\beta^{-3N} \times \text{const}
132        \right)
133        =\frac{U_{\text{eq}}}{V}+3\frac{N}{V}k_{\text{B}}T
134        =u_{\text{eq}}+3nk_{\text{B}}T
135        \]
136        \[
137        \Rightarrow
138        c_{\text{V}}=\frac{\partial w}{\partial T}=3nk_{\text{B}}
139        \]
140 \end{enumerate}
141
142 \section{Specific heat in the quantum theory of the harmonic crystal -\\
143          The Debye model}
144
145 \[
146 w=\frac{1}{V}\frac{\sum_i E_i \exp(-\beta E_i)}{\sum_i \exp(-\beta E_i)}.
147 \]
148 \begin{enumerate}
149  \item Energy: $\rightarrow$ 1(a)
150        \[
151    w=-\frac{1}{V}\frac{\partial}{\partial \beta} ln \sum_i \exp(-\beta E_i).
152        \]
153  \item Evaluate the expression of the energy density.
154        {\bf Hint:}
155        The energy levels of a harmonic crystal of N ions
156        can be regarded as 3N independent oscillators,
157        whose frequencies are those of the 3N classical normal modes.
158        The contribution to the total energy of a particular normal mode
159        with angular frequency $\omega_s({\bf k})$ 
160        ($s$: branch, ${\bf k}$: wave vector) is given by
161        $(n_{{\bf k}s} + \frac{1}{2})\hbar\omega_s({\bf k})$ with the
162        excitation number $n_{{\bf k}s}$ being restricted to integers greater
163        or equal zero.
164        The total energy is given by the sum over the energies of the individual
165        normal modes.
166        Use the totals formula of the geometric series to expcitly calculate
167        the sum of the exponential functions.
168  \item Separate the above result into a term vanishing as $T$ goes to zero and
169        a second term giving the energy of the zero-point vibrations of the
170        normal modes.
171  \item Write down an expression for the specific heat.
172        Consider a large crystal and thus replace the sum over the discrete
173        wave vectors with an integral.
174  \item Debye replaced all branches of the vibrational spectrum with three
175        branches, each of them obeying the dispersion relation
176        $w=ck$.
177        Additionally the integral is cut-off at a radius $k_{\text{D}}$
178        to have a total amount of N allowed wave vectors.
179        Determine $k_{\text{D}}$.
180        Evaluate the simplified integral and introduce the
181        Debye frequency $\omega_{\text{D}}=k_{\text{D}}c$
182        and the Debye temperature $\Theta_{\text{D}}$ which is given by
183        $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$.
184        Write down the resulting expression for the specific heat.
185 \end{enumerate}
186
187 \end{document}