c115ade805ec9913e945d9c319d1f90e991938c1
[lectures/latex.git] / solid_state_physics / tutorial / 2_04s.tex
1 \pdfoutput=0
2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
4 \usepackage{verbatim}
5 \usepackage{a4}
6 \usepackage{a4wide}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
10 \usepackage{amsmath}
11 \usepackage{ae}
12 \usepackage{aecompl}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
15 \usepackage{color}
16 \usepackage{pstricks}
17 \usepackage{pst-node}
18 \usepackage{rotating}
19
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
25
26 \renewcommand{\labelenumi}{(\alph{enumi})}
27 \renewcommand{\labelenumii}{\arabic{enumii})}
28 \renewcommand{\labelenumiii}{\roman{enumiii})}
29
30 \begin{document}
31
32 % header
33 \begin{center}
34  {\LARGE {\bf Materials Physics II}\\}
35  \vspace{8pt}
36  Prof. B. Stritzker\\
37  SS 2008\\
38  \vspace{8pt}
39  {\Large\bf Tutorial 4 - proposed solutions}
40 \end{center}
41
42 \vspace{4pt}
43
44 \section{Legendre transformation and Maxwell relations}
45
46 \begin{enumerate}
47  \item Legendre transformation:
48        \begin{eqnarray}
49        dg &=& df - \sum_{i=r+1}^{n} d(u_ix_i)\nonumber\\
50           &=& df - \sum_{i=r+1}^{n} (x_idu_i + u_idx_i)\nonumber\\
51           &=& \sum_{i=1}^r u_idx_i - \sum_{i=r+1}^n x_idu_i\nonumber
52        \end{eqnarray}
53        \[
54        \Rightarrow g=g(x_1,\ldots,x_r,u_{r+1},\ldots,u_n)
55        \]
56  \item Use $T=\left.\frac{\partial E}{\partial S}\right|_V$ and
57        $-p=\left.\frac{\partial E}{\partial V}\right|_S$.\\
58        Start with internal energy $E=E(S,V)$:
59        \[
60        \Rightarrow dE=\frac{\partial E}{\partial S}dS +
61                       \frac{\partial E}{\partial V}dV =
62                       TdS - pdV
63        \]
64        Enthalpy $H=E+pV$:
65        \[
66        \Rightarrow dH=dE+Vdp+pdV=TdS-pdV+Vdp+pdV=TdS+Vdp
67        \]
68        \[
69        \Rightarrow
70        \left.\frac{\partial H}{\partial S}\right|_p=T \textrm{ and }
71        \left.\frac{\partial H}{\partial p}\right|_S=V
72        \]
73        Helmholtz free energy $F=E-TS$:
74        \[
75        \Rightarrow dF=dE-SdT-TdS=TdS-pdV-SdT-TdS=-pdV-SdT
76        \]
77        \[
78        \Rightarrow
79        \left.\frac{\partial F}{\partial V}\right|_T=-p \textrm{ and }
80        \left.\frac{\partial F}{\partial T}\right|_V=-S
81        \]
82        Gibbs free energy $G=H-TS=E+pV-TS$:
83        \[
84        \Rightarrow dG=dH-SdT-TdS=TdS+Vdp-SdT-TdS=Vdp-SdT
85        \]
86        \[
87        \Rightarrow
88        \left.\frac{\partial G}{\partial p}\right|_T=V \textrm{ and }
89        \left.\frac{\partial G}{\partial T}\right|_p=-S
90        \]
91  \item Maxwell relations:\\
92        Internal energy: $dE=TdS-pdV$
93        \[
94        \frac{\partial}{\partial S}
95        \left(\left.\frac{\partial E}{\partial V}\right|_S\right)_V=
96        \frac{\partial}{\partial V}
97        \left(\left.\frac{\partial E}{\partial S}\right|_V\right)_S
98        \Rightarrow
99        \left.-\frac{\partial p}{\partial S}\right|_V=
100        \left.\frac{\partial T}{\partial V}\right|_S
101        \]
102        Enthalpy: $dH=TdS+Vdp$
103        \[
104        \frac{\partial}{\partial S}
105        \left(\left.\frac{\partial H}{\partial p}\right|_S\right)_p=
106        \frac{\partial}{\partial p}
107        \left(\left.\frac{\partial H}{\partial S}\right|_p\right)_S
108        \Rightarrow
109        \left.\frac{\partial V}{\partial S}\right|_p=
110        \left.\frac{\partial T}{\partial p}\right|_S
111        \]
112        Helmholtz free energy: $dF=-pdV-SdT$
113        \[
114        \frac{\partial}{\partial V}
115        \left(\left.\frac{\partial F}{\partial T}\right|_V\right)_T=
116        \frac{\partial}{\partial T}
117        \left(\left.\frac{\partial F}{\partial V}\right|_T\right)_V
118        \Rightarrow
119        \left.-\frac{\partial S}{\partial V}\right|_T=
120        \left.-\frac{\partial p}{\partial T}\right|_V
121        \]
122        Gibbs free energy: $dG=Vdp-SdT$
123        \[
124        \frac{\partial}{\partial p}
125        \left(\left.\frac{\partial G}{\partial T}\right|_p\right)_T=
126        \frac{\partial}{\partial T}
127        \left(\left.\frac{\partial G}{\partial p}\right|_T\right)_p
128        \Rightarrow
129        \left.-\frac{\partial S}{\partial p}\right|_T=
130        \left.\frac{\partial V}{\partial T}\right|_p
131        \]
132 \end{enumerate}
133
134 \section{Thermal expansion of solids}
135
136 \begin{enumerate}
137  \item Coefficients of thermal expansion:\\
138        Consider a cube with side lengthes $L_1,L_2,L_3$.
139        Isotropic material: $\frac{1}{L_1}\frac{\partial L_1}{\partial T}=
140                             \frac{1}{L_2}\frac{\partial L_2}{\partial T}=
141                             \frac{1}{L_3}\frac{\partial L_3}{\partial T}=
142                             \alpha_L$.
143        \begin{eqnarray}
144        \alpha_V&=&\frac{1}{V}\frac{\partial V}{\partial T}=
145        \frac{1}{L_1L_2L_3}\frac{\partial}{\partial T}(L_1L_2L_3)=
146        \frac{1}{L_1L_2L_3}\left(L_2L_3\frac{\partial L_1}{\partial T}+
147                                 L_1L_3\frac{\partial L_2}{\partial T}+
148                                 L_1L_2\frac{\partial L_3}{\partial T}\right)
149                                 \nonumber\\
150        &=&\frac{1}{L_1}\frac{\partial L_1}{\partial T}+
151           \frac{1}{L_2}\frac{\partial L_2}{\partial T}+
152           \frac{1}{L_3}\frac{\partial L_3}{\partial T}=3\alpha_L\nonumber
153        \end{eqnarray}
154  \item \[
155        dF=-pdV-SdT \Rightarrow p=-\left.\frac{\partial F}{\partial V}\right|T
156        \]
157        \[
158        \left.\frac{\partial E}{\partial T}\right|_V=
159        \left.\frac{\partial E}{\partial S}\right|_V
160        \left.\frac{\partial S}{\partial T}\right|_V=
161        T\left.\frac{\partial S}{\partial T}\right|_V
162        \Rightarrow
163        \left.\frac{\partial S}{\partial T}\right|_V=
164        \frac{1}{T}\left.\frac{\partial E}{\partial T}\right|_V
165        \]
166        \[
167        \textrm{Using } F=E-TS \textrm{ and }
168        TS=T\int_0^T\frac{\partial S}{\partial T'}dT'
169        \textrm{ (Entropy density vanishes at $T=0$)}
170        \]
171        \[
172        \Rightarrow
173        p=-\frac{\partial}{\partial V}\left(
174        E-T\int_0^T\frac{dT'}{T'}\frac{\partial E}{\partial T'}
175        \right)
176        \]
177        Harmonic approximation of the internal energy:
178        \[
179        E=E^{\text{eq}}+\frac{1}{2}\sum_{{\bf k}s}\hbar\omega_s({\bf k})+
180        \sum_{{\bf k}s}
181        \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
182        \]
183        \[
184        \ldots
185        \]
186        \[
187        x=\hbar\omega_s({\bf k})/T'
188        \]
189        \[
190        \ldots
191        \]
192        \[
193        \Rightarrow
194        p=-\frac{\partial}{\partial V}\left(
195        E^{\text{eq}}+\frac{1}{2}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
196        \right)+
197        \sum_{{\bf k}s}\left(-\frac{\partial}{\partial V}\hbar\omega_s({\bf k})
198        \right)\frac{1}{e^{\beta\hbar\omega_s({\bf k})}-1}
199        \]
200  \item The pressure depends on temperature
201        only if the normal mode frequencies depend on the volume.
202        However, the normal mode frequencies of a rigorously harmonic crystal
203        are unaffected by a change in volume.\\
204        $\Rightarrow$
205        The pressure solely depends on the volume.\\
206        $\Rightarrow$
207        The pressure required to maintain a given volume
208        does not vary with temperature.
209        \[
210        \left.\frac{\partial p}{\partial T}\right|_V=0
211        \]
212        \[
213        \left.\frac{\partial V}{\partial T}\right|_p=
214        -\frac{\left.\frac{\partial p}{\partial T}\right|_V}
215              {\left.\frac{\partial p}{\partial V}\right|_T}=0
216        \]
217  \item $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$
218        and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$
219        \[
220        C_p-C_V=\left.\frac{\partial E}{\partial T}\right|_p-
221        \left.\frac{\partial E}{\partial T}\right|_V=
222        \frac{\partial E}{\partial S}
223        \left.\frac{\partial S}{\partial T}\right|_p-
224        \frac{\partial E}{\partial S}
225        \left.\frac{\partial S}{\partial T}\right|_V=
226        T\left.\frac{\partial S}{\partial T}\right|_p-
227        T\left.\frac{\partial S}{\partial T}\right|_V=
228        T\left(
229        \left.\frac{\partial S}{\partial T}\right|_p-
230        \left.\frac{\partial S}{\partial T}\right|_V
231        \right)
232        \]
233        Using the equality
234        \[
235        dS=\left.\frac{\partial S}{\partial T}\right|_p dT
236        +\left.\frac{\partial S}{\partial p}\right|_T dp
237        \Rightarrow
238        \left.\frac{\partial S}{\partial T}\right|_V=
239        \left.\frac{\partial S}{\partial T}\right|_p+
240        \left.\frac{\partial S}{\partial p}\right|_T
241        \left.\frac{\partial p}{\partial T}\right|_V,
242        \]
243        the Maxwell relation
244        \[
245        \left.\frac{\partial S}{\partial p}\right|_T=
246        -\left.\frac{\partial V}{\partial T}\right|_p
247        \]
248        and (for a process with constant volume)
249        \[
250        0=dV=\left.\frac{\partial V}{\partial T}\right|_p dT+
251        \left.\frac{\partial V}{\partial p}\right|_T dp
252        \Rightarrow
253        \left.\frac{\partial p}{\partial T}\right|_V=
254        -\frac{\left.\frac{\partial V}{\partial T}\right|_p}
255        {\left.\frac{\partial V}{\partial p}\right|_T}
256        \]
257        we obtain:
258        \[
259        C_p-C_V=T\left(
260        -\left.\frac{\partial S}{\partial p}\right|_T
261        \left.\frac{\partial p}{\partial T}\right|_V
262        \right)=T\left(
263        \left.\frac{\partial V}{\partial T}\right|_p
264        \left.\frac{\partial p}{\partial T}\right|_V
265        \right)=T\left(
266        \frac{\left.\left.\frac{\partial V}{\partial T}\right|_p\right.^2}
267        {-\left.\frac{\partial V}{\partial p}\right|_T}
268        \right)=T\left(\frac{V^2\alpha_V^2}{V\frac{1}{B}}\right)=
269        TVB\alpha_V^2
270        \]
271        For a rigorously harmonic potential $C_p=C_V$.
272 \end{enumerate}
273
274 \end{document}