ci often and soon
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index 048e57d..41073e9 100644 (file)
@@ -37,7 +37,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
 
     Die Simulationen wurden zun"achst mit sehr geringen Schrittzahlen (zwischen $2$ und $4 \times 10^{5}$ Schritten) durchgef"uhrt.
     Voraussetzung f"ur die Entstehung amorpher Gebiete bei dieser geringen Schrittzahl sind hohe Werte f"ur die zur Amorphisierung beitragenden Simulationsparameter $p_b$, $p_c$ und $p_s$ (Gr"o"senordnungsbereich $10^{-2}$).
-    Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsinduzierten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"o"seren Menge an amorphen Gebieten.
+    Die Erh"ohung der Parameter f"ur die ballistische Amorphisierung (Abbildung \ref{img:first_sims} c)) und selbst die der spannungsunterst"utzten Amorphisierung (Abbildung \ref{img:first_sims} d)) "au"sern sich in einer gr"o"seren Menge an amorphen Gebieten.
     Eine klare Lamellenbildung ist unter diesen Bedingungen nicht zu erkennen.
 
     Macht man die Parameter jedoch sehr viel kleiner und erh"oht im Gegenzug die Schrittzahl, so erwartet  man, dass zuf"allig amorphisierte Zellen ohne amorphe Nachbarn mit aller Wahrscheinlichkeit im Falle eines Sto"ses rekristallisieren werden.
@@ -109,7 +109,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen.
     Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation.
     Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt aufgrund der wachsenden Druckspannungen an.
-    Da diese spannungsinduziert amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden.
+    Da diese spannungsunterst"utzt amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden.
     Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen.
     Das Ergebnis zeigt die Notwendigkeit der lokalen Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete, insbesondere der Diffusion in $z$-Richtung.
 
@@ -171,7 +171,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     In Abbildung \ref{img:p_s_influence} sind Simulationergebnisse mit variierten Druckspannungsparametern $p_s$ zu sehen.
     Mit Verkleinerung des Wertes f"ur die St"arke des Einflusses von Spannungen auf die Amorphisierungswahrscheinlichkeit wird auch der Tiefenbereich, in dem sich lamellare Ausscheidungen bilden, kleiner.
     Gleichzeitig wird auch der laterale Durchmesser der amorphen Lamellen kleiner.
-    Diese Beobachtungen illustrieren den Mechanismus der spannungsinduzierten Amorphisierung.
+    Diese Beobachtungen illustrieren den Mechanismus der spannungsunterst"utzten Amorphisierung.
     Da kleinere $p_s$ eine kleinere Amorphisierungswahrscheinlichkeit der kristallinen Nachbarschaft zur Folge haben, entstehen weniger amorphe Gebiete.
     Die Druckspannungen fallen quadratisch mit der Entfernung ab.
     Ein zuf"allig amorphisiertes Gebiet, das nicht direkt an eine Ausscheidung angrenzt, wird daher viel wahrscheinlicher rekristallisieren als eins in der direkten Nachbarschaft zu einer weiteren amorphen Zelle.
@@ -348,7 +348,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Ab einer Tiefe von $250 \, nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt.
     In diesem Tiefenbereich existieren Ausscheidungen, die nicht unmittelbar rekristallisieren und so Kohlenstoff durch den Diffusionsprozess gewinnen k"onnen, der zur weiteren Stabilisierung f"uhrt.
     Ab einer Tiefe von $350 \, nm$ haben sich lamellare amorphe Ausscheidungen gebildet.
-    Im allen drei Kohlenstofftiefenprofilen sind Schwankungen in diesem Bereich zu erkennen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb und die der kristallinen Gebiete immer unterhalb der Gesamtkonzentration liegt.
+    In allen drei Kohlenstofftiefenprofilen sind Schwankungen in diesem Bereich zu erkennen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb und die der kristallinen Gebiete immer unterhalb der Gesamtkonzentration liegt.
     Die Ursache f"ur die Schwankungen in der Gesamtkonzentration ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen.
     Es wechseln sich Ebenen mit hohem und niedrigem amorphen Anteil ab.
     Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff.
@@ -432,7 +432,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der amorphen Phasen.
     Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet.
     Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum.
-    Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein.
+    Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:lua_vs_d} "uberein.
     Aufgrund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 \, nm$ tiefer vorzufinden.
     Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet.
     Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets.
@@ -458,9 +458,9 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die hohe Diffusionsrate des Kohlenstoffs bewirkt, dass selbst im Implantationsmaximum zuf"allig amorph gewordene Gebiete ihren kristallinen Nachbarebenen zu schnell den Kohlenstoff entziehen.
     Dieser Prozess ist notwendig f"ur die Bildung der Lamellen, jedoch verhindert er in diesem Fall die Bildung einer durchgehend amorphen $SiC_x$-Schicht.
     Die Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen kristallinen Gebieten ist daher zu klein.
-    Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht, sowie der Bildung der Lamellen.
+    Die Diffusion ist somit ein sensibler Faktor bei der Bildung der durchgehend amorphen Schicht sowie der Bildung der Lamellen.
 
-    Der Versuch, die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen, ist in \ref{img:var_sim_paramters} c) abgebildet.
+    Der Versuch, die Bildung der durchgehend amorphen Schicht in geringeren Tiefen zu erzeugen ist in \ref{img:var_sim_paramters} c) abgebildet.
     Dazu wurde der Einfluss der ballistischen Amorphisierung $p_b$ erh"oht.
     Da das nukleare Bremskraftmaximum vor dem Maximum der Kohlenstoffkonzentration liegt (Abbildungen \ref{img:trim_nel}/\ref{img:trim_impl}), sollte sich eine st"arkere Amorphisierung im oberen Fall des Implantationsprofils ergeben.
     Dies ist auch tats"achlich feststellbar.
@@ -477,15 +477,15 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab.
     Mit knapp $120 \, nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$.
     Sie erstreckt sich weiterhin um das Kohlenstoffmaximum.
-    Lamellare Strukturen sind, au"ser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen.
+    Lamellare Strukturen sind au"ser an den kristallinen Einschl"ussen nahe der vorderen Grenzfl"ache der durchgehenden Schicht nicht zu erkennen.
     An diesem Ergebnis erkennt man wieder sehr gut, dass die kohlenstoffinduzierte Amorphisierung den wichtigsten Amorphisierungsmechanismus darstellt.
 
-    Der Einfluss der spannungsinduzierten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} e) zu sehen.
+    Der Einfluss der spannungsunterst"utzten Amorphisierung ist in Abbildung \ref{img:var_sim_paramters} e) zu sehen.
     Hier wurde der Parameter $p_s$ erh"oht.
     Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist.
     Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum.
     Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 \, at. \%$.
-    Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
+    Da in den Beitrag f"ur die spannungsunterst"utzte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
     Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist.
     Der Diffusionsprozess verliert somit an Bedeutung.
     Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 \, at.\%$ Kohlenstoff enth"alt.
@@ -573,14 +573,15 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Es hat sich keine durchgehende Schicht gebildet.
     Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu amorphisieren.
     Lamellen sind noch nicht zu erkennen.
-    Aufgrund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert.
+    Aufgrund der spannungsunterst"utzten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert.
     Die Diffusion f"uhrt zu einer wirksamen Umverteilung von Kohlenstoff, bevor das Target komplett amorphisiert ist.
     Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohlenstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht.
     Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen.
     In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden.
     Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird.
+    Weiterhin f"allt auf, dass sich mit steigender Dosis die Lamellenstruktur in das Gebiet niedriger Kohlenstoffkonzentration ausdehnt.
+    Nach einer gro"sen Anzahl von Diffusionsdurchg"angen k"onnen sich auch hier lamellare Ausscheidungen selbstorganisieren.
     Da kaum Kohlenstoff der $2 \, MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs.
-    Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten.
 
     Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich.
     Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 \, at. \%$ im Implantationsmaximum hat.
@@ -593,36 +594,36 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden.
     W"ahlt man eine maximale Konzentration von $10 \, at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}.
 
-    Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 \, MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen.
     \begin{sidewaysfigure}\centering
     \includegraphics[height=13cm]{multiple_impl.eps}
     \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$"=Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in f) von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}
     \label{img:broad_l}
     \end{sidewaysfigure}
     \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel gro"sen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} a), b) und f).}{img:broad_ls}
+    Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 \, MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen.
     Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden.
     Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet.
-    Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus um den kohlenstoffhaltigen Bereich komplett zu amorphisieren.
+    Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus, um den kohlenstoffhaltigen Bereich komplett zu amorphisieren.
     Die Gebiete sind noch sehr instabil gegen"uber Rekristallisation.
-    Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Warscheinlichkeit amorphisieren.
+    Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Wahrscheinlichkeit amorphisieren.
     Mit steigender Dosis und somit fortgef"uhrter Diffusion beginnen sich so lamellare Ausscheidungen zu stabilisieren.
     Die Organisation und Stabilisierung der lamellaren Ausscheidungen erkennt man bereits bei der doppelten Dosis in Abbildung \ref{img:broad_l} b).
     In den Lamellen befindliche amorphe Gebiete werden aufgrund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren.
-    Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater rekristallisieren.
+    Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater ausheilen.
     Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt.
     Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) - f)).
     Die Ausscheidungen werden sch"arfer.
 
     Dies erkennt man auch in Abbildung \ref{img:broad_ls}.
-    Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}.
+    Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ Zellen gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}.
     F"ur die erste Anzahl an Durchl"aufen ($s=50 \times 10^6$) erkennt man kein Maximum in der Intensit"at ungleich der Ortsfrequenz Null.
     Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 \, nm^{-1}$.
     Die Intensit"aten steigen nur langsam mit der Dosis an, was man auch schon aus den Abbildungen \ref{img:broad_l} c) bis f) erahnen kann.
     Die Sch"arfe der Ausscheidungen, die bereits in Abbildung \ref{img:broad_l} c) sehr hoch ist, "andert sich kaum noch.
-    Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen, sofern sie existieren, der unabh"angig von der Dosis ist, hinweist.
+    Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen - unabh"angig von der Dosis - hinweist.
     Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis.
     Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 \, nm$ an.
     Aufgrund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt.
 
-    Die Herstellung breiter Bereiche lamellarer Struktur ist nach dem Simulationsergebnis demnach m"oglich.
-    Die Ausgangskonfiguration des Targets, welches mit $2 \, MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein.
+    Die Herstellung breiter Bereiche mit lamellarer Nanostruktur ist entsprechend des Simulationsergebnisses m"oglich.
+    J"ungste Untersuchungen haben ergeben, dass solche Nanostrukturen Photolumineszenz zeigen.