adding colors
[lectures/latex.git] / posic / talks / mpi_app.tex
index 2c9d67f..e90f38f 100644 (file)
@@ -20,6 +20,7 @@
 
 \usepackage{pstricks}
 \usepackage{pst-node}
+\usepackage{pst-grad}
 
 %\usepackage{epic}
 %\usepackage{eepic}
@@ -185,6 +186,8 @@ R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
 
 \begin{slide}
 
+\vspace*{1.8cm}
+
 \small
 
 \begin{pspicture}(0,0)(13.5,5)
@@ -388,6 +391,8 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 
 % outline
 
+\fi 
+
 \begin{slide}
 
 {\large\bf
@@ -401,18 +406,18 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 \end{center}
 
 \begin{pspicture}(0,0)(0,0)
-\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{
 \begin{minipage}{11cm}
-{\color{red}Diploma thesis}\\
+{\color{black}Diploma thesis}\\
  \underline{Monte Carlo} simulation modeling the selforganization process\\
  leading to periodic arrays of nanometric amorphous SiC precipitates
 \end{minipage}
 }}}
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=blue,gradmidpoint=0.5,gradlines=1000,linestyle=none]{
 \begin{minipage}{11cm}
-{\color{blue}Doctoral studies}\\
+{\color{black}Doctoral studies}\\
  Classical potential \underline{molecular dynamics} simulations \ldots\\
  \underline{Density functional theory} calculations \ldots\\[0.2cm]
  \ldots on defect formation and SiC precipitation in Si
@@ -428,28 +433,234 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 
 \end{slide}
 
-% continue here
-\fi
 \begin{slide}
 
 {\large\bf
  Selforganization of nanometric amorphous SiC lamellae
 }
 
-\begin{minipage}{6cm}
-\includegraphics[width=6cm]{}
+\begin{pspicture}(0,0)(0,0)
+\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{
+\begin{minipage}{14cm}
+\hfill
+\vspace*{0.5cm}
+\end{minipage}
+}
+\end{pspicture}
+
+\small
+
+\vspace{0.2cm}
+
+\begin{itemize}
+ \item Regularly spaced, nanometric spherical\\
+       and lamellar amorphous inclusions\\
+       at the upper a/c interface
+ \item Carbon accumulation\\
+       in amorphous volumes
+\end{itemize}
+
+\vspace{0.4cm}
+
+\begin{minipage}{12cm}
+\includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
+{\scriptsize
+XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si, \degc{150},
+Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
+}
+\end{minipage}
+
+\begin{picture}(0,0)(-182,-215)
+\begin{minipage}{6.5cm}
+\begin{center}
+\includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm]
+{\scriptsize
+XTEM bright-field and respective EFTEM C map
+}
+\end{center}
 \end{minipage}
+\end{picture}
+
+\end{slide}
+
+\end{document}
+\ifnum1=0
+
+\begin{slide}
+
+{\large\bf
+ Model displaying the formation of ordered lamellae
+}
+
+\vspace{0.1cm}
+
+\begin{center}
+ \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps}
+\end{center}
+
+\footnotesize
+
+\begin{itemize}
+\item Supersaturation of C in c-Si\\
+      $\rightarrow$ {\bf Carbon induced} nucleation of spherical
+      SiC$_x$-precipitates
+\item High interfacial energy between 3C-SiC and c-Si\\
+      $\rightarrow$ {\bf Amorphous} precipitates
+\item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\
+      $\rightarrow$ {\bf Lateral strain} (black arrows)
+\item Implantation range near surface\\
+      $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
+\item Reduction of the carbon supersaturation in c-Si\\
+      $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
+      (white arrows)
+\item Remaining lateral strain\\
+      $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
+\item Absence of crystalline neighbours (structural information)\\
+      $\rightarrow$ {\bf Stabilization} of amorphous inclusions 
+      {\bf against recrystallization}
+\end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+{\large\bf
+ Implementation of the Monte Carlo code
+}
+
+\small
+
+\begin{enumerate}
+ \item \underline{Amorphization / Recrystallization}\\
+       Ion collision in discretized target determined by random numbers
+       distributed according to nuclear energy loss.
+       Amorphization/recrystallization probability:
+\[
+p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
+\]
+\begin{itemize}
+ \item {\color{green} $p_b$} normal `ballistic' amorphization
+ \item {\color{blue} $p_c$} carbon induced amorphization
+ \item {\color{red} $p_s$} stress enhanced amorphization
+\end{itemize}
+\[
+p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
+\]
+\[
+\delta (\vec r) = \left\{
+\begin{array}{ll}
+        1 & \textrm{if volume at position $\vec r$ is amorphous} \\
+        0 & \textrm{otherwise} \\
+\end{array}
+\right.
+\]
+ \item \underline{Carbon incorporation}\\
+       Incorporation volume determined according to implantation profile
+ \item \underline{Diffusion / Sputtering}
+       \begin{itemize}
+        \item Transfer fraction of C atoms
+              of crystalline into neighbored amorphous volumes
+        \item Remove surface layer
+       \end{itemize}
+\end{enumerate}
+
+\end{slide}
+
+\begin{slide}
+
+\begin{minipage}{3.7cm}
+{\large\bf
+ Results
+}
+
+\footnotesize
+
+\vspace{1.0cm}
+
+Evolution of the \ldots
+\begin{itemize}
+ \item continuous\\
+       amorphous layer
+ \item a/c interface
+ \item lamella precipitates
+\end{itemize}
+\ldots reproduced!\\[1.5cm]
+
+{\color{blue}
+\begin{center}
+Experiment \& simulation\\
+in good agreement\\[1.0cm]
+
+Simulation is able to model the whole depth region\\[1.0cm]
+\end{center}
+}
+
+\end{minipage}
+\begin{minipage}{0.4cm}
+\vfill
+\end{minipage}
+\begin{minipage}{8.0cm}
+ \vspace{-0.2cm}
+ \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
+ \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+{\large\bf
+ Structural \& compositional details
+}
+
+\begin{minipage}[t]{7.5cm}
+\includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\
+\end{minipage}
+\begin{minipage}[t]{5.0cm}
+\includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps}
+\end{minipage}
+
+\footnotesize
+
+\vspace{-0.1cm}
+
+\begin{itemize}
+ \item Fluctuation of C concentration in lamellae region
+ \item \unit[8--10]{at.\%} C saturation limit
+       within the respective conditions
+ \item Complementarily arranged and alternating sequence of layers\\
+       with a high and low amount of amorphous regions
+ \item C accumulation in the amorphous phase / Origin of stress
+\end{itemize}
+
+\begin{picture}(0,0)(-265,-30)
+\framebox{
+\begin{minipage}{3cm}
+\begin{center}
+{\color{blue}
+Precipitation process\\
+gets traceable\\
+by simulation!
+}
+\end{center}
+\end{minipage}
+}
+\end{picture}
 
 \end{slide}
 
 
 \end{document}
+
+% continue here
+\fi
+
 \ifnum1=0
 
 \begin{slide}
 
 {\large\bf
Selforganization of nanometric amorphous SiC lamellae
Model displaying the formation of ordered lamellae
 }
 
 \framebox{