more debye stuff
[lectures/latex.git] / solid_state_physics / tutorial / 2_03s.tex
index 882df74..a3a3f24 100644 (file)
@@ -150,38 +150,118 @@ w=\frac{1}{V}\frac{\sum_i E_i \exp(-\beta E_i)}{\sum_i \exp(-\beta E_i)}.
        \[
    w=-\frac{1}{V}\frac{\partial}{\partial \beta} ln \sum_i \exp(-\beta E_i).
        \]
- \item Evaluate the expression of the energy density.
-       {\bf Hint:}
-       The energy levels of a harmonic crystal of N ions
-       can be regarded as 3N independent oscillators,
-       whose frequencies are those of the 3N classical normal modes.
-       The contribution to the total energy of a particular normal mode
-       with angular frequency $\omega_s({\bf k})$ 
-       ($s$: branch, ${\bf k}$: wave vector) is given by
-       $(n_{{\bf k}s} + \frac{1}{2})\hbar\omega_s({\bf k})$ with the
-       excitation number $n_{{\bf k}s}$ being restricted to integers greater
-       or equal zero.
-       The total energy is given by the sum over the energies of the individual
-       normal modes.
-       Use the totals formula of the geometric series to expcitly calculate
-       the sum of the exponential functions.
- \item Separate the above result into a term vanishing as $T$ goes to zero and
-       a second term giving the energy of the zero-point vibrations of the
-       normal modes.
- \item Write down an expression for the specific heat.
-       Consider a large crystal and thus replace the sum over the discrete
-       wave vectors with an integral.
- \item Debye replaced all branches of the vibrational spectrum with three
-       branches, each of them obeying the dispersion relation
-       $w=ck$.
-       Additionally the integral is cut-off at a radius $k_{\text{D}}$
-       to have a total amount of N allowed wave vectors.
-       Determine $k_{\text{D}}$.
-       Evaluate the simplified integral and introduce the
-       Debye frequency $\omega_{\text{D}}=k_{\text{D}}c$
-       and the Debye temperature $\Theta_{\text{D}}$ which is given by
-       $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$.
-       Write down the resulting expression for the specific heat.
+ \item \begin{itemize}
+        \item Total energy contribution of a particular normal mode:
+              $(n_{{\bf k}s} + \frac{1}{2})\hbar\omega_s({\bf k})$
+             with $n_{{\bf k}s}=0,1,2,\ldots$
+        \item A state of the crystal is specified by the excitation numbers
+              of the 3N normal modes.
+        \item The total energy is the sum of the energies of the individual
+             normal modes:\\
+             $E=\sum_{{\bf k}s}(n_{{\bf k}s}+
+              \frac{1}{2})\hbar\omega_s({\bf k})$
+       \end{itemize}
+       \begin{eqnarray}
+       \Rightarrow
+       w&=&-\frac{1}{V}\frac{\partial}{\partial \beta} ln\left(
+       \prod_{{\bf k}s}(\exp(-\beta\hbar\omega_s({\bf k})/2)+
+                        \exp(-3\beta\hbar\omega_s({\bf k})/2)+
+                        \exp(-5\beta\hbar\omega_s({\bf k})/2)+
+                       \ldots)
+       \right)\nonumber\\
+       &=&-\frac{1}{V}\frac{\partial}{\partial \beta} ln \prod_{{\bf k}s}
+       \frac{\exp(-\beta\hbar\omega_s({\bf k})/2)}
+            {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber\\
+       &=&-\frac{1}{V}\frac{\partial}{\partial \beta} \sum_{{\bf k}s} ln
+       \frac{\exp(-\beta\hbar\omega_s({\bf k})/2)}
+            {1-\exp(-\beta\hbar\omega_s({\bf k}))}\nonumber\\
+       &=&-\frac{1}{V}\sum_{{\bf k}s}
+       \frac{1-\exp(-\beta\hbar\omega_s({\bf k}))}
+            {\exp(-\beta\hbar\omega_s({\bf k})/2)}\nonumber\\
+       &&\times
+       \frac{(1-e^{-\beta\hbar\omega_s({\bf k})})
+             e^{-\beta\hbar\omega_s({\bf k})/2}(-\hbar\omega_s({\bf k})/2)+
+            e^{-\beta\hbar\omega_s({\bf k})/2}
+            e^{-\beta\hbar\omega_s({\bf k})}(-\hbar\omega_s({\bf k}))}
+            {(1-e^{-\beta\hbar\omega_s({\bf k})})^2}\nonumber\\
+       &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+       \frac{e^{-\beta\hbar\omega_s({\bf k})}-
+             \frac{1}{2}(1-e^{-\beta\hbar\omega_s({\bf k})})}
+           {1-e^{-\beta\hbar\omega_s({\bf k})}}\nonumber\\
+       &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+       \frac{\frac{1}{2}e^{-\beta\hbar\omega_s({\bf k})}-\frac{1}{2}}
+           {1-e^{-\beta\hbar\omega_s({\bf k})}}
+       =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+       \frac{1+e^{\beta\hbar\omega_s({\bf k})}}
+            {e^{\beta\hbar\omega_s({\bf k})}-1}\nonumber\\
+       &=&\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+       \frac{1+e^{\beta\hbar\omega_s({\bf k})}}
+            {e^{\beta\hbar\omega_s({\bf k})}-1}
+       =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2}
+       \frac{2+e^{\beta\hbar\omega_s({\bf k})}-1}
+            {e^{\beta\hbar\omega_s({\bf k})}-1}\nonumber\\
+       &=&\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+       (\frac{1}{e^{\beta\hbar\omega_s({\bf k})}-1}
+        +\frac{e^{\beta\hbar\omega_s({\bf k})}-1}
+              {2(e^{\beta\hbar\omega_s({\bf k})}-1)})
+       =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})
+       (\underbrace{\frac{1}{e^{\beta\hbar\omega_s({\bf k})}-1}}_{n_s({\bf k})}
+        +\frac{1}{2})\nonumber
+       \end{eqnarray}
+       $n_s({\bf k})$: Mean excitation number of the normal mode ${\bf k}s$ at
+                       temperature $T$.
+
+ \item \[
+       w=w_{\text{eq}}+
+         \frac{1}{V}\sum_{{\bf k}s}\frac{1}{2}\hbar\omega_s({\bf k})+
+         \frac{1}{V}\sum_{{\bf k}s}
+        \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+       \]
+ \item \[
+       c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}\frac{\partial}{\partial T}
+       \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+       \]
+       Large crystal:
+       \[
+       \lim_{v\rightarrow\infty}c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}
+       \frac{\partial}{\partial T}
+       \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+       =\frac{\partial}{\partial T}
+       \sum_s\int\frac{d{\bf k}}{(2\pi)^3}
+       \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1}
+       \]
+ \item \begin{itemize}
+        \item {\color{red}3} branches with Debye dispersion relation
+             $w={\color{green}ck}$
+       \item Volume of $k$-space per wave vector: $(2\pi)^3/V$\\
+             $\Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3
+              \Rightarrow n=\frac{N}{V}=\frac{k_{\text{D}}^3}{6\pi^2}$
+             and $dn={\color{blue}\frac{k^2}{2\pi^2}dk}$
+       \item Debye frequency: $\omega_{\text{D}}=k_{\text{D}}c$
+       \item Debye temperature:
+             $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$,
+             $\Theta_{\text{D}}=\hbar ck_{\text{D}}/k_{\text{B}}$
+       \end{itemize}
+       Integral:
+       \[
+       c_{\text{V}}=\frac{\partial}{\partial T}\, {\color{red}3}\int_0^{k_D}
+       {\color{blue}\frac{k^2}{2\pi^2}dk} \frac{\hbar {\color{green}ck}}
+       {e^{\beta\hbar {\color{green}ck}}-1}=
+       \frac{\partial}{\partial T}\frac{3\hbar c}{2\pi^2}\int_0^{k_D}
+       \frac{k^3}{e^{\beta\hbar ck}-1}dk=
+       \frac{3\hbar c}{2\pi^2}\int_0^{k_D}
+       \frac{k^3e^{\beta\hbar ck}\beta\hbar ck\frac{1}{T}}
+       {(e^{\beta\hbar ck}-1)^2}dk
+       \]
+       Change of variables: $\beta\hbar ck=x$
+       \[
+       \Rightarrow
+       k=\frac{x}{\beta\hbar c} \quad \textrm{, } \quad
+       dk=\frac{1}{\beta\hbar c} dx
+       \]
+       \[
+       c_{\text{V}}=
+       \]
 \end{enumerate}
 
 \end{document}