naja ...
authorhackbard <hackbard>
Mon, 20 Jun 2005 23:30:19 +0000 (23:30 +0000)
committerhackbard <hackbard>
Mon, 20 Jun 2005 23:30:19 +0000 (23:30 +0000)
nlsop/diplom/simulation.tex

index be0aa84..b6382df 100644 (file)
@@ -33,6 +33,9 @@
     Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau).
     Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert.
 
     Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau).
     Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert.
 
+    Die Ausdehnung des Targets in $x,y$-Richtung ist im Gegensatz zur Tiefe sehr gross und kann als unendlich ausgedehnt angenommen werden.
+    Um die Anzahl der W"urfel in diese Richtungen in der Simulation, aus Gr"unden der Rechenzeit, m"oglichst klein halten zu k"onen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet.
+
     \subsection{Amorphisierung und Rekristallisation}
     \label{subsection:a_and_r}
 
     \subsection{Amorphisierung und Rekristallisation}
     \label{subsection:a_and_r}
 
     Eine weitere, mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} erzeugte Zufallszahl $r_3 \in [0,Z[$ entsprechend der nuklearen Bremskraft, abgebildet auf die ganze Zahl $m$, legt die Tiefe des getroffenen Volumens fest.
     Somit hat man den Otrsvektor $\vec{r}(k,l,m)$ f"ur den Amorphisierungs- oder Rekristallisationsvorgang festgelegt.
     Nun kann die Amorphisierungs- beziehungsweise Rekristallisationswahrscheinlichkeit nach \eqref{eq:p_ca_local} beziehungsweise \eqref{eq:p_ac_genau} berechnet werden.
     Eine weitere, mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} erzeugte Zufallszahl $r_3 \in [0,Z[$ entsprechend der nuklearen Bremskraft, abgebildet auf die ganze Zahl $m$, legt die Tiefe des getroffenen Volumens fest.
     Somit hat man den Otrsvektor $\vec{r}(k,l,m)$ f"ur den Amorphisierungs- oder Rekristallisationsvorgang festgelegt.
     Nun kann die Amorphisierungs- beziehungsweise Rekristallisationswahrscheinlichkeit nach \eqref{eq:p_ca_local} beziehungsweise \eqref{eq:p_ac_genau} berechnet werden.
-    Eine weiter Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens.
+    Eine weitere Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens.
     Es gibt folgende M"oglichkeiten:
     \begin{enumerate}
     \item Volumen $\vec{r}(k,l,m)$ ist kristallin.\\
     Es gibt folgende M"oglichkeiten:
     \begin{enumerate}
     \item Volumen $\vec{r}(k,l,m)$ ist kristallin.\\
 
     \subsection{Diffusion und Sputtern}
 
 
     \subsection{Diffusion und Sputtern}
 
+    Die Diffusions-Routine ist wie folgt realisiert.
+    Die Simulation geht der Reihe nach alle Volumina durch.
+    Im Falle eines amorphen Volumens werden aus direkt anliegenden kristallinen Volumen der Anteil $d_r$ des Kohlenstoffs abgezogen und zu dem amorphen Volumen addiert.
+    Da nur ganze Atome "ubertragen werden k"onnen wird der Betrag auf die n"achst kleinere ganze Zahl abgerundet.
+    Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt.
+
+    Die Sputter-Routine wird alle Schritte ausgef"uhrt.
+    Dabei .
+    Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die darauffolgenden Ebenen auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren.
+
   \section{Simulierte Tiefenbereiche}
 
   \section{Test der Zufallszahlen}
   \section{Simulierte Tiefenbereiche}
 
   \section{Test der Zufallszahlen}