made constructed prec an extra chapter
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 21 Jun 2010 11:47:37 +0000 (13:47 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 21 Jun 2010 11:47:37 +0000 (13:47 +0200)
posic/thesis/const_sic.tex [new file with mode: 0644]
posic/thesis/md.tex
posic/thesis/thesis.tex

diff --git a/posic/thesis/const_sic.tex b/posic/thesis/const_sic.tex
new file mode 100644 (file)
index 0000000..ed65b48
--- /dev/null
@@ -0,0 +1,174 @@
+\chapter{Investigation of self-constructed 3C-SiC precipitates}
+
+\section{3C-SiC precipitate in crystalline silicon}
+
+A spherical 3C-SiC precipitate enclosed in a c-Si surrounding is constructed as it is expected from IBS experiments and from simulations that finally succeed in simulating the precipitation event.
+On the one hand this sheds light on characteristic values like the radial distribution function or the total amount of free energy for such a configuration that is aimed to be reproduced by simulation.
+On the other hand, assuming a correct alignment of the precipitate with the c-Si matrix, properties of such precipitates and the surrounding as well as the interface can be investiagted.
+Furthermore these investigations might establish the prediction of conditions necessary for the simulation of the precipitation process.
+
+To construct a spherical and topotactically aligned 3C-SiC precipitate in c-Si, the approach illustrated in the following is applied.
+A total simulation volume $V$ consisting of 21 unit cells of c-Si in each direction is created.
+To obtain a minimal and stable precipitate 5500 carbon atoms are considered necessary.
+This corresponds to a spherical 3C-SiC precipitate with a radius of approximately 3 nm.
+The initial precipitate configuration is constructed in two steps.
+In the first step the surrounding silicon matrix is created.
+This is realized by just skipping the generation of silicon atoms inside a sphere of radius $x$, which is the first unknown variable.
+The silicon lattice constant $a_{\text{Si}}$ of the surrounding c-Si matrix is assumed to not alter dramatically and, thus, is used for the initial lattice creation.
+In a second step 3C-SiC is created inside the empty sphere of radius $x$.
+The lattice constant $y$, the second unknown variable, is chosen in such a way, that the necessary amount of carbon is generated and that the total amount of silicon atoms corresponds to the usual amount contained in the simulation volume.
+This is entirely described by the system of equations \eqref{eq:md:constr_sic_01}
+\begin{equation}
+\frac{8}{a_{\text{Si}}^3}(
+\underbrace{21^3 a_{\text{Si}}^3}_{=V}
+-\frac{4}{3}\pi x^3)+
+\underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
+=21^3\cdot 8
+\label{eq:md:constr_sic_01}
+\text{ ,}
+\end{equation}
+which can be simplified to read
+\begin{equation}
+\frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
+\Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
+\label{eq:md:constr_sic_02}
+\end{equation}
+and
+\begin{equation}
+%x^3=\frac{16\pi}{5500 \cdot 3}y^3=
+%\frac{16\pi}{5500 \cdot 3}\frac{5500 \cdot 3}{32 \pi}a_{\text{Si}}^3
+%\Rightarrow
+y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
+\text{ .}
+\label{eq:md:constr_sic_03}
+\end{equation}
+By this means values of 2.973 nm and 4.309 \AA{} are obtained for the initial precipitate radius and lattice constant of 3C-SiC.
+Since the generation of atoms is a discrete process with regard to the size of the volume the expected amounts of atoms are not obtained.
+However, by applying these values the final configuration varies only slightly from the expected one by five carbon and eleven silicon atoms, as can be seen in table \ref{table:md:sic_prec}.
+\begin{table}[!ht]
+\begin{center}
+\begin{tabular}{l c c c c}
+\hline
+\hline
+ & C in 3C-SiC & Si in 3C-SiC & Si in c-Si surrounding & total amount of Si\\
+\hline
+Obtained & 5495 & 5486 & 68591 & 74077\\
+Expected & 5500 & 5500 & 68588 & 74088\\
+Difference & -5 & -14 & 3 & -11\\
+Notation & $N^{\text{3C-SiC}}_{\text{C}}$ & $N^{\text{3C-SiC}}_{\text{Si}}$ 
+         & $N^{\text{c-Si}}_{\text{Si}}$ & $N^{\text{total}}_{\text{Si}}$ \\
+\hline
+\hline
+\end{tabular}
+\caption{Comparison of the expected and obtained amounts of Si and C atoms by applying the values from equations \eqref{eq:md:constr_sic_02} and \eqref{eq:md:constr_sic_03} in the 3C-SiC precipitate construction approach.}
+\label{table:md:sic_prec}
+\end{center}
+\end{table}
+
+After the initial configuration is constructed some of the atoms located at the 3C-SiC/c-Si interface show small distances, which results in high repulsive forces acting on the atoms.
+Thus, the system is equilibrated using strong coupling to the heat bath, which is set to be $20\,^{\circ}\mathrm{C}$.
+Once the main part of the excess energy is carried out previous settings for the Berendsen thermostat are restored and the system is relaxed for another 10 ps.
+
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[width=12cm]{pc_0.ps}
+\end{center}
+\caption[Radial distribution of a 3C-SiC precipitate embeeded in c-Si at $20\,^{\circ}\mathrm{C}$.]{Radial distribution of a 3C-SiC precipitate embeeded in c-Si at $20\,^{\circ}\mathrm{C}$. The Si-Si radial distribution of plain c-Si is plotted for comparison. Green arrows mark bumps in the Si-Si distribution of the precipitate configuration, which do not exist in plain c-Si.}
+\label{fig:md:pc_sic-prec}
+\end{figure}
+Figure \ref{fig:md:pc_sic-prec} shows the radial distribution of the obtained precipitate configuration.
+The Si-Si radial distribution for both, plain c-Si and the precipitate configuration show a maximum at a distance of 0.235 nm, which is the distance of next neighboured Si atoms in c-Si.
+Although no significant change of the lattice constant of the surrounding c-Si matrix was assumed, surprisingly there is no change at all within observational accuracy.
+Looking closer at higher order Si-Si peaks might even allow the guess of a slight increase of the lattice constant compared to the plain c-Si structure.
+A new Si-Si peak arises at 0.307 nm, which is identical to the peak of the C-C distribution around that value.
+It corresponds to second next neighbours in 3C-SiC, which applies for Si as well as C pairs.
+The bumps of the Si-Si distribution at higher distances marked by the green arrows can be explained in the same manner.
+They correspond to the fourth and sixth next neighbour distance in 3C-SiC.
+It is easily identifiable how these C-C peaks, which imply Si pairs at same distances inside the precipitate, contribute to the bumps observed in the Si-Si distribution.
+The Si-Si and C-C peak at 0.307 nm enables the determination of the lattic constant of the embedded 3C-SiC precipitate.
+A lattice constant of 4.34 \AA{} compared to 4.36 \AA{} for bulk 3C-SiC is obtained.
+This is in accordance with the peak of Si-C pairs at a distance of 0.188 nm.
+Thus, the precipitate structure is slightly compressed compared to the bulk phase.
+This is a quite surprising result since due to the finite size of the c-Si surrounding a non-negligible impact of the precipitate on the materializing c-Si lattice constant especially near the precipitate could be assumed.
+However, it seems that the size of the c-Si host matrix is chosen large enough to even find the precipitate in a compressed state.
+
+The absence of a compression of the c-Si surrounding is due to the possibility of the system to change its volume.
+Otherwise the increase of the lattice constant of the precipitate of roughly 4.31 \AA{} in the beginning up to 4.34 \AA{} in the relaxed precipitate configuration could not take place without an accompanying reduction of the lattice constant of the c-Si surrounding.
+If the total volume is assumed to be the sum of the volumes that are composed of Si atoms forming the c-Si surrounding and Si atoms involved forming the precipitate the expected increase can be calculated by
+\begin{equation}
+ \frac{V}{V_0}=
+ \frac{\frac{N^{\text{c-Si}}_{\text{Si}}}{8/a_{\text{c-Si of precipitate configuration}}}+
+ \frac{N^{\text{3C-SiC}}_{\text{Si}}}{4/a_{\text{3C-SiC of precipitate configuration}}}}
+ {\frac{N^{\text{total}}_{\text{Si}}}{8/a_{\text{plain c-Si}}}}
+\end{equation}
+with the notation used in table \ref{table:md:sic_prec}.
+The lattice constant of plain c-Si at $20\,^{\circ}\mathrm{C}$ can be determined more accurately by the side lengthes of the simulation box of an equlibrated structure instead of using the radial distribution data.
+By this a value of $a_{\text{plain c-Si}}=5.439\text{ \AA}$ is obtained.
+The same lattice constant is assumed for the c-Si surrounding in the precipitate configuration $a_{\text{c-Si of precipitate configuration}}$ since peaks in the radial distribution match the ones of plain c-Si.
+Using $a_{\text{3C-SiC of precipitate configuration}}=4.34\text{ \AA}$ as observed from the radial distribution finally results in an increase of the initial volume by 0.12 \%.
+However, each side length and the total volume of the simulation box is increased by 0.20 \% and 0.61 \% respectively compared to plain c-Si at $20\,^{\circ}\mathrm{C}$.
+Since the c-Si surrounding resides in an uncompressed state the excess increase must be attributed to relaxation of strain with the strain resulting from either the compressed precipitate or the 3C-SiC/c-Si interface region.
+This also explains the possibly identified slight increase of the c-Si lattice constant in the surrounding as mentioned earlier.
+As the pressure is set to zero the free energy is minimized with respect to the volume enabled by the Berendsen barostat algorithm.
+Apparently the minimized structure with respect to the volume is a configuration of a small compressively stressed precipitate and a large amount of slightly stretched c-Si in the surrounding.
+
+In the following the 3C-SiC/c-Si interface is described in further detail.
+One important size analyzing the interface is the interfacial energy.
+It is determined exactly in the same way than the formation energy as described in equation \eqref{eq:defects:ef2}.
+Using the notation of table \ref{table:md:sic_prec} and assuming that the system is composed out of $N^{\text{3C-SiC}}_{\text{C}}$ C atoms forming the SiC compound plus the remaining Si atoms, the energy is given by
+\begin{equation}
+ E_{\text{f}}=E-
+ N^{\text{3C-SiC}}_{\text{C}} \mu_{\text{SiC}}-
+ \left(N^{\text{total}}_{\text{Si}}-N^{\text{3C-SiC}}_{\text{C}}\right)
+ \mu_{\text{Si}} \text{ ,}
+\label{eq:md:ife}
+\end{equation}
+with $E$ being the free energy of the precipitate configuration at zero temperature.
+An interfacial energy of 2267.28 eV is obtained.
+The amount of C atoms together with the observed lattice constant of the precipitate leads to a precipitate radius of 29.93 \AA.
+Thus, the interface tension, given by the energy of the interface devided by the surface area of the precipitate is $20.15\,\frac{\text{eV}}{\text{nm}^2}$ or $3.23\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$.
+This is located inside the eperimentally estimated range of $2-8\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$ \cite{taylor93}.
+
+Since the precipitate configuration is artificially constructed the resulting interface does not necessarily correspond to the energetically most favorable configuration or to the configuration that is expected for an actually grown precipitate.
+Thus annealing steps are appended to the gained structure in order to allow for a rearrangement of the atoms of the interface.
+The precipitate structure is rapidly heated up to $2050\,^{\circ}\mathrm{C}$ with a heating rate of approximately $75\,^{\circ}\mathrm{C}/\text{ps}$.
+From that point on the heating rate is reduced to $1\,^{\circ}\mathrm{C}/\text{ps}$ and heating is continued to 120 \% of the Si melting temperature, that is 2940 K.
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[width=12cm]{fe_and_t_sic.ps}
+\end{center}
+\caption{Free energy and temperature evolution of a constructed 3C-SiC precipitate embedded in c-Si at temperatures above the Si melting point.}
+\label{fig:md:fe_and_t_sic}
+\end{figure}
+Figure \ref{fig:md:fe_and_t_sic} shows the free energy and temperature evolution.
+The sudden increase of the free energy indicates possible melting occuring around 2840 K.
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[width=12cm]{pc_500-fin.ps}
+\end{center}
+\caption{Radial distribution of the constructed 3C-SiC precipitate embedded in c-Si at temperatures below and above the Si melting transition point.}
+\label{fig:md:pc_500-fin}
+\end{figure}
+Investigating the radial distribution function shown in figure \ref{fig:md:pc_500-fin}, which shows configurations below and above the temperature of the estimated transition, indeed supports the assumption of melting gained by the free energy plot.
+However the precipitate itself is not involved, as can be seen from the Si-C and C-C distribution, which essentially stays the same for both temperatures.
+Thus, it is only the c-Si surrounding undergoing a structural phase transition, which is very well reflected by the difference observed for the two Si-Si distributions.
+This is surprising since the melting transition of plain c-Si is expected at temperatures around 3125 K, as discussed in the last section.
+Obviously the precipitate lowers the transition point of the surrounding c-Si matrix.
+For the rearrangement simulations temperatures well below the transition point should be used since it is very unlikely to recrystallize the molten Si surrounding properly when cooling down.
+To play safe the precipitate configuration at 100 \% of the Si melting temperature is chosen and cooled down to $20\,^{\circ}\mathrm{C}$ with a cooling rate of $1\,^{\circ}\mathrm{C}/\text{ps}$.
+{\color{blue}Todo: Wait for results and then compare structure (PC) and interface energy, maybe a energetically more favorable configuration arises.}
+{\color{red}Todo: Mention the fact, that the precipitate is stable for eleveated temperatures, even for temperatures where the Si matrix is melting.}
+{\color{red}Todo: Si starts to melt at the interface, show pictures and explain, it is due to the defective interface region.}
+
+\section{Coherent to incoherent transition of 3C-SiC precipitates in crystalline silicon}
+
+Results of the defect ... indicate the very likely possibility of another precipitation mechanism.
+This mechanism is based on the successive formation of substitutional C sites, which might result in coherent 3C-SiC structures within the c-Si matrix assuming that Si self-interstitials might diffuse out of the affected region easily.
+Reaching a critical size these coherent precipitates release the alignement on the c-Si lattice spacing by contracting to an incoherent SiC precipitate with lower lattice constant.
+
+Precipitation -> contraction ... free 'space' might be compensated by volume changes due to the barostat ...
+
+In contrary to the last constructed precipitates 
+
+{\color{red}Todo: TEM simulations to check whether coherent SiC in c-Si would also lead to dark contrasts on an undisturbed Si lattice structure.}
+
index c7ec4e9..56a2ac2 100644 (file)
@@ -1,4 +1,4 @@
-\chapter{Molecular dynamics simulations}
+\chapter{Silicon carbide precipitation simulations}
 
 The molecular dynamics (MD) technique is used to gain insight into the behavior of carbon existing in different concentrations in crystalline silicon on the microscopic level at finite temperatures.
 Both, quantum-mechanical and classical potential molecular dynamics simulations are performed.
@@ -44,7 +44,7 @@ $V_1$ is chosen to be the total simulation volume.
 $V_2$ approximately corresponds to the volume of a minimal 3C-SiC precipitate.
 $V_3$ is approximately the volume containing the necessary amount of silicon atoms to form such a precipitate, which is slightly smaller than $V_2$ due to the slightly lower silicon density of 3C-SiC compared to c-Si.
 The two latter insertion volumes are considered since no diffusion of carbon atoms is expected within the simulated period of time at prevalent temperatures.
-{\color{red}Todo: Refere to diffusion simulations and Mattoni paper.}
+This is due to the overestimated activation energies for carbon diffusion as pointed out in section \ref{subsection:defects:mig_classical}.
 For rectangularly shaped precipitates with side length $L$ the amount of carbon atoms in 3C-SiC and silicon atoms in c-Si is given by
 \begin{equation}
  N_{\text{Carbon}}^{\text{3C-SiC}} =4 \left( \frac{L}{a_{\text{SiC}}}\right)^3
@@ -184,6 +184,7 @@ This is in accordance with the constant total energy observed in the continuatio
 Obviously no energetically favorable relaxation is taking place at a system temperature of $450\,^{\circ}\mathrm{C}$.
 
 The C-C peak at about 0.31 nm perfectly matches the nearest neighbour distance of two carbon atoms in the 3C-SiC lattice.
+{\color{red}Todo: Mention somewhere(!) that the distance is due to neighboured differently oriented C-Si \hkl<1 0 0> dumbbells!}
 As can be seen from the inset this peak is also observed for the $V_1$ simulation.
 In 3C-SiC the same distance is also expected for nearest neighbour silicon atoms.
 The bottom of figure \ref{fig:md:pc_si-si_c-c} shows the radial distribution of Si-Si bonds together with a reference graph for pure c-Si.
@@ -236,6 +237,7 @@ New methods have been developed to bypass the time scale problem like hyperdnyam
 
 In addition to the time scale limitation, problems attributed to the short range potential exist.
 The sharp cut-off funtion, which limits the interacting ions to the next neighboured atoms by gradually pushing the interaction force and energy to zero between the first and second next neighbour distance, is responsible for overestimated and unphysical high forces of next neighboured atoms \cite{tang95,mattoni2007}.
+This is supported by the overestimated activation energies necessary for C diffusion as investigated in section \ref{subsection:defects:mig_classical}.
 Indeed it is not only the strong C-C bond which is hard to break inhibiting carbon diffusion and further rearrengements.
 This is also true for the low concentration simulations dominated by the occurrence of C-Si dumbbells spread over the whole simulation volume.
 The bonds of these C-Si pairs are also affected by the cut-off artifact preventing carbon diffusion and agglomeration of the dumbbells.
@@ -379,10 +381,9 @@ With the disappearance of the peaks at the respective cut-off radii one limitati
 In addition, sharper peaks in the radial distributions lead to the assumption of expeditious structural formation.
 The increase in temperature leads to the occupation of new defect states, which is particularly evident but not limited to the low carbon concentration simulations.
 The question remains whether these states are only occupied due to the additional supply of kinetic energy and, thus, have to be considered unnatural for temperatures applied in IBS or whether the increase in temperature indeed enables infrequent transitions to occur faster, thus, leading to the intended acceleration of the dynamics and weakening of the unphysical quirks inherent to the potential.
-{\color{red}Todo: Formation energy of C sub and nearby Si self-int, to see whether this is a preferable state!}
 In the first case these occupied states would be expected to be higher in energy than the states occupied at low temperatures.
 Since substitutional C without the presence of a Si self-interstitial is energetically more favorable than the lowest defect structure obtained without removing a Si atom, that is the \hkl<1 0 0> dumbbell interstitial, and the migration of Si self-interstitials towards the sample surface can be assumed for real life experiments \cite{}, this approach is accepted as an accelerated way of approximatively describing the structural evolution.
-{\color{red}Todo: If C sub and Si self-int is energetically more favorable, the migration towards the surface can be kicked out. Otherwise we should actually care about removal of Si! In any way these findings suggest a different prec model.}
+{\color{red}Todo: C sub and Si self-int is energetically less favorable! Maybe fast migration of Si (mentioned in another Todo)? If true, we have to care about Si removal in simulations? In any way these findings suggest a different prec model.}
 
 \subsection{Valuation of a practicable temperature limit}
 \label{subsection:md:tval}
@@ -405,167 +406,7 @@ The late transition probably occurs due to the high heating rate and, thus, a la
 To avoid melting transitions in further simulations system temperatures well below the transition point are considered safe.
 Thus, in the following system temperatures of 100 \% and 120 \% of the silicon melting point are used.
 
-\subsection{Constructed 3C-SiC precipitate in crystalline silicon}
-
-Before proceeding with simulations at temperatrures around the silicon melting point a spherical 3C-SiC precipitate enclosed in a c-Si surrounding is constructed as it is expected from IBS experiments and from simulations that finally succeed in simulating the precipitation event.
-On the one hand this sheds light on characteristic values like the radial distribution function or the total amount of free energy for such a configuration that is aimed to be reproduced by simulation.
-On the other hand, assuming a correct alignment of the precipitate with the c-Si matrix, properties of such precipitates and the surrounding as well as the interface can be investiagted.
-Furthermore these investigations might establish the prediction of conditions necessary for the simulation of the precipitation process.
-
-To construct a spherical and topotactically aligned 3C-SiC precipitate in c-Si, the approach illustrated in the following is applied.
-A total simulation volume $V$ consisting of 21 unit cells of c-Si in each direction is created.
-To obtain a minimal and stable precipitate 5500 carbon atoms are considered necessary.
-This corresponds to a spherical 3C-SiC precipitate with a radius of approximately 3 nm.
-The initial precipitate configuration is constructed in two steps.
-In the first step the surrounding silicon matrix is created.
-This is realized by just skipping the generation of silicon atoms inside a sphere of radius $x$, which is the first unknown variable.
-The silicon lattice constant $a_{\text{Si}}$ of the surrounding c-Si matrix is assumed to not alter dramatically and, thus, is used for the initial lattice creation.
-In a second step 3C-SiC is created inside the empty sphere of radius $x$.
-The lattice constant $y$, the second unknown variable, is chosen in such a way, that the necessary amount of carbon is generated.
-This is entirely described by the system of equations \eqref{eq:md:constr_sic_01}
-\begin{equation}
-\frac{8}{a_{\text{Si}}^3}(
-\underbrace{21^3 a_{\text{Si}}^3}_{=V}
--\frac{4}{3}\pi x^3)+
-\underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
-=21^3\cdot 8
-\label{eq:md:constr_sic_01}
-\text{ ,}
-\end{equation}
-which can be simplified to read
-\begin{equation}
-\frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
-\Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
-\label{eq:md:constr_sic_02}
-\end{equation}
-and
-\begin{equation}
-%x^3=\frac{16\pi}{5500 \cdot 3}y^3=
-%\frac{16\pi}{5500 \cdot 3}\frac{5500 \cdot 3}{32 \pi}a_{\text{Si}}^3
-%\Rightarrow
-y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
-\text{ .}
-\label{eq:md:constr_sic_03}
-\end{equation}
-By this means values of 2.973 nm and 4.309 \AA{} are obtained for the initial precipitate radius and lattice constant of 3C-SiC.
-Since the generation of atoms is a discrete process with regard to the size of the volume the expected amounts of atoms are not obtained.
-However, by applying these values the final configuration varies only slightly from the expected one by five carbon and eleven silicon atoms, as can be seen in table \ref{table:md:sic_prec}.
-\begin{table}[!ht]
-\begin{center}
-\begin{tabular}{l c c c c}
-\hline
-\hline
- & C in 3C-SiC & Si in 3C-SiC & Si in c-Si surrounding & total amount of Si\\
-\hline
-Obtained & 5495 & 5486 & 68591 & 74077\\
-Expected & 5500 & 5500 & 68588 & 74088\\
-Difference & -5 & -14 & 3 & -11\\
-Notation & $N^{\text{3C-SiC}}_{\text{C}}$ & $N^{\text{3C-SiC}}_{\text{Si}}$ 
-         & $N^{\text{c-Si}}_{\text{Si}}$ & $N^{\text{total}}_{\text{Si}}$ \\
-\hline
-\hline
-\end{tabular}
-\caption{Comparison of the expected and obtained amounts of Si and C atoms by applying the values from equations \eqref{eq:md:constr_sic_02} and \eqref{eq:md:constr_sic_03} in the 3C-SiC precipitate construction approach.}
-\label{table:md:sic_prec}
-\end{center}
-\end{table}
-
-After the initial configuration is constructed some of the atoms located at the 3C-SiC/c-Si interface show small distances, which results in high repulsive forces acting on the atoms.
-Thus, the system is equilibrated using strong coupling to the heat bath, which is set to be $20\,^{\circ}\mathrm{C}$.
-Once the main part of the excess energy is carried out previous settings for the Berendsen thermostat are restored and the system is relaxed for another 10 ps.
-
-\begin{figure}[!ht]
-\begin{center}
-\includegraphics[width=12cm]{pc_0.ps}
-\end{center}
-\caption[Radial distribution of a 3C-SiC precipitate embeeded in c-Si at $20\,^{\circ}\mathrm{C}$.]{Radial distribution of a 3C-SiC precipitate embeeded in c-Si at $20\,^{\circ}\mathrm{C}$. The Si-Si radial distribution of plain c-Si is plotted for comparison. Green arrows mark bumps in the Si-Si distribution of the precipitate configuration, which do not exist in plain c-Si.}
-\label{fig:md:pc_sic-prec}
-\end{figure}
-Figure \ref{fig:md:pc_sic-prec} shows the radial distribution of the obtained precipitate configuration.
-The Si-Si radial distribution for both, plain c-Si and the precipitate configuration show a maximum at a distance of 0.235 nm, which is the distance of next neighboured Si atoms in c-Si.
-Although no significant change of the lattice constant of the surrounding c-Si matrix was assumed, surprisingly there is no change at all within observational accuracy.
-Looking closer at higher order Si-Si peaks might even allow the guess of a slight increase of the lattice constant compared to the plain c-Si structure.
-A new Si-Si peak arises at 0.307 nm, which is identical to the peak of the C-C distribution around that value.
-It corresponds to second next neighbours in 3C-SiC, which applies for Si as well as C pairs.
-The bumps of the Si-Si distribution at higher distances marked by the green arrows can be explained in the same manner.
-They correspond to the fourth and sixth next neighbour distance in 3C-SiC.
-It is easily identifiable how these C-C peaks, which imply Si pairs at same distances inside the precipitate, contribute to the bumps observed in the Si-Si distribution.
-The Si-Si and C-C peak at 0.307 nm enables the determination of the lattic constant of the embedded 3C-SiC precipitate.
-A lattice constant of 4.34 \AA{} compared to 4.36 \AA{} for bulk 3C-SiC is obtained.
-This is in accordance with the peak of Si-C pairs at a distance of 0.188 nm.
-Thus, the precipitate structure is slightly compressed compared to the bulk phase.
-This is a quite surprising result since due to the finite size of the c-Si surrounding a non-negligible impact of the precipitate on the materializing c-Si lattice constant especially near the precipitate could be assumed.
-However, it seems that the size of the c-Si host matrix is chosen large enough to even find the precipitate in a compressed state.
-
-The absence of a compression of the c-Si surrounding is due to the possibility of the system to change its volume.
-Otherwise the increase of the lattice constant of the precipitate of roughly 4.31 \AA{} in the beginning up to 4.34 \AA{} in the relaxed precipitate configuration could not take place without an accompanying reduction of the lattice constant of the c-Si surrounding.
-If the total volume is assumed to be the sum of the volumes that are composed of Si atoms forming the c-Si surrounding and Si atoms involved forming the precipitate the expected increase can be calculated by
-\begin{equation}
- \frac{V}{V_0}=
- \frac{\frac{N^{\text{c-Si}}_{\text{Si}}}{8/a_{\text{c-Si of precipitate configuration}}}+
- \frac{N^{\text{3C-SiC}}_{\text{Si}}}{4/a_{\text{3C-SiC of precipitate configuration}}}}
- {\frac{N^{\text{total}}_{\text{Si}}}{8/a_{\text{plain c-Si}}}}
-\end{equation}
-with the notation used in table \ref{table:md:sic_prec}.
-The lattice constant of plain c-Si at $20\,^{\circ}\mathrm{C}$ can be determined more accurately by the side lengthes of the simulation box of an equlibrated structure instead of using the radial distribution data.
-By this a value of $a_{\text{plain c-Si}}=5.439\text{ \AA}$ is obtained.
-The same lattice constant is assumed for the c-Si surrounding in the precipitate configuration $a_{\text{c-Si of precipitate configuration}}$ since peaks in the radial distribution match the ones of plain c-Si.
-Using $a_{\text{3C-SiC of precipitate configuration}}=4.34\text{ \AA}$ as observed from the radial distribution finally results in an increase of the initial volume by 0.12 \%.
-However, each side length and the total volume of the simulation box is increased by 0.20 \% and 0.61 \% respectively compared to plain c-Si at $20\,^{\circ}\mathrm{C}$.
-Since the c-Si surrounding resides in an uncompressed state the excess increase must be attributed to relaxation of strain with the strain resulting from either the compressed precipitate or the 3C-SiC/c-Si interface region.
-This also explains the possibly identified slight increase of the c-Si lattice constant in the surrounding as mentioned earlier.
-As the pressure is set to zero the free energy is minimized with respect to the volume enabled by the Berendsen barostat algorithm.
-Apparently the minimized structure with respect to the volume is a configuration of a small compressively stressed precipitate and a large amount of slightly stretched c-Si in the surrounding.
-
-In the following the 3C-SiC/c-Si interface is described in further detail.
-One important size analyzing the interface is the interfacial energy.
-It is determined exactly in the same way than the formation energy as described in equation \eqref{eq:defects:ef2}.
-Using the notation of table \ref{table:md:sic_prec} and assuming that the system is composed out of $N^{\text{3C-SiC}}_{\text{C}}$ C atoms forming the SiC compound plus the remaining Si atoms, the energy is given by
-\begin{equation}
- E_{\text{f}}=E-
- N^{\text{3C-SiC}}_{\text{C}} \mu_{\text{SiC}}-
- \left(N^{\text{total}}_{\text{Si}}-N^{\text{3C-SiC}}_{\text{C}}\right)
- \mu_{\text{Si}} \text{ ,}
-\label{eq:md:ife}
-\end{equation}
-with $E$ being the free energy of the precipitate configuration at zero temperature.
-An interfacial energy of 2267.28 eV is obtained.
-The amount of C atoms together with the observed lattice constant of the precipitate leads to a precipitate radius of 29.93 \AA.
-Thus, the interface tension, given by the energy of the interface devided by the surface area of the precipitate is $20.15\,\frac{\text{eV}}{\text{nm}^2}$ or $3.23\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$.
-This is located inside the eperimentally estimated range of $2-8\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$ \cite{taylor93}.
-
-Since the precipitate configuration is artificially constructed the resulting interface does not necessarily correspond to the energetically most favorable configuration or to the configuration that is expected for an actually grown precipitate.
-Thus annealing steps are appended to the gained structure in order to allow for a rearrangement of the atoms of the interface.
-The precipitate structure is rapidly heated up to $2050\,^{\circ}\mathrm{C}$ with a heating rate of approximately $75\,^{\circ}\mathrm{C}/\text{ps}$.
-From that point on the heating rate is reduced to $1\,^{\circ}\mathrm{C}/\text{ps}$ and heating is continued to 120 \% of the Si melting temperature, that is 2940 K.
-\begin{figure}[!ht]
-\begin{center}
-\includegraphics[width=12cm]{fe_and_t_sic.ps}
-\end{center}
-\caption{Free energy and temperature evolution of a constructed 3C-SiC precipitate embedded in c-Si at temperatures above the Si melting point.}
-\label{fig:md:fe_and_t_sic}
-\end{figure}
-Figure \ref{fig:md:fe_and_t_sic} shows the free energy and temperature evolution.
-The sudden increase of the free energy indicates possible melting occuring around 2840 K.
-\begin{figure}[!ht]
-\begin{center}
-\includegraphics[width=12cm]{pc_500-fin.ps}
-\end{center}
-\caption{Radial distribution of the constructed 3C-SiC precipitate embedded in c-Si at temperatures below and above the Si melting transition point.}
-\label{fig:md:pc_500-fin}
-\end{figure}
-Investigating the radial distribution function shown in figure \ref{fig:md:pc_500-fin}, which shows configurations below and above the temperature of the estimated transition, indeed supports the assumption of melting gained by the free energy plot.
-However the precipitate itself is not involved, as can be seen from the Si-C and C-C distribution, which essentially stays the same for both temperatures.
-Thus, it is only the c-Si surrounding undergoing a structural phase transition, which is very well reflected by the difference observed for the two Si-Si distributions.
-This is surprising since the melting transition of plain c-Si is expected at temperatures around 3125 K, as discussed in the last section.
-Obviously the precipitate lowers the transition point of the surrounding c-Si matrix.
-For the rearrangement simulations temperatures well below the transition point should be used since it is very unlikely to recrystallize the molten Si surrounding properly when cooling down.
-To play safe the precipitate configuration at 100 \% of the Si melting temperature is chosen and cooled down to $20\,^{\circ}\mathrm{C}$ with a cooling rate of $1\,^{\circ}\mathrm{C}/\text{ps}$.
-{\color{blue}Todo: Wait for results and then compare structure (PC) and interface energy, maybe a energetically more favorable configuration arises.}
-{\color{red}Todo: Mention the fact, that the precipitate is stable for eleveated temperatures, even for temperatures where the Si matrix is melting.}
-{\color{red}Todo: Si starts to melt at the interface, show pictures and explain, it is due to the defective interface region.}
-
-\subsection{Simulations at temperatures around the silicon melting point}
+\subsection{Long time scale simulations at maximum temperature}
 
 As discussed in section \ref{subsection:md:limit} and \ref{subsection:md:inct} a further increase of the system temperature might help to overcome limitations of the short range potential and accelerate the dynamics involved in structural evolution.
 A maximum temperature to avoid melting was determined in section \ref{subsection:md:tval}, which is 120 \% of the Si melting point.
index a101004..f95709d 100644 (file)
@@ -1,5 +1,6 @@
 \pdfoutput=0
-\documentclass[twoside,a4paper,11pt]{book}
+%\documentclass[twoside,a4paper,11pt]{book}
+\documentclass[twoside,a4paper,11pt,draft]{book}
 \usepackage[activate]{pdfcprot}
 \usepackage{verbatim}
 \usepackage{a4}
@@ -85,6 +86,7 @@
 \include{simulation}
 \include{defects}
 \include{md}
+\include{const_sic}
 %\include{results}
 \include{summary_outlook}