alpha version
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 15 May 2008 08:06:24 +0000 (10:06 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 15 May 2008 08:06:24 +0000 (10:06 +0200)
posic/poster/emrs2008.tex

index 22e457b..aabf263 100644 (file)
  \end{minipage}\\[1cm]
 }
 \begin{minipage}{17cm}
-\underline{$<100>$ dumbbell configuration}
+\underline{\flq100\frq{} dumbbell configuration}
 \begin{itemize}
   \item $E_f=0.47$ eV
   \item Very often observed
     \item Initial configuration: $31\times31\times31$ unit cells Si
     \item Periodic boundary conditions
     \item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$
-    \item Equilibration of $E_{kin}$ and $E_{pot}$ for 600 fs
+    \item Equilibration of $E_{kin}$ and $E_{pot}$
    \end{itemize}
   }}}}
   \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
   \ncline[linewidth=0.05]{-}{in3}{in-3}
  \end{pspicture}
 }
-
-    {\bf Results and interpretation:}\\
+    {\bf Results:}\\
     Si-C and C-C pair correlation function:\\
-    \includegraphics[width=24cm]{pc_si-c_c-c.eps}
+    \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-c_c-c.eps}
     \begin{center}
     {\tiny
      {\bf Dashed vertical lines:} Further calculated C-Si distances 
-     in the $<100>$ C-Si dumbbell interstitial configuration}\\[0.5cm]
+     in the \flq100\frq{} C-Si dumbbell interstitial configuration}\\[0.5cm]
     \end{center}
     Si-Si pair correlation function:\\
-    \includegraphics[width=24cm]{pc_si-si.eps}\\
+    \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-si.eps}\\
+    {\bf Interpretation:}
     {\small
     \begin{itemize}
       \item C-C peak at 0.15 nm similar to next neighbour distance of graphite
                          (almost only for high C concentrations)
       \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\
             (due to concatenated, differently oriented
-            $<100>$ dumbbell interstitials)
+            \flq100\frq{} dumbbell interstitials)
       \item Si-Si shows non-zero g(r) values around 0.31 nm
-            and decrease at regular distances\\
+            and decrease at regular distances\\
             (no clear peak,
             interval of enhanced g(r) corresponds to C-C peak width)
       \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC
-      \item Low C concentration (i.e. $V_1$): The $<100>$ dumbbell configuration
+      \item Low C concentration (i.e. $V_1$):
+            The \flq100\frq{} dumbbell configuration
             \begin{itemize}
               \item is identified to stretch the Si-Si next neighbour distance
                    to 0.3 nm
              \item is identified to contribute to the Si-C peak at 0.19 nm
              \item explains further C-Si peaks (dashed vertical lines)
            \end{itemize}
+            $\Rightarrow$ C atoms are first elements arranged at distances
+                         expected for 3C-SiC\\
+            $\Rightarrow$ C atoms pull the Si atoms into the right
+                         configuration at a later stage
       \item High C concentration (i.e. $V_2$ and $V_3$):
             \begin{itemize}
              \item High amount of damage introduced into the system
              \item Short range order observed but almost no long range order
            \end{itemize}
+           $\Rightarrow$ Start of amorphous SiC-like phase formation\\
+           $\Rightarrow$ Higher temperatures required for proper SiC formation
     \end{itemize}
     }
 
   \end{pbox}
+  %\vspace{-0.5cm}
   \begin{pbox}
-    \section*{Conclusions}
+    \section*{Conclusion}
     \begin{itemize}
-      \item there should be
-      \item 3 conclusions
-      \item at least!
+      \item \flq100\frq{} C-Si dumbbell interstitial configuration is observed
+            to be the energetically most favorable configuration
+      \item For low C concentrations C atoms introduced as differently
+            oriented C-Si dumbbells in c-Si are properly arranged
+           for 3C-SiC formation
+      \item For high C concentrations an amorphous SiC-like phase is observed
+            which suggests higher temperature simulation runs for proper
+           3C-SiC formation
     \end{itemize}
   \end{pbox}