added helsinki 2008 tex file
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Sun, 17 Aug 2008 13:51:10 +0000 (15:51 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Sun, 17 Aug 2008 13:51:10 +0000 (15:51 +0200)
posic/talks/helsinki_2008.tex [new file with mode: 0644]

diff --git a/posic/talks/helsinki_2008.tex b/posic/talks/helsinki_2008.tex
new file mode 100644 (file)
index 0000000..5a5ceda
--- /dev/null
@@ -0,0 +1,546 @@
+\pdfoutput=0
+\documentclass[landscape,semhelv]{seminar}
+
+\usepackage{verbatim}
+\usepackage[german]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath}
+\usepackage{latexsym}
+\usepackage{ae}
+
+\usepackage{calc}               % Simple computations with LaTeX variables
+\usepackage{caption}            % Improved captions
+\usepackage{fancybox}           % To have several backgrounds
+
+\usepackage{fancyhdr}           % Headers and footers definitions
+\usepackage{fancyvrb}           % Fancy verbatim environments
+\usepackage{pstricks}           % PSTricks with the standard color package
+
+\usepackage{pstricks}
+\usepackage{pst-node}
+
+%\usepackage{epic}
+%\usepackage{eepic}
+
+\usepackage{graphicx}
+\graphicspath{{../img/}}
+
+\usepackage[setpagesize=false]{hyperref}
+
+\usepackage{semcolor}
+\usepackage{semlayer}           % Seminar overlays
+\usepackage{slidesec}           % Seminar sections and list of slides
+
+\input{seminar.bug}             % Official bugs corrections
+\input{seminar.bg2}             % Unofficial bugs corrections
+
+\articlemag{1}
+
+\special{landscape}
+
+\begin{document}
+
+\extraslideheight{10in}
+\slideframe{none}
+
+\pagestyle{empty}
+
+% specify width and height
+\slidewidth 27.7cm 
+\slideheight 19.1cm 
+
+% shift it into visual area properly
+\def\slideleftmargin{3.3cm}
+\def\slidetopmargin{0.6cm}
+
+\newcommand{\ham}{\mathcal{H}}
+\newcommand{\pot}{\mathcal{V}}
+\newcommand{\foo}{\mathcal{U}}
+\newcommand{\vir}{\mathcal{W}}
+
+% itemize level ii
+\renewcommand\labelitemii{{\color{gray}$\bullet$}}
+
+% colors
+\newrgbcolor{si-yellow}{.6 .6 0}
+\newrgbcolor{hb}{0.75 0.77 0.89}
+\newrgbcolor{lbb}{0.75 0.8 0.88}
+\newrgbcolor{lachs}{1.0 .93 .81}
+
+% topic
+
+\begin{slide}
+\begin{center}
+
+ \vspace{16pt}
+
+ {\LARGE\bf
+  Molecular dynamics simulation study\\
+  of the silicon carbide precipitation process
+ }
+
+ \vspace{24pt}
+
+ \textsc{\small \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$,
+         K. Nordlund$^2$, B. Stritzker$^1$}\\
+
+ \vspace{32pt}
+
+ \begin{minipage}{2.0cm}
+  \begin{center}
+  \includegraphics[height=1.6cm]{uni-logo.eps}
+  \end{center}
+ \end{minipage}
+ \begin{minipage}{8.0cm}
+  \begin{center}
+   {\footnotesize
+    $^1$ Experimentalphysik IV, Institut f"ur Physik,\\
+         Universit"at Augsburg, Universit"atsstr. 1,\\
+         D-86135 Augsburg, Germany
+   }
+  \end{center}
+ \end{minipage}
+ \begin{minipage}{2.3cm}
+  \begin{center}
+  \includegraphics[height=1.5cm]{Lehrstuhl-Logo.eps}
+  \end{center}
+ \end{minipage}
+
+ \vspace{16pt}
+
+ \begin{minipage}{4.0cm}
+  \begin{center}
+  \includegraphics[height=1.6cm]{logo_eng.eps}
+  \end{center}
+ \end{minipage}
+ \begin{minipage}{8.0cm}
+  \begin{center}
+  {\footnotesize
+   $^2$ Accelerator Laboratory, Department of Physical Sciences,\\
+   University of Helsinki, Pietari Kalmink. 2,\\
+   00014 Helsinki, Finland
+  }
+  \end{center}
+ \end{minipage}
+\end{center}
+\end{slide}
+
+% contents
+
+% no contents for such a short talk!
+
+% start of contents
+
+\begin{slide}
+
+ {\large\bf
+  Motivation
+ }
+
+ \vspace{16pt}
+
+ Reasons for understanding the SiC precipitation process:
+
+ \vspace{16pt}
+
+ \begin{itemize}
+  \item 3C-SiC is a promising wide band gap material for high-temperature,
+        high-power, high-frequency semiconductor devices [1]
+  \item 3C-SiC epitaxial thin film formation on Si requires detailed
+        knowledge of SiC nucleation
+  \item Fabrication of high carbon doped, strained pseudomorphic
+        $\text{Si}_{1-y}\text{C}_y$ layers requires suppression of
+        3C-SiC nucleation [2]
+ \end{itemize}
+
+ \vspace{16pt}
+
+ {\tiny
+  [1] J. H. Edgar, J. Mater. Res. 7 (1992) 235.}\\
+ {\tiny
+  [2] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux,
+      J. K. Watanabe, J. W. Mayer, J. Appl. Phys. 79 (1996) 637.}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Crystalline silicon and cubic silicon carbide
+ }
+
+ {\bf Lattice types and unit cells:}
+ \begin{itemize}
+   \item Crystalline silicon (c-Si) has diamond structure\\
+         $\Rightarrow {\color{si-yellow}\bullet}$ and
+         ${\color{gray}\bullet}$ are Si atoms
+   \item Cubic silicon carbide (3C-SiC) has zincblende structure\\
+         $\Rightarrow {\color{si-yellow}\bullet}$ are Si atoms,
+         ${\color{gray}\bullet}$ are C atoms
+ \end{itemize}
+ \begin{minipage}{8cm}
+ {\bf Lattice constants:}
+ \[
+ 4a_{\text{c-Si}}\approx5a_{\text{3C-SiC}}
+ \]
+ {\bf Silicon density:}
+ \[
+ \frac{n_{\text{3C-SiC}}}{n_{\text{c-Si}}}=97,66\,\%
+ \]
+ \end{minipage}
+ \begin{minipage}{5cm}
+   \includegraphics[width=5cm]{sic_unit_cell.eps}         
+ \end{minipage}
+
+\end{slide}
+
+ \small
+\begin{slide}
+
+ {\large\bf
+  Motivation / Introduction
+ }
+
+ \small
+ \vspace{6pt}
+
+ Supposed conversion mechanism of heavily carbon doped Si into SiC:
+
+ \vspace{8pt}
+
+ \begin{minipage}{3.8cm}
+ \includegraphics[width=3.7cm]{sic_prec_seq_01.eps}
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \includegraphics[width=3.7cm]{sic_prec_seq_02.eps}
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \includegraphics[width=3.7cm]{sic_prec_seq_03.eps}
+ \end{minipage}
+
+ \vspace{8pt}
+
+ \begin{minipage}{3.8cm}
+ Formation of C-Si dumbbells on regular c-Si lattice sites
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ Agglomeration into large clusters (embryos)\\
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ Precipitation of 3C-SiC + Creation of interstitials\\
+ \end{minipage}
+
+ \vspace{12pt}
+
+ Experimentally observed:
+ \begin{itemize}
+  \item Minimal diameter of precipitation: 4 - 5 nm
+  \item Equal orientation of Si and SiC (hkl)-planes
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Simulation details
+ }
+
+ \vspace{12pt}
+
+ MD basics:
+ \begin{itemize}
+  \item Microscopic description of N particle system
+  \item Analytical interaction potential
+  \item Hamilton's equations of motion as propagation rule\\
+        in 6N-dimensional phase space
+  \item Observables obtained by time average
+ \end{itemize}
+
+ \vspace{12pt}
+
+ Application details:
+ \begin{itemize}
+  \item Integrator: Velocity Verlet, timestep: $1\, fs$
+  \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$
+  \item Potential: Tersoff-like bond order potential\\
+        \[
+       E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
+       \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
+       \]
+       \begin{center}
+        {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211}
+       \end{center}
+ \end{itemize}
+
+ \begin{picture}(0,0)(-240,-70)
+  \includegraphics[width=5cm]{tersoff_angle.eps} 
+ \end{picture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Simulation details
+ }
+
+ \vspace{8pt}
+
+ Interstitial simulations:
+
+ \vspace{8pt}
+
+ \begin{pspicture}(0,0)(7,8)
+  \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+   \parbox{7cm}{
+   \begin{itemize}
+    \item Initial configuration: $9\times9\times9$ unit cells Si
+    \item Periodic boundary conditions
+    \item $T=0 \, K$
+   \end{itemize}
+  }}}}
+\rput(3.5,3.5){\rnode{insert}{\psframebox{
+ \parbox{7cm}{
+  Insertion of C / Si atom:
+  \begin{itemize}
+   \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
+   \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
+   \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
+         $\rightarrow$ {\color{magenta}110 dumbbell}
+   \item random positions (critical distance check)
+  \end{itemize}
+  }}}}
+  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+   \parbox{3.5cm}{
+   Relaxation time: $2\, ps$
+  }}}}
+  \ncline[]{->}{init}{insert}
+  \ncline[]{->}{insert}{cool}
+ \end{pspicture}
+
+ \begin{picture}(0,0)(-210,-45)
+  \includegraphics[width=6cm]{unit_cell.eps}
+ \end{picture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Results
+ } - Si self-interstitial runs
+
+ \small
+
+ \begin{minipage}[t]{4.3cm}
+ \underline{Tetrahedral}\\
+ $E_f=3.41\, eV$\\
+ \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.3cm}
+ \underline{110 dumbbell}\\
+ $E_f=4.39\, eV$\\
+ \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.3cm}
+ \underline{Hexagonal} \hspace{4pt}
+ \href{../video/si_self_int_hexa.avi}{$\rhd$}\\
+ $E_f^{\star}\approx4.48\, eV$ (unstable!)\\
+ \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
+ \end{minipage}
+
+ \underline{Random insertion}
+
+ \begin{minipage}{4.3cm}
+ $E_f=3.97\, eV$\\
+ \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps}
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+ $E_f=3.75\, eV$\\
+ \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps}
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+ $E_f=3.56\, eV$\\
+ \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Results
+ } - Carbon interstitial runs
+
+ \small
+
+ \begin{minipage}[t]{4.3cm}
+ \underline{Tetrahedral}\\
+ $E_f=2.67\, eV$\\
+ \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.3cm}
+ \underline{110 dumbbell}\\
+ $E_f=1.76\, eV$\\
+ \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.3cm}
+ \underline{Hexagonal} \hspace{4pt}
+ \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
+ $E_f^{\star}\approx5.6\, eV$ (unstable!)\\
+ \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
+ \end{minipage}
+
+ \underline{Random insertion}
+
+ \footnotesize
+
+\begin{minipage}[t]{3.3cm}
+   $E_f=0.47\, eV$\\
+   \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps}
+   \begin{picture}(0,0)(-15,-3)
+    001 dumbbell
+   \end{picture}
+\end{minipage}
+\begin{minipage}[t]{3.3cm}
+   $E_f=1.62\, eV$\\
+   \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps}
+\end{minipage}
+\begin{minipage}[t]{3.3cm}
+   $E_f=2.39\, eV$\\
+   \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps}
+\end{minipage}
+\begin{minipage}[t]{3.0cm}
+   $E_f=3.41\, eV$\\
+   \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Simulation details
+ }
+
+ \small
+
+ \vspace{8pt}
+
+ SiC precipitation simulations:
+
+ \vspace{8pt}
+
+ \begin{pspicture}(0,0)(12,8)
+  % nodes
+  \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+   \parbox{7cm}{
+   \begin{itemize}
+    \item Initial configuration: $31\times31\times31$ unit cells Si
+    \item Periodic boundary conditions
+    \item $T=450\, ^{\circ}C$
+    \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
+   \end{itemize}
+  }}}}
+  \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
+   \parbox{7cm}{
+   Insertion of $6000$ carbon atoms at constant\\
+   temperature into:
+   \begin{itemize}
+    \item Total simulation volume {\pnode{in1}}
+    \item Volume of minimal SiC precipitation {\pnode{in2}}
+    \item Volume of necessary amount of Si {\pnode{in3}}
+   \end{itemize} 
+  }}}}
+  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+   \parbox{3.5cm}{
+   Cooling down to $20\, ^{\circ}C$
+  }}}}
+  \ncline[]{->}{init}{insert}
+  \ncline[]{->}{insert}{cool}
+  \psframe[fillstyle=solid,fillcolor=white](7.5,1.8)(13.5,7.8)
+  \psframe[fillstyle=solid,fillcolor=lightgray](9,3.3)(12,6.3)
+  \psframe[fillstyle=solid,fillcolor=gray](9.25,3.55)(11.75,6.05)
+  \rput(7.9,4.8){\pnode{ins1}}
+  \rput(9.22,4.4){\pnode{ins2}}
+  \rput(10.5,4.8){\pnode{ins3}}
+  \ncline[]{->}{in1}{ins1}
+  \ncline[]{->}{in2}{ins2}
+  \ncline[]{->}{in3}{ins3}
+ \end{pspicture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Very first results of the SiC precipitation runs
+ }
+
+ \footnotesize
+
+ \begin{minipage}[b]{6.9cm}
+  \includegraphics[width=6.3cm]{../plot/sic_prec_energy.ps}
+  \includegraphics[width=6.3cm]{../plot/sic_prec_temp.ps}
+ \end{minipage}
+ \begin{minipage}[b]{5.5cm}
+  \begin{itemize}
+   \item {\color{red} Total simulation volume}
+   \item {\color{green} Volume of minimal SiC precipitation}
+   \item {\color{blue} Volume of necessary amount of Si}
+  \end{itemize}
+  \vspace{40pt}
+  \includegraphics[width=6.3cm]{../plot/foo150.ps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Very first results of the SiC precipitation runs
+ }
+
+ \begin{minipage}[t]{6.9cm}
+  \includegraphics[width=6.3cm]{../plot/sic_pc.ps}
+  \includegraphics[width=6.3cm]{../plot/foo_end.ps}
+  \hspace{12pt}
+ \end{minipage}
+ \begin{minipage}[c]{5.5cm}
+  \includegraphics[width=6.0cm]{sic_si-c-n.eps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Summary / Outlook
+ }
+
+\vspace{24pt}
+
+\begin{itemize}
+ \item Importance of understanding the SiC precipitation mechanism
+ \item Interstitial configurations in silicon using the Albe potential
+ \item Indication of SiC precipitation
+\end{itemize}
+
+\vspace{24pt}
+
+\begin{itemize}
+ \item Displacement and stress calculations
+ \item Refinement of simulation sequence to create 3C-SiC
+ \item Analyzing self-designed Si/SiC interface
+\end{itemize}
+
+\end{slide}
+
+\end{document}
+