Merge branch 'master' of hackdaworld.org:/chroot/git/lectures/latex
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Fri, 29 Aug 2008 11:37:02 +0000 (13:37 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Fri, 29 Aug 2008 11:37:02 +0000 (13:37 +0200)
posic/talks/helsinki_2008.tex

index 5a5ceda..35aeade 100644 (file)
   Crystalline silicon and cubic silicon carbide
  }
 
+ \vspace{8pt}
+
  {\bf Lattice types and unit cells:}
  \begin{itemize}
    \item Crystalline silicon (c-Si) has diamond structure\\
          $\Rightarrow {\color{si-yellow}\bullet}$ are Si atoms,
          ${\color{gray}\bullet}$ are C atoms
  \end{itemize}
+ \vspace{8pt}
  \begin{minipage}{8cm}
  {\bf Lattice constants:}
  \[
 \begin{slide}
 
  {\large\bf
-  Motivation / Introduction
+  Supposed Si to 3C-SiC conversion
  }
 
  \small
 
  \vspace{12pt}
 
- Experimentally observed:
+ \begin{minipage}{7cm}
+ Experimentally observed [3]:
  \begin{itemize}
   \item Minimal diameter of precipitation: 4 - 5 nm
   \item Equal orientation of Si and SiC (hkl)-planes
  \end{itemize}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \vspace{32pt}
+ \hspace{16pt}
+  {\tiny [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27.}
+ \end{minipage}
 
 \end{slide}
 
   Simulation details
  }
 
- \vspace{12pt}
+ \small
 
- MD basics:
+ {\bf MD basics:}
  \begin{itemize}
   \item Microscopic description of N particle system
   \item Analytical interaction potential
   \item Hamilton's equations of motion as propagation rule\\
         in 6N-dimensional phase space
-  \item Observables obtained by time average
+  \item Observables obtained by time or ensemble averages
  \end{itemize}
-
- \vspace{12pt}
-
- Application details:
+ {\bf Application details:}
  \begin{itemize}
-  \item Integrator: Velocity Verlet, timestep: $1\, fs$
-  \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$
-  \item Potential: Tersoff-like bond order potential\\
+  \item Integrator: Velocity Verlet, timestep: $1\text{ fs}$
+  \item Ensemble: isothermal-isobaric NPT [4]
+        \begin{itemize}
+        \item Berendsen thermostat:
+              $\tau_{\text{T}}=100\text{ fs}$
+        \item Brendsen barostat:\\
+              $\tau_{\text{P}}=100\text{ fs}$,
+              $\beta^{-1}=100\text{ GPa}$
+       \end{itemize}
+  \item Potential: Tersoff-like bond order potential [5]
         \[
        E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
        \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
        \]
-       \begin{center}
-        {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211}
-       \end{center}
  \end{itemize}
+ {\tiny
+  [4] L. Verlet, Phys. Rev. 159 (1967) 98.}\\
+ {\tiny
+  [5] P. Erhart and K. Albe, Phys. Rev. B 71 (2005) 35211.}
 
  \begin{picture}(0,0)(-240,-70)
   \includegraphics[width=5cm]{tersoff_angle.eps} 
 \begin{slide}
 
  {\large\bf
-  Simulation details
+  Simulation sequence
  }
 
  \vspace{8pt}
 
- Interstitial simulations:
+ Interstitial configurations:
 
  \vspace{8pt}
 
  \begin{pspicture}(0,0)(7,8)
-  \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+  \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
    \parbox{7cm}{
    \begin{itemize}
     \item Initial configuration: $9\times9\times9$ unit cells Si
     \item Periodic boundary conditions
-    \item $T=0 \, K$
+    \item $T=0\text{ K}$, $p=0\text{ bar}$
    \end{itemize}
   }}}}
 \rput(3.5,3.5){\rnode{insert}{\psframebox{
   Insertion of C / Si atom:
   \begin{itemize}
    \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
+         (${\color{red}\triangleleft}$)
    \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
+         (${\color{green}\triangleright}$)
    \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
          $\rightarrow$ {\color{magenta}110 dumbbell}
+        (${\color{magenta}\Box}$,$\circ$)
    \item random positions (critical distance check)
   \end{itemize}
   }}}}
-  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
    \parbox{3.5cm}{
    Relaxation time: $2\, ps$
   }}}}
  \end{pspicture}
 
  \begin{picture}(0,0)(-210,-45)
-  \includegraphics[width=6cm]{unit_cell.eps}
+  \includegraphics[width=6cm]{unit_cell_s.eps}
  \end{picture}
 
 \end{slide}
 
  \begin{minipage}[t]{4.3cm}
  \underline{Tetrahedral}\\
- $E_f=3.41\, eV$\\
+ $E_f=3.41$ eV\\
  \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
  \end{minipage}
  \begin{minipage}[t]{4.3cm}
  \underline{110 dumbbell}\\
- $E_f=4.39\, eV$\\
+ $E_f=4.39$ eV\\
  \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
  \end{minipage}
  \begin{minipage}[t]{4.3cm}
  \underline{Hexagonal} \hspace{4pt}
  \href{../video/si_self_int_hexa.avi}{$\rhd$}\\
- $E_f^{\star}\approx4.48\, eV$ (unstable!)\\
+ $E_f^{\star}\approx4.48$ eV (unstable!)\\
  \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
  \end{minipage}
 
  \underline{Random insertion}
 
  \begin{minipage}{4.3cm}
- $E_f=3.97\, eV$\\
+ $E_f=3.97$ eV\\
  \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps}
  \end{minipage}
  \begin{minipage}{4.3cm}
- $E_f=3.75\, eV$\\
+ $E_f=3.75$ eV\\
  \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps}
  \end{minipage}
  \begin{minipage}{4.3cm}
- $E_f=3.56\, eV$\\
+ $E_f=3.56$ eV\\
  \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps}
  \end{minipage}
 
 
  \begin{minipage}[t]{4.3cm}
  \underline{Tetrahedral}\\
- $E_f=2.67\, eV$\\
+ $E_f=2.67$ eV\\
  \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
  \end{minipage}
  \begin{minipage}[t]{4.3cm}
  \underline{110 dumbbell}\\
- $E_f=1.76\, eV$\\
+ $E_f=1.76$ eV\\
  \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
  \end{minipage}
  \begin{minipage}[t]{4.3cm}
  \underline{Hexagonal} \hspace{4pt}
  \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
- $E_f^{\star}\approx5.6\, eV$ (unstable!)\\
+ $E_f^{\star}\approx5.6$ eV (unstable!)\\
  \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
  \end{minipage}
 
  \footnotesize
 
 \begin{minipage}[t]{3.3cm}
-   $E_f=0.47\, eV$\\
+   $E_f=0.47$ eV\\
    \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps}
    \begin{picture}(0,0)(-15,-3)
-    001 dumbbell
+    100 dumbbell
    \end{picture}
 \end{minipage}
 \begin{minipage}[t]{3.3cm}
-   $E_f=1.62\, eV$\\
+   $E_f=1.62$ eV\\
    \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps}
 \end{minipage}
 \begin{minipage}[t]{3.3cm}
-   $E_f=2.39\, eV$\\
+   $E_f=2.39$ eV\\
    \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps}
 \end{minipage}
 \begin{minipage}[t]{3.0cm}
-   $E_f=3.41\, eV$\\
+   $E_f=3.41$ eV\\
    \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps}
 \end{minipage}
 
 \begin{slide}
 
  {\large\bf
-  Simulation details
+  Results
+ } - <100> dumbbell configuration
+
+ \vspace{8pt}
+
+ \small
+
+ \begin{minipage}{4cm}
+ \begin{itemize}
+  \item $E_f=0.47$ eV
+  \item Very often observed
+  \item Most energetically\\
+        favorable configuration
+  \item Experimental\\
+        evidence [6]
+ \end{itemize}
+ \vspace{24pt}
+ {\tiny
+  [6] G. D. Watkins and K. L. Brower,\\
+      Phys. Rev. Lett. 36 (1976) 1329.
+ }
+ \end{minipage}
+ \begin{minipage}{8cm}
+ \includegraphics[width=9cm]{100-c-si-db_s.eps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Simulation sequence
  }
 
  \small
 
  \begin{pspicture}(0,0)(12,8)
   % nodes
-  \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+  \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
    \parbox{7cm}{
    \begin{itemize}
     \item Initial configuration: $31\times31\times31$ unit cells Si
     \item Periodic boundary conditions
-    \item $T=450\, ^{\circ}C$
-    \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
+    \item $T=450\, ^{\circ}\text{C}$, $p=0\text{ bar}$
+    \item Equilibration of $E_{kin}$ and $E_{pot}$
    \end{itemize}
   }}}}
-  \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
+  \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
    \parbox{7cm}{
-   Insertion of $6000$ carbon atoms at constant\\
+   Insertion of 6000 carbon atoms at constant\\
    temperature into:
    \begin{itemize}
     \item Total simulation volume {\pnode{in1}}
     \item Volume of necessary amount of Si {\pnode{in3}}
    \end{itemize} 
   }}}}
-  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
    \parbox{3.5cm}{
    Cooling down to $20\, ^{\circ}C$
   }}}}
 \begin{slide}
 
  {\large\bf
-  Very first results of the SiC precipitation runs
- }
-
- \footnotesize
-
- \begin{minipage}[b]{6.9cm}
-  \includegraphics[width=6.3cm]{../plot/sic_prec_energy.ps}
-  \includegraphics[width=6.3cm]{../plot/sic_prec_temp.ps}
+  Results
+ } - SiC precipitation runs
+
+
+ \includegraphics[width=6.3cm]{pc_si-c_c-c.eps}
+ \includegraphics[width=6.3cm]{pc_si-si.eps}
+
+ \begin{minipage}[t]{6.3cm}
+ \tiny
+    \begin{itemize}
+      \item C-C peak at 0.15 nm similar to next neighbour distance of graphite
+            or diamond\\
+            $\Rightarrow$ Formation of strong C-C bonds
+                          (almost only for high C concentrations)
+      \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC
+      \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\
+            (due to concatenated, differently oriented
+             <100> dumbbell interstitials)
+      \item Si-Si shows non-zero g(r) values around 0.31 nm like in 3C-SiC\\
+            and a decrease at regular distances\\
+            (no clear peak,
+             interval of enhanced g(r) corresponds to C-C peak width)
+    \end{itemize}
  \end{minipage}
- \begin{minipage}[b]{5.5cm}
-  \begin{itemize}
-   \item {\color{red} Total simulation volume}
-   \item {\color{green} Volume of minimal SiC precipitation}
-   \item {\color{blue} Volume of necessary amount of Si}
-  \end{itemize}
-  \vspace{40pt}
-  \includegraphics[width=6.3cm]{../plot/foo150.ps}
+ \begin{minipage}[t]{6.3cm}
+ \tiny
+   \begin{itemize}
+      \item Low C concentration (i.e. $V_1$):
+            The <100> dumbbell configuration
+            \begin{itemize}
+              \item is identified to stretch the Si-Si next neighbour distance
+                    to 0.3 nm
+              \item is identified to contribute to the Si-C peak at 0.19 nm
+              \item explains further C-Si peaks (dashed vertical lines)
+            \end{itemize}
+            $\Rightarrow$ C atoms are first elements arranged at distances
+                          expected for 3C-SiC\\
+            $\Rightarrow$ C atoms pull the Si atoms into the right
+                          configuration at a later stage
+      \item High C concentration (i.e. $V_2$ and $V_3$):
+            \begin{itemize}
+              \item High amount of damage introduced into the system
+              \item Short range order observed but almost no long range order
+            \end{itemize}
+            $\Rightarrow$ Start of amorphous SiC-like phase formation\\
+            $\Rightarrow$ Higher temperatures required for proper SiC formation
+    \end{itemize}
  \end{minipage}
 
 \end{slide}