tersoff
authorhackbard <hackbard>
Thu, 7 Dec 2006 02:26:52 +0000 (02:26 +0000)
committerhackbard <hackbard>
Thu, 7 Dec 2006 02:26:52 +0000 (02:26 +0000)
posic/thesis/basics.tex

index 7d61ebe..c66e280 100644 (file)
@@ -222,9 +222,9 @@ The derivation of the angle $\theta_{ijk}$ with respect to $x^i_n$ is given by
 Using the expressions \eqref{eq:d_cutoff} and \eqref{eq:d_costheta} the derivation of $b_{ij}$ with respect to $x^i_n$ can be written as:
 \begin{eqnarray}
 \partial_{x^i_n} b_{ij} & = &
-- \frac{1}{2n_i} \chi_{ij} \Bigg( 1 + \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} \bigg( f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \bigg)^{n_i} \Bigg] \Bigg)^{-\frac{1}{2n_i} - 1} \times \nonumber\\
-&& \times n_i \beta_i^{n_i} \sum_{k \ne i,j} \Bigg( \Bigg[ f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2}  \Big) \Bigg]^{n_i -1} \times \nonumber\\
-&& \times \Bigg[ \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) - \nonumber\\
+- \frac{1}{2n_i} \chi_{ij} \Bigg( 1 + \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} \bigg( f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \bigg) \Bigg]^{n_i} \Bigg)^{-\frac{1}{2n_i} - 1} \times \nonumber\\
+&& \times n_i \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2}  \Big) \Bigg]^{n_i -1} \times \nonumber\\
+&& \times \sum_{k \ne i,j} \Bigg[ \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) - \nonumber\\
 && - f_C(r_{ik}) \omega_{ik} \frac{2 c_i^2 (h_i - \cos \theta_{ijk})}{(d_i^2 + (h_i - \cos \theta_{ijk})^2)^2} \partial_{x^i_n} \cos \theta_{ijk} \Bigg]
 \end{eqnarray}