e table for defect combos
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 16 Feb 2010 10:05:24 +0000 (11:05 +0100)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 16 Feb 2010 10:05:24 +0000 (11:05 +0100)
posic/thesis/defects.tex

index b421b3d..17fd7bc 100644 (file)
@@ -652,6 +652,11 @@ In addition the bond-ceneterd configuration, for which spin polarized calculatio
 
 \section{Combination of point defects}
 
+The structural and energetic properties of combinations of point defects are investigated in the following.
+The focus is on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
+The second defect is either another \hkl<1 0 0>-type interstitial occupying different orientations, a vacany or a substitutional carbon atom.
+Several distances of the two defects are examined.
+Investigations are restricted to quantum-mechanical calculations.
 \begin{figure}[h]
 \begin{center}
 \begin{minipage}{7.5cm}
@@ -680,12 +685,38 @@ Relative silicon neighbour positions:
 \caption[\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect.]{\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect. Two possibilities exist for red numbered atoms and four possibilities exist for blue numbered atoms.}
 \label{fig:defects:pos_of_comb}
 \end{figure}
-The structural and energetic properties of combinations of point defects are investigated in the following.
-The focus is on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
-The second defect is either another \hkl<1 0 0>-type interstitial occupying different orientations, a vacany or a substitutional carbon atom.
-Several distances of the two defects are examined.
-Investigations are restricted to quantum-mechanical calculations.
-Figure \ref{fig:defects:pos_of_comb} shows the initial \hkl<0 0 -1> dumbbell interstitial defect and the positions of the next neighboured silicon atoms used for the second defect.
-
+\begin{table}[h]
+\begin{center}
+\begin{tabular}{l c c c c c}
+\hline
+\hline
+ & 1 & 2 & 3 & 4 & 5 \\
+\hline
+ \hkl<0 0 -1> & & & & & \\
+ \hkl<0 0 1> & & & & & \\
+ \hkl<0 -1 0> & & & & & \\
+ \hkl<0 1 0> & & & & & \\
+ \hkl<-1 0 0> & & & & & \\
+ \hkl<1 0 0> & & & & & \\
+ C substitutional & & & & & \\
+ Vacancy & & & & & \\
+\hline
+\hline
+\end{tabular}
+\end{center}
+\caption[Energetic results of defect combinations.]{Energetic results of defect combinations. The given energies in eV are defined by equation \eqref{eq:defects:e_of_comb}.}
+\label{tab:defects:e_of_comb}
+\end{table}
+Figure \ref{fig:defects:pos_of_comb} shows the initial \hkl<0 0 -1> dumbbell interstitial defect and the positions of next neighboured silicon atoms used for the second defect.
+Table \ref{tab:defects:e_of_comb} summarizes energetic results obtained after relaxation of the defect combinations.
+The energy of interest $E$ is defined to be
+\begin{equation}
+E=
+E_{\text{f}}^{\text{defect combination}}-
+E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
+E_{\text{f}}^{\text{2nd defect}}
+\label{eq:defects:e_of_comb}
+\end{equation}
+with $E_{\text{f}}^{\text{defect combination}}$ being the formation energy of the defect combination, $E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}$ being the formation energy of the C \hkl<0 0 -1> dumbbell interstitial defect and $E_{\text{f}}^{\text{2nd defect}}$ being the formation energy of the second defect.