\vec{a}=\sum_i^N \vec{e}_i a_i
\label{eq:vec_sum}
\end{equation}
-The scalar product for an $N$-dimensional vector space is defined as
+The scalar product for an $N$-dimensional real vector space is defined as
\begin{equation}
(\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,}
\label{eq:vec_sp}
Such a basis set is called orthonormal.
The component of a vector can be obtained by taking the scalar product with the respective basis vector.
\begin{equation}
-\vec{e}_j\vec{a}=\vec{e}_j \sum_i \vec{e}_ia_i=\sum_i \vec{e}_j\vec{e}_ia_i=
+(\vec{e}_j,\vec{a})=(\vec{e}_j,\sum_i \vec{e}_ia_i)=
+\sum_i (\vec{e}_j,\vec{e}_i)a_i=
\sum_i\delta_{ij}a_i=a_j
\end{equation}
Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vector can be written as
\begin{equation}
\label{eq:complete}
-\vec{a}=\sum_i \vec{e}_i (\vec{e}_i\vec{a}) \Leftrightarrow \sum_i\vec{e}_i\vec{e}_i=\vec{1}
+\vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow
+\sum_i\vec{e}_i\cdot \vec{e}_i=\vec{1}
\end{equation}
if the basis is complete.
-Thus, the very important second part of \eqref{eq:complete} is known as the completeness relation or closure.
+Indeed, the very important identity representation by the outer product ($\cdot$) in the second part of \eqref{eq:complete} is known as the completeness relation or closure.
-Todo: outer product ... + explicitly mark scalar product
\chapter{Mathematical tools}
-\section{Vector space}
+\section{Vector algebra}
+
+\subsection{Vector space}
\label{math_app:vector_space}
\begin{definition}
The addition of two vectors is called vector addition.
\end{remark}
+\subsection{Dual space}
+
+\subsection{Inner and outer product}
+
+\begin{definition}
+The inner product ...
+\end{definition}
+
+\begin{definition}
+The outer product ...
+\end{definition}
+
\section{Spherical coordinates}
\section{Fourier integrals}