alpha
[lectures/latex.git] / posic / talks / dpg_2008.tex
1 \pdfoutput=0
2 \documentclass[landscape,semhelv]{seminar}
3
4 \usepackage{verbatim}
5 \usepackage[german]{babel}
6 \usepackage[latin1]{inputenc}
7 \usepackage[T1]{fontenc}
8 \usepackage{amsmath}
9 \usepackage{latexsym}
10 \usepackage{ae}
11
12 \usepackage{calc}               % Simple computations with LaTeX variables
13 \usepackage{caption}            % Improved captions
14 \usepackage{fancybox}           % To have several backgrounds
15
16 \usepackage{fancyhdr}           % Headers and footers definitions
17 \usepackage{fancyvrb}           % Fancy verbatim environments
18 \usepackage{pstricks}           % PSTricks with the standard color package
19
20 \usepackage{pstricks}
21 \usepackage{pst-node}
22
23 \usepackage{epic}
24 \usepackage{eepic}
25
26 \usepackage{graphicx}
27 \graphicspath{{../img/}}
28
29 \usepackage[setpagesize=false]{hyperref}
30
31 \usepackage{semcolor}
32 \usepackage{semlayer}           % Seminar overlays
33 \usepackage{slidesec}           % Seminar sections and list of slides
34
35 \input{seminar.bug}             % Official bugs corrections
36 \input{seminar.bg2}             % Unofficial bugs corrections
37
38 \articlemag{1}
39
40 \special{landscape}
41
42 \begin{document}
43
44 \extraslideheight{10in}
45 \slideframe{none}
46
47 \pagestyle{empty}
48
49 % specify width and height
50 \slidewidth 27.7cm 
51 \slideheight 19.1cm 
52
53 % shift it into visual area properly
54 \def\slideleftmargin{3.3cm}
55 \def\slidetopmargin{0.6cm}
56
57 \newcommand{\ham}{\mathcal{H}}
58 \newcommand{\pot}{\mathcal{V}}
59 \newcommand{\foo}{\mathcal{U}}
60 \newcommand{\vir}{\mathcal{W}}
61
62 % itemize level ii
63 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
64
65 % topic
66
67 \begin{slide}
68 \begin{center}
69
70  \vspace{16pt}
71
72  {\LARGE\bf
73   Molecular dynamics simulation study\\
74   of the silicon carbide precipitation process
75  }
76
77  \vspace{24pt}
78
79  \textsc{\small \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$,
80          K. Nordlund$^2$, B. Stritzker$^1$}\\
81
82  \vspace{32pt}
83
84  \begin{minipage}{2.0cm}
85   \begin{center}
86   \includegraphics[height=1.6cm]{uni-logo.eps}
87   \end{center}
88  \end{minipage}
89  \begin{minipage}{8.0cm}
90   \begin{center}
91    {\footnotesize
92     $^1$ Experimentalphysik IV, Institut f"ur Physik,\\
93          Universit"at Augsburg, Universit"atsstr. 1,\\
94          D-86135 Augsburg, Germany
95    }
96   \end{center}
97  \end{minipage}
98  \begin{minipage}{2.3cm}
99   \begin{center}
100   \includegraphics[height=1.5cm]{Lehrstuhl-Logo.eps}
101   \end{center}
102  \end{minipage}
103
104  \vspace{16pt}
105
106  \begin{minipage}{4.0cm}
107   \begin{center}
108   \includegraphics[height=1.6cm]{logo_eng.eps}
109   \end{center}
110  \end{minipage}
111  \begin{minipage}{8.0cm}
112   \begin{center}
113   {\footnotesize
114    $^2$ Accelerator Laboratory, Department of Physical Sciences,\\
115    University of Helsinki, Pietari Kalmink. 2,\\
116    00014 Helsinki, Finland
117   }
118   \end{center}
119  \end{minipage}
120 \end{center}
121 \end{slide}
122
123 % contents
124
125 % no contents for such a short talk!
126
127 % start of contents
128
129 \begin{slide}
130
131  {\large\bf
132   Motivation / Introduction
133  }
134
135  \vspace{16pt}
136
137  Reasons for understanding the SiC precipitation process:
138
139  \begin{itemize}
140   \item 3C-SiC wide band gap semiconductor formation
141   \item Strained Si (no precipitation wanted!)
142  \end{itemize}
143
144  \vspace{16pt}
145
146  Si / 3C-SiC facts:
147
148  \begin{minipage}{8cm}
149  \begin{itemize}
150   \item Unit cell:
151         \begin{itemize}
152          \item {\color{orange}fcc} $+$
153          \item {\color{gray}fcc shifted $1/4$ of volume diagonal}
154         \end{itemize}
155   \item Lattice constants: $4a_{Si}\approx5a_{SiC}$
156   \item Silicon density: 
157         \[
158         \frac{n_{SiC}}{n_{Si}}=
159         \frac{4/a_{SiC}^3}{8/a_{Si}^3}=
160         \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\%
161         \]
162  \end{itemize}
163  \end{minipage}
164  \hspace{8pt}
165  \begin{minipage}{4cm}
166  \includegraphics[width=4cm]{sic_unit_cell.eps}
167  \end{minipage}
168
169 \end{slide}
170
171  \small
172 \begin{slide}
173
174  {\large\bf
175   Motivation / Introduction
176  }
177
178  \small
179  \vspace{6pt}
180
181  Supposed conversion mechanism of heavily carbon doped Si into SiC:
182
183  \vspace{8pt}
184
185  \begin{minipage}{3.8cm}
186  \includegraphics[width=3.7cm]{sic_prec_seq_01.eps}
187  \end{minipage}
188  \hspace{0.6cm}
189  \begin{minipage}{3.8cm}
190  \includegraphics[width=3.7cm]{sic_prec_seq_02.eps}
191  \end{minipage}
192  \hspace{0.6cm}
193  \begin{minipage}{3.8cm}
194  \includegraphics[width=3.7cm]{sic_prec_seq_03.eps}
195  \end{minipage}
196
197  \vspace{8pt}
198
199  \begin{minipage}{3.8cm}
200  Formation of C-Si dumbbells on regular c-Si lattice sites
201  \end{minipage}
202  \hspace{0.6cm}
203  \begin{minipage}{3.8cm}
204  Agglomeration into large clusters (embryos)\\
205  \end{minipage}
206  \hspace{0.6cm}
207  \begin{minipage}{3.8cm}
208  Precipitation of 3C-SiC + Creation of interstitials\\
209  \end{minipage}
210
211  \vspace{12pt}
212
213  Experimentally observed:
214  \begin{itemize}
215   \item Minimal diameter of precipitation: 4 - 5 nm
216   \item (hkl)-planes identical for Si and SiC
217  \end{itemize}
218
219 \end{slide}
220
221 \begin{slide}
222
223  {\large\bf
224   Simulation details
225  }
226
227  \vspace{12pt}
228
229  MD basics:
230  \begin{itemize}
231   \item Microscopic description of N particle system
232   \item Analytical interaction potential
233   \item Hamilton's equations of motion as propagation rule\\
234         in 6N-dimensional phase space
235   \item Observables obtained by time average
236  \end{itemize}
237
238  \vspace{12pt}
239
240  Application details:
241  \begin{itemize}
242   \item Integrator: Velocity Verlet, timestep: $1\, fs$
243   \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$
244   \item Potential: Tersoff-like bond order potential\\
245         \[
246         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
247         \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
248         \]
249         \begin{center}
250         {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211}
251         \end{center}
252  \end{itemize}
253
254  \begin{picture}(0,0)(-240,-70)
255   \includegraphics[width=5cm]{tersoff_angle.eps} 
256  \end{picture}
257
258 \end{slide}
259
260 \begin{slide}
261
262  {\large\bf
263   Simulation details
264  }
265
266  \vspace{8pt}
267
268  Interstitial experiments:
269
270  \vspace{8pt}
271
272  \begin{pspicture}(0,0)(7,8)
273   \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
274    \parbox{7cm}{
275    \begin{itemize}
276     \item Initial configuration: $9\times9\times9$ unit cells Si
277     \item Periodic boundary conditions
278     \item $T=0 \, K$
279    \end{itemize}
280   }}}}
281 \rput(3.5,3.5){\rnode{insert}{\psframebox{
282  \parbox{7cm}{
283   Insertion of C / Si atom:
284   \begin{itemize}
285    \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
286    \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
287    \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\
288          $\rightarrow$ {\color{magenta}110 dumbbell}
289    \item random positions (critical distance check)
290   \end{itemize}
291   }}}}
292   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
293    \parbox{3.5cm}{
294    Relaxation time: $2\, ps$
295   }}}}
296   \ncline[]{->}{init}{insert}
297   \ncline[]{->}{insert}{cool}
298  \end{pspicture}
299
300  \begin{picture}(0,0)(-210,-45)
301   \includegraphics[width=6cm]{unit_cell.eps}
302  \end{picture}
303
304 \end{slide}
305
306 \begin{slide}
307
308  {\large\bf
309   Results
310  } - Si self-interstitial experiments
311
312  \small
313
314  \begin{minipage}[t]{4.3cm}
315  \underline{Tetrahedral}\\
316  $E_f=3.41\, eV$\\
317  \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
318  \end{minipage}
319  \begin{minipage}[t]{4.3cm}
320  \underline{110 dumbbell}\\
321  $E_f=4.39\, eV$\\
322  \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
323  \end{minipage}
324  \begin{minipage}[t]{4.3cm}
325  \underline{Hexagonal} \hspace{4pt}
326  \href{../video/si_self_int_hexa.avi}{$\rhd$}\\
327  $E_f^{\star}\approx4.48\, eV$ (unstable!)\\
328  \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
329  \end{minipage}
330
331  \underline{Random insertion}
332
333  \begin{minipage}{4.3cm}
334  $E_f=3.97\, eV$\\
335  \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps}
336  \end{minipage}
337  \begin{minipage}{4.3cm}
338  $E_f=3.75\, eV$\\
339  \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps}
340  \end{minipage}
341  \begin{minipage}{4.3cm}
342  $E_f=3.56\, eV$\\
343  \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps}
344  \end{minipage}
345
346 \end{slide}
347
348 \begin{slide}
349
350  {\large\bf
351   Results
352  } - Carbon interstitial experiments
353
354  \small
355
356  \begin{minipage}[t]{4.3cm}
357  \underline{Tetrahedral}\\
358  $E_f=2.67\, eV$\\
359  \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
360  \end{minipage}
361  \begin{minipage}[t]{4.3cm}
362  \underline{110 dumbbell}\\
363  $E_f=1.76\, eV$\\
364  \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
365  \end{minipage}
366  \begin{minipage}[t]{4.3cm}
367  \underline{Hexagonal} \hspace{4pt}
368  \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
369  $E_f^{\star}\approx5.6\, eV$ (unstable!)\\
370  \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
371  \end{minipage}
372
373  \underline{Random insertion}
374
375  \footnotesize
376
377 \begin{minipage}[t]{3.3cm}
378    $E_f=0.47\, eV$\\
379    \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps}
380    \begin{picture}(0,0)(-15,-3)
381     001 dumbbell
382    \end{picture}
383 \end{minipage}
384 \begin{minipage}[t]{3.3cm}
385    $E_f=1.62\, eV$\\
386    \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps}
387 \end{minipage}
388 \begin{minipage}[t]{3.3cm}
389    $E_f=2.39\, eV$ \hspace{2pt}
390    \href{../video/c_in_si_int_rand_239.avi}{$\rhd$}\\
391    \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps}
392 \end{minipage}
393 \begin{minipage}[t]{3.0cm}
394    $E_f=3.41\, eV$ \hspace{2pt}
395    \href{../video/c_in_si_int_rand_341.avi}{$\rhd$}\\
396    \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps}
397 \end{minipage}
398
399 \end{slide}
400
401 \begin{slide}
402
403  {\large\bf
404   Simulation details
405  }
406
407  \small
408
409  \vspace{8pt}
410
411  SiC precipitation experiments:
412
413  \vspace{8pt}
414
415  \begin{pspicture}(0,0)(12,8)
416   % nodes
417   \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
418    \parbox{7cm}{
419    \begin{itemize}
420     \item Initial configuration: $31\times31\times31$ unit cells Si
421     \item Periodic boundary conditions
422     \item $T=450\, ^{\circ}C$
423     \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
424    \end{itemize}
425   }}}}
426   \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
427    \parbox{7cm}{
428    Insertion of $6000$ carbon atoms at constant\\
429    temperature into:
430    \begin{itemize}
431     \item Total simulation volume {\pnode{in1}}
432     \item Volume of minimal SiC precipitation {\pnode{in2}}
433     \item Volume of necessary amount of Si {\pnode{in3}}
434    \end{itemize} 
435   }}}}
436   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
437    \parbox{3.5cm}{
438    Cooling down to $20\, ^{\circ}C$
439   }}}}
440   \ncline[]{->}{init}{insert}
441   \ncline[]{->}{insert}{cool}
442   \psframe[fillstyle=solid,fillcolor=white](7.5,1.8)(13.5,7.8)
443   \psframe[fillstyle=solid,fillcolor=lightgray](9,3.3)(12,6.3)
444   \psframe[fillstyle=solid,fillcolor=gray](9.25,3.55)(11.75,6.05)
445   \rput(7.9,4.8){\pnode{ins1}}
446   \rput(9.22,4.4){\pnode{ins2}}
447   \rput(10.5,4.8){\pnode{ins3}}
448   \ncline[]{->}{in1}{ins1}
449   \ncline[]{->}{in2}{ins2}
450   \ncline[]{->}{in3}{ins3}
451  \end{pspicture}
452
453 \end{slide}
454
455 \begin{slide}
456
457  {\large\bf
458   Very first results of the SiC precipitation experiments
459  }
460
461  \begin{minipage}[t]{6.3cm}
462   \includegraphics[width=6.0cm]{../plot/sic_prec_energy.ps}
463   \includegraphics[width=6.0cm]{../plot/sic_prec_temp.ps}
464  \end{minipage}
465  \begin{minipage}[t]{6.3cm}
466   \includegraphics[width=6.0cm]{../plot/sic_prec_energy_zoom.ps}
467   \includegraphics[width=6.0cm]{../plot/foo150.ps}
468  \end{minipage}
469
470 \end{slide}
471
472 \begin{slide}
473
474  {\large\bf
475   Very first results of the SiC precipitation experiments
476  }
477
478  \begin{minipage}[c]{12cm}
479   \includegraphics[width=6.0cm]{../plot/sic_pc.ps}
480   \hspace{4pt}
481   \includegraphics[width=5.0cm]{sic_si-c-n.eps}
482  \end{minipage}
483  \begin{minipage}[c]{12cm}
484   \includegraphics[width=6.0cm]{../plot/foo_end.ps}
485   \hspace{4pt}
486   \includegraphics[width=5.0cm]{foo_end.eps}
487  \end{minipage}
488
489 \end{slide}
490
491 \begin{slide}
492
493  {\large\bf
494   Summary / Outlook
495  }
496
497 \vspace{24pt}
498
499 \begin{itemize}
500  \item Importance of understanding the SiC precipitation mechanism
501  \item Interstitial configurations in silicon using the Albe potential
502  \item Indication of SiC precipitation
503 \end{itemize}
504
505 \vspace{16pt}
506
507 \begin{itemize}
508  \item Displacement and stress calculations
509  \item Diffusion dependence of temperature and carbon concentration
510  \item Analyzing results of the precipitation simulation runs
511  \item Refinement of simulation sequence to create 3C-SiC
512  \item Analyzing self-designed Si/SiC interface
513 \end{itemize}
514
515 \end{slide}
516
517 \end{document}
518